From 54c3c4896adc2ca2ec57883470164481ecf4f4ba Mon Sep 17 00:00:00 2001 From: efish Date: Thu, 22 Nov 2018 15:39:26 +0100 Subject: [PATCH] plot --- code/plot_eodform_spikehist.py | 84 ++++++++++++++++++++++++++++++++++ 1 file changed, 84 insertions(+) create mode 100644 code/plot_eodform_spikehist.py diff --git a/code/plot_eodform_spikehist.py b/code/plot_eodform_spikehist.py new file mode 100644 index 0000000..a715adf --- /dev/null +++ b/code/plot_eodform_spikehist.py @@ -0,0 +1,84 @@ +import numpy as np +import matplotlib.pyplot as plt +from read_baseline_data import * +from NixFrame import * +from utility import * +from IPython import embed + +# plot and data values +inch_factor = 2.54 +data_dir = '../data' +dataset = '2018-11-09-ad-invivo-1' + +# read eod and time of baseline +time, eod = read_baseline_eod(os.path.join(data_dir, dataset)) + + + +# read spikes during baseline activity +spikes = read_baseline_spikes(os.path.join(data_dir, dataset)) +# calculate interpike intervals and plot them +interspikeintervals = np.diff(spikes) + +fig, ax = plt.subplots(figsize=(12/inch_factor, 8/inch_factor)) +plt.hist(interspikeintervals, bins=np.arange(0, np.max(interspikeintervals), 0.0001)) +plt.show() + +# calculate coefficient of variation +mu = np.mean(interspikeintervals) +sigma = np.std(interspikeintervals) +cv = sigma/mu +print(cv) + +# calculate eod times and indices by zero crossings +threshold = 0 +shift_eod = np.roll(eod, 1) +eod_times = time[(eod >= threshold) & (shift_eod < threshold)] +sampling_rate = 40000.0 +eod_idx = eod_times*sampling_rate + +# align eods and spikes to eods +max_cut = int(np.max(np.diff(eod_idx))) +eod_cuts = np.zeros([len(eod_idx)-1, max_cut]) +spike_times = [] +eod_durations = [] + +for i, idx in enumerate(eod_idx[:-1]): + eod_cut = eod[int(idx):int(eod_idx[i+1])] + eod_cuts[i, :len(eod_cut)] = eod_cut + eod_cuts[i, len(eod_cut):] = np.nan + time_cut = time[int(idx):int(eod_idx[i+1])] + spike_cut = spikes[(spikes > time_cut[0]) & (spikes < time_cut[-1])] + spike_time = spike_cut - time_cut[0] + if len(spike_time) > 0: + spike_times.append(spike_time[:][0]*1000) + eod_durations.append(len(eod_cut)/sampling_rate*1000) + +# calculate vector strength +vs = vector_strength(spike_times, eod_durations) + +# determine means and stds of eod for plot +# determine time axis +mu_eod = np.nanmean(eod_cuts, axis=0) +std_eod = np.nanstd(eod_cuts, axis=0)*3 +time_axis = np.arange(max_cut)/sampling_rate*1000 + +# plot eod form and spike histogram +fig, ax1 = plt.subplots(figsize=(12/inch_factor, 8/inch_factor)) +ax1.hist(spike_times, color='crimson') +ax1.set_xlabel('time [ms]', fontsize=12) +ax1.set_ylabel('number', fontsize=12) +ax1.tick_params(axis='y', labelcolor='crimson') +plt.yticks(fontsize=8) +ax1.spines['top'].set_visible(False) + +ax2 = ax1.twinx() +ax2.fill_between(time_axis, mu_eod+std_eod, mu_eod-std_eod, color='dodgerblue', alpha=0.5) +ax2.plot(time_axis, mu_eod, color='black', lw=2) +ax2.set_ylabel('voltage [mV]', fontsize=12) +ax2.tick_params(axis='y', labelcolor='dodgerblue') + +plt.xticks(fontsize=8) +plt.yticks(fontsize=8) +fig.tight_layout() +plt.show() \ No newline at end of file