diff --git a/code/eod_frequency_normal.py b/code/eod_freq_normal.py similarity index 100% rename from code/eod_frequency_normal.py rename to code/eod_freq_normal.py diff --git a/code/eod_frequency_chirp.py b/code/eod_frequency_chirp.py deleted file mode 100644 index a495601..0000000 --- a/code/eod_frequency_chirp.py +++ /dev/null @@ -1,39 +0,0 @@ -from read_chirp_data import * -import os -from IPython import embed -import matplotlib.pyplot as plt -import numpy as np - - -data_dir = "../data" -dataset = "2018-11-14-ak-invivo-1" -stim = read_chirp_stimulus(os.path.join(data_dir, dataset)) - -s = stim[(1, 675.0, 100.0)][0] -eod = s[1] -time = s[0] - -eod_norm = eod - np.mean(eod) -# calculate chirp times and indices by zero crossings -threshold = 0 -shift_eod = np.roll(eod_norm, 1) -eod_times = time[(eod_norm >= threshold) & (shift_eod < threshold)] - -eod_freq_chirp = 1/np.diff(eod_times) -kernel = np.ones(11)/11 -smooth_eod_freq_chirp = np.convolve(eod_freq_chirp, kernel, mode = 'valid') -time_axis = np.arange(len(smooth_eod_freq_chirp)) - - -fig = plt.plot(time_axis, smooth_eod_freq_chirp) -plt.xlabel("time [ms]", fontsize = 14) -plt.xticks(fontsize = 12) -plt.ylabel("eod frequency [mV]", fontsize = 14) -plt.yticks(fontsize = 12) -plt.axis([0, len(time_axis), 0, 2000]) - -plt.show() - - - -