mambo nr 5
This commit is contained in:
parent
67353f5c0b
commit
4bff151b3a
@ -48,28 +48,46 @@ eod_times = time[(eod >= threshold) & (shift_eod < threshold)]
|
|||||||
sampling_rate = 40000.0
|
sampling_rate = 40000.0
|
||||||
eod_idx = eod_times*sampling_rate
|
eod_idx = eod_times*sampling_rate
|
||||||
|
|
||||||
<<<<<<< HEAD
|
|
||||||
#fig = plt.figure()
|
|
||||||
eod_cuts = [];
|
|
||||||
#for i, idx in enumerate(eod_idx)-1:
|
|
||||||
#eod_cuts.append(eod[int(idx):int(eod_idx[i+1])])
|
|
||||||
#time_cut = time[int(idx):int(eod_idx[i+1])]
|
|
||||||
#plt.plot(time[int(idx):int(eod_idx[i+1])], eod[int(idx):int(eod_idx[i+1])])
|
|
||||||
#plt.show()
|
|
||||||
data = NixToFrame(data_dir)
|
|
||||||
=======
|
|
||||||
fig = plt.figure()
|
|
||||||
for i, idx in enumerate(eod_idx):
|
|
||||||
#embed()
|
|
||||||
#exit()
|
|
||||||
plt.plot(time[int(idx):int(eod_idx[i+1])], eod[int(idx):int(eod_idx[i+1])])
|
|
||||||
|
|
||||||
|
max_cut = int(np.max(np.diff(eod_idx)))
|
||||||
|
eod_cuts = np.zeros([len(eod_idx)-1, max_cut])
|
||||||
|
# eods 15 + 16 are to short
|
||||||
|
relative_times = []
|
||||||
|
|
||||||
|
for i, idx in enumerate(eod_idx[:-1]):
|
||||||
|
eod_cut = eod[int(idx):int(eod_idx[i+1])]
|
||||||
|
eod_cuts[i, :len(eod_cut)] = eod_cut
|
||||||
|
eod_cuts[i, len(eod_cut):] = np.nan
|
||||||
|
time_cut = time[int(idx):int(eod_idx[i+1])]
|
||||||
|
spike_cut = spikes[(spikes > time_cut[0]) & (spikes < time_cut[-1])]
|
||||||
|
relative_time = spike_cut - time_cut[0]
|
||||||
|
if len(relative_time) > 0:
|
||||||
|
relative_times.append(relative_time[:][0]*1000)
|
||||||
|
|
||||||
|
|
||||||
plt.show()
|
mu_eod = np.nanmean(eod_cuts, axis=0)
|
||||||
>>>>>>> 477fa15dc430b3d9c42ac3e40c59d67b3075c007
|
std_eod = np.nanstd(eod_cuts, axis=0)*3
|
||||||
|
|
||||||
|
time_axis = np.arange(max_cut)/sampling_rate*1000
|
||||||
|
|
||||||
|
#fig = plt.figure(figsize=(12/inch_factor, 8/inch_factor))
|
||||||
|
fig, ax1 = plt.subplots(figsize=(12/inch_factor, 8/inch_factor))
|
||||||
|
ax1.hist(relative_times, color='crimson')
|
||||||
|
ax1.set_xlabel('time [ms]', fontsize=12)
|
||||||
|
ax1.set_ylabel('number', fontsize=12)
|
||||||
|
ax1.tick_params(axis='y', labelcolor='crimson')
|
||||||
|
plt.yticks(fontsize = 8)
|
||||||
|
ax1.spines['top'].set_visible(False)
|
||||||
|
|
||||||
|
ax2 = ax1.twinx()
|
||||||
|
|
||||||
|
ax2.fill_between(time_axis, mu_eod+std_eod, mu_eod-std_eod, color='dodgerblue', alpha=0.5)
|
||||||
|
ax2.plot(time_axis, mu_eod, color='black', lw=2)
|
||||||
|
ax2.set_ylabel('voltage [mV]', fontsize=12)
|
||||||
|
ax2.tick_params(axis='y', labelcolor='dodgerblue')
|
||||||
|
|
||||||
|
plt.xticks(fontsize = 8)
|
||||||
|
plt.yticks(fontsize = 8)
|
||||||
|
fig.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
embed()
|
|
||||||
exit()
|
|
||||||
|
Loading…
Reference in New Issue
Block a user