eod frequenz chirps über zeit
This commit is contained in:
parent
da8f7237af
commit
4227bfd447
39
code/eod_frequency_chirp.py
Normal file
39
code/eod_frequency_chirp.py
Normal file
@ -0,0 +1,39 @@
|
||||
from read_chirp_data import *
|
||||
import os
|
||||
from IPython import embed
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
||||
data_dir = "../data"
|
||||
dataset = "2018-11-14-ak-invivo-1"
|
||||
stim = read_chirp_stimulus(os.path.join(data_dir, dataset))
|
||||
|
||||
s = stim[(1, 675.0, 100.0)][0]
|
||||
eod = s[1]
|
||||
time = s[0]
|
||||
|
||||
eod_norm = eod - np.mean(eod)
|
||||
# calculate chirp times and indices by zero crossings
|
||||
threshold = 0
|
||||
shift_eod = np.roll(eod_norm, 1)
|
||||
eod_times = time[(eod_norm >= threshold) & (shift_eod < threshold)]
|
||||
|
||||
eod_freq_chirp = 1/np.diff(eod_times)
|
||||
kernel = np.ones(11)/11
|
||||
smooth_eod_freq_chirp = np.convolve(eod_freq_chirp, kernel, mode = 'valid')
|
||||
time_axis = np.arange(len(smooth_eod_freq_chirp))
|
||||
|
||||
|
||||
fig = plt.plot(time_axis, smooth_eod_freq_chirp)
|
||||
plt.xlabel("time [ms]", fontsize = 14)
|
||||
plt.xticks(fontsize = 12)
|
||||
plt.ylabel("eod frequency [mV]", fontsize = 14)
|
||||
plt.yticks(fontsize = 12)
|
||||
plt.axis([0, len(time_axis), 0, 2000])
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
|
56
code/eod_frequency_normal.py
Normal file
56
code/eod_frequency_normal.py
Normal file
@ -0,0 +1,56 @@
|
||||
from read_baseline_data import *
|
||||
from IPython import embed
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
data_dir = '../data'
|
||||
dataset = '2018-11-09-ad-invivo-1'
|
||||
|
||||
# read eod and time of baseline
|
||||
time, eod = read_baseline_eod(os.path.join(data_dir, dataset))
|
||||
|
||||
eod_norm = eod - np.mean(eod)
|
||||
|
||||
# calculate eod times and indices by zero crossings
|
||||
threshold = 0
|
||||
shift_eod = np.roll(eod_norm, 1)
|
||||
eod_times = time[(eod_norm >= threshold) & (shift_eod < threshold)]
|
||||
|
||||
|
||||
## normal
|
||||
eod_freq_normal = 1/np.diff(eod_times)
|
||||
kernel = np.ones(7)/7
|
||||
|
||||
smooth_eod_freq_normal = np.convolve(eod_freq_normal, kernel, mode = 'valid')
|
||||
time_axis = np.arange(len(smooth_eod_freq_normal))
|
||||
#print(eod_freq)
|
||||
#print(smooth_eod_freq)
|
||||
|
||||
fig = plt.plot(time_axis,smooth_eod_freq_normal, linewidth = 2.0)
|
||||
plt.xlabel("time [ms]", fontsize = 14)
|
||||
plt.xticks(fontsize = 12)
|
||||
plt.ylabel("eod frequency [mV]", fontsize = 14)
|
||||
plt.yticks(fontsize = 12)
|
||||
plt.axis([0, len(time_axis), 0, 1000])
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## beat
|
||||
#x = np.arange(0, len(time_axis, 0.000001) # Start, Stop, Step
|
||||
#y = np.sin(x * 2* np.pi * 600)
|
||||
#plt.plot(x, y)
|
||||
#plt.show()
|
||||
|
||||
|
||||
#eod_freq_beat = eod_freq_normal + np.sin(x * 2* np.pi * 600)
|
||||
#smooth_eod_freq_beat = np.convolve(eod_freq_beat, kernel, mode = 'valid')
|
||||
#fig = plt.plot(time_axis,smooth_eod_freq_beat)
|
||||
#plt.xlabel("time [ms]")
|
||||
#plt.ylabel("eod frequency [mV]")
|
||||
#plt.show()
|
@ -116,7 +116,7 @@ def read_chirp_stimulus(dataset):
|
||||
|
||||
if __name__ == "__main__":
|
||||
data_dir = "../data"
|
||||
dataset = "2018-11-20-ad-invivo-1"
|
||||
dataset = "2018-11-09-ad-invivo-1"
|
||||
#spikes = load_chirp_spikes(os.path.join(data_dir, dataset))
|
||||
#chirp_times = load_chirp_times(os.path.join(data_dir, dataset))
|
||||
#chirp_eod = load_chirp_eod(os.path.join(data_dir, dataset))
|
||||
|
Loading…
Reference in New Issue
Block a user