diff --git a/code/eod_freq_normal.py b/code/eod_freq_normal.py index e1a16a9..7b0e192 100644 --- a/code/eod_freq_normal.py +++ b/code/eod_freq_normal.py @@ -4,21 +4,27 @@ import matplotlib.pyplot as plt import numpy as np data_dir = '../data' -dataset = '2018-11-09-ad-invivo-1' +#dataset = '2018-11-09-ad-invivo-1' +data = ["2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1"] +for dataset in data: # read eod and time of baseline -time, eod = read_baseline_eod(os.path.join(data_dir, dataset)) + time, eod = read_baseline_eod(os.path.join(data_dir, dataset)) -eod_norm = eod - np.mean(eod) + eod_norm = eod - np.mean(eod) # calculate eod times and indices by zero crossings -threshold = 0 -shift_eod = np.roll(eod_norm, 1) -eod_times = time[(eod_norm >= threshold) & (shift_eod < threshold)] + threshold = 0 + shift_eod = np.roll(eod_norm, 1) + eod_times = time[(eod_norm >= threshold) & (shift_eod < threshold)] ## normal -eod_freq_normal = 1/np.diff(eod_times) + eod_freq_normal = 1/np.diff(eod_times) + overallfreq = np.mean(eod_freq_normal) + print(overallfreq) + +exit() kernel = np.ones(7)/7 smooth_eod_freq_normal = np.convolve(eod_freq_normal, kernel, mode = 'valid') diff --git a/code/repetition_firingrate.py b/code/repetition_firingrate.py index 6d54fc8..f1f05a4 100644 --- a/code/repetition_firingrate.py +++ b/code/repetition_firingrate.py @@ -8,7 +8,7 @@ from IPython import embed # define sampling rate and data path sampling_rate = 40 #kHz data_dir = "../data" -dataset = "2018-11-09-ad-invivo-1" +dataset = "2018-11-13-aj-invivo-1" inch_factor = 2.54 # parameters for binning, smoothing and plotting cut_window = 60