This commit is contained in:
efish 2018-11-27 11:30:58 +01:00
parent 275bd7a9b8
commit 1bff361bf9

View File

@ -0,0 +1,102 @@
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as ss
from read_chirp_data import *
from utility import *
from IPython import embed
# define sampling rate and data path
sampling_rate = 40 #kHz
data_dir = "../data"
dataset = "2018-11-09-ad-invivo-1"
inch_factor = 2.54
# parameters for binning, smoothing and plotting
cut_window = 60
chirp_size = 14 #ms
neuronal_delay = 5 #ms
chirp_start = int((-chirp_size/2+neuronal_delay+cut_window)*sampling_rate)
chirp_end = int((chirp_size/2+neuronal_delay+cut_window+1)*sampling_rate)
num_bin = 12
window = 1 #ms
time_axis = np.arange(-cut_window, cut_window, 1/sampling_rate) #steps
spike_bins = np.arange(-cut_window, cut_window+1) #ms
# read data from files
spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
eod = read_chirp_eod(os.path.join(data_dir, dataset))
chirp_times = read_chirp_times(os.path.join(data_dir, dataset))
# make a delta f map for the quite more complicated keys
df_map = map_keys(spikes)
# differentiate between phases
phase_vec = np.arange(0, 1+1/num_bin, 1/num_bin)
cut_range = np.arange(-cut_window*sampling_rate, cut_window*sampling_rate, 1)
# make dictionaries for spiketimes
df_phase_time = {}
df_phase_binary = {}
# iterate over delta f, repetition, phases and a single chirp
for deltaf in df_map.keys():
df_phase_time[deltaf] = {}
df_phase_binary[deltaf] = {}
for rep in df_map[deltaf]:
for phase in spikes[rep]:
for idx in np.arange(num_bin):
# check the phase
if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]:
# get spikes between 50 ms befor and after the chirp
spikes_to_cut = np.asarray(spikes[rep][phase])
spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window) & (spikes_to_cut < cut_window)]
spikes_idx = np.round(spikes_cut*sampling_rate)
# also save as binary, 0 no spike, 1 spike
binary_spikes = np.isin(cut_range, spikes_idx)*1
# add the spikes to the dictionaries with the correct df and phase
if idx in df_phase_time[deltaf].keys():
df_phase_time[deltaf][idx].append(spikes_cut)
df_phase_binary[deltaf][idx] = np.vstack((df_phase_binary[deltaf][idx], binary_spikes))
else:
df_phase_time[deltaf][idx] = [spikes_cut]
df_phase_binary[deltaf][idx] = binary_spikes
# for plotting and calculating iterate over delta f and phases
for df in df_phase_time.keys():
for index_phase, phase in enumerate(df_phase_time[df].keys()):
# plot
plot_trials = df_phase_time[df][phase]
plot_trials_binary = np.mean(df_phase_binary[df][phase], axis=0)
# calculation
#overall_spikerate = (np.sum(plot_trials_binary)/len(plot_trials_binary))*sampling_rate*1000
smoothed_spikes = smooth(plot_trials_binary, window, 1./sampling_rate)
fig, ax = plt.subplots(2, 1, sharex=True, figsize=(20/inch_factor, 15/inch_factor))
for i, trial in enumerate(plot_trials):
ax[0].scatter(trial, np.ones(len(trial))+i, marker='|', color='k')
ax[1].plot(time_axis, smoothed_spikes*1000, color='royalblue', lw = 2)
ax[0].set_title('df = %s Hz' %(df))
ax[0].set_ylabel('repetition', fontsize=22)
ax[0].yaxis.set_label_coords(-0.1, 0.5)
ax[0].set_yticks(np.arange(1, len(plot_trials)+1,2))
ax[0].set_yticklabels(np.arange(1, len(plot_trials)+1,2), fontsize=18)
ax[1].set_xlabel('time [ms]', fontsize=22)
ax[1].yaxis.set_label_coords(-0.1, 0.5)
ax[1].set_ylabel('firing rate [Hz]', fontsize=22)
plt.xticks(fontsize=18)
plt.yticks(fontsize=18)
fig.tight_layout()
#plt.show()
#exit()
namefigure = '../figures/%s_%i_%i_firingrate.pdf' %(dataset, df, index_phase)
plt.savefig(namefigure)