[classifier] improvements
This commit is contained in:
parent
881194ac66
commit
7a2084e159
@ -10,6 +10,8 @@ import pyqtgraph as pg # needs to be imported after pyside to not import pyqt
|
|||||||
|
|
||||||
from fixtracks.utils.trackingdata import TrackingData
|
from fixtracks.utils.trackingdata import TrackingData
|
||||||
|
|
||||||
|
from IPython import embed
|
||||||
|
|
||||||
class WorkerSignals(QObject):
|
class WorkerSignals(QObject):
|
||||||
error = Signal(str)
|
error = Signal(str)
|
||||||
running = Signal(bool)
|
running = Signal(bool)
|
||||||
@ -64,6 +66,35 @@ class ConsistencyWorker(QRunnable):
|
|||||||
|
|
||||||
@Slot()
|
@Slot()
|
||||||
def run(self):
|
def run(self):
|
||||||
|
def needs_checking(original, new):
|
||||||
|
res = False
|
||||||
|
for n, o in zip(new, original):
|
||||||
|
res = (o == 1 or o == 2) and n != o
|
||||||
|
if not res:
|
||||||
|
res = len(new) > 1 and (np.all(new == 1) or np.all(new == 2))
|
||||||
|
return res
|
||||||
|
|
||||||
|
def assign_by_distance(f, p):
|
||||||
|
t1_step = f - last_frame[0]
|
||||||
|
t2_step = f - last_frame[1]
|
||||||
|
if t1_step == 0 or t2_step == 0:
|
||||||
|
print(f"framecount is zero! current frame {f}, last frame {last_frame[0]} and {last_frame[1]}")
|
||||||
|
|
||||||
|
distance_to_trackone = np.linalg.norm(p - last_pos[0])/t1_step
|
||||||
|
distance_to_tracktwo = np.linalg.norm(p - last_pos[1])/t2_step
|
||||||
|
most_likely_track = np.argmin([distance_to_trackone, distance_to_tracktwo]) + 1
|
||||||
|
distances = np.zeros(2)
|
||||||
|
distances[0] = distance_to_trackone
|
||||||
|
distances[1] = distance_to_tracktwo
|
||||||
|
return most_likely_track, distances
|
||||||
|
|
||||||
|
def assign_by_orientation(f, o):
|
||||||
|
t1_step = f - last_frame[0]
|
||||||
|
t2_step = f - last_frame[1]
|
||||||
|
orientationchange = np.unwrap((last_angle - o)/np.array([t1_step, t2_step]))
|
||||||
|
most_likely_track = np.argmin(orientationchange) + 1
|
||||||
|
return most_likely_track, orientationchange
|
||||||
|
|
||||||
last_pos = [self.positions[(self.tracks == 1) & (self.frames <= self._startframe)][-1],
|
last_pos = [self.positions[(self.tracks == 1) & (self.frames <= self._startframe)][-1],
|
||||||
self.positions[(self.tracks == 2) & (self.frames <= self._startframe)][-1]]
|
self.positions[(self.tracks == 2) & (self.frames <= self._startframe)][-1]]
|
||||||
last_frame = [self.frames[(self.tracks == 1) & (self.frames <= self._startframe)][-1],
|
last_frame = [self.frames[(self.tracks == 1) & (self.frames <= self._startframe)][-1],
|
||||||
@ -79,53 +110,37 @@ class ConsistencyWorker(QRunnable):
|
|||||||
startframe = np.max(last_frame)
|
startframe = np.max(last_frame)
|
||||||
steps = int((maxframes - startframe) // 200)
|
steps = int((maxframes - startframe) // 200)
|
||||||
|
|
||||||
for f in range(startframe + 1, maxframes, 1):
|
for f in np.unique(self.frames[self.frames > startframe]):
|
||||||
if self._stoprequest:
|
if self._stoprequest:
|
||||||
break
|
break
|
||||||
indices = np.where(self.frames == f)[0]
|
indices = np.where(self.frames == f)[0]
|
||||||
pp = self.positions[indices]
|
pp = self.positions[indices]
|
||||||
originaltracks = self.tracks[indices]
|
originaltracks = self.tracks[indices]
|
||||||
assignments = np.zeros_like(originaltracks)
|
dist_assignments = np.zeros_like(originaltracks)
|
||||||
distances = np.zeros((len(originaltracks), 2))
|
angle_assignments = np.zeros_like(originaltracks)
|
||||||
|
# userlabeld = np.zeros_like(originaltracks)
|
||||||
distances = np.zeros((len(originaltracks), 2))
|
distances = np.zeros((len(originaltracks), 2))
|
||||||
|
orientations = np.zeros((len(originaltracks), 2))
|
||||||
|
|
||||||
for i, (idx, p) in enumerate(zip(indices, pp)):
|
for i, (idx, p) in enumerate(zip(indices, pp)):
|
||||||
if self.userlabeled[idx]:
|
if self.userlabeled[idx]:
|
||||||
print("userlabeled")
|
print("user")
|
||||||
processed += 1
|
processed += 1
|
||||||
last_pos[originaltracks[i]-1] = pp[i]
|
last_pos[originaltracks[i]-1] = pp[i]
|
||||||
last_frame[originaltracks[i]-1] = f
|
last_frame[originaltracks[i]-1] = f
|
||||||
last_angle[originaltracks[i]-1] = self.orientations[idx]
|
last_angle[originaltracks[i]-1] = self.orientations[idx]
|
||||||
continue
|
continue
|
||||||
if f < last_frame[0]:
|
dist_assignments[i], distances[i, :] = assign_by_distance(f, p)
|
||||||
print("ping")
|
angle_assignments[i], orientations[i,:] = assign_by_orientation(f, self.orientations[idx])
|
||||||
self.tracks[idx] = 2
|
|
||||||
last_frame[1] = f
|
|
||||||
last_pos[1] = p
|
|
||||||
# last_angle[1] = self.orientations[idx]
|
|
||||||
continue
|
|
||||||
if f < last_frame[1]:
|
|
||||||
print("pang")
|
|
||||||
last_frame[0] = f
|
|
||||||
last_pos[0] = p
|
|
||||||
# last_angle[0] = self.orientations[idx]
|
|
||||||
self.tracks[idx] = 1
|
|
||||||
continue
|
|
||||||
# else, we have already seen track one and track two entries
|
|
||||||
if f - last_frame[0] == 0 or f - last_frame[1] == 0:
|
|
||||||
print(f"framecount is zero! current frame {f}, last frame {last_frame[0]} and {last_frame[1]}")
|
|
||||||
distance_to_trackone = np.linalg.norm(p - last_pos[0])/(f - last_frame[0])
|
|
||||||
distance_to_tracktwo = np.linalg.norm(p - last_pos[1])/(f - last_frame[1])
|
|
||||||
most_likely_track = np.argmin([distance_to_trackone, distance_to_tracktwo]) + 1
|
|
||||||
distances[i, 0] = distance_to_trackone
|
|
||||||
distances[i, 1] = distance_to_tracktwo
|
|
||||||
assignments[i] = most_likely_track
|
|
||||||
# check (re) assignment update and proceed
|
# check (re) assignment update and proceed
|
||||||
if len(assignments) > 1 and (np.all(assignments == 1) or np.all(assignments == 2)):
|
print("dist", distances)
|
||||||
logging.warning("frame %i: Issues assigning based on distances %s", f, str(distances))
|
print("angle", orientations)
|
||||||
|
if needs_checking(originaltracks, dist_assignments):
|
||||||
|
logging.info("frame %i: Issues assigning based on distances %s", f, str(distances))
|
||||||
assignment_error = True
|
assignment_error = True
|
||||||
errors += 1
|
errors += 1
|
||||||
if self._stoponerror:
|
if self._stoponerror:
|
||||||
from IPython import embed
|
|
||||||
embed()
|
embed()
|
||||||
break
|
break
|
||||||
else:
|
else:
|
||||||
@ -134,10 +149,10 @@ class ConsistencyWorker(QRunnable):
|
|||||||
if assignment_error:
|
if assignment_error:
|
||||||
self.tracks[idx] = -1
|
self.tracks[idx] = -1
|
||||||
else:
|
else:
|
||||||
self.tracks[idx] = assignments[i]
|
self.tracks[idx] = dist_assignments[i]
|
||||||
last_pos[assignments[i]-1] = pp[i]
|
last_pos[dist_assignments[i]-1] = pp[i]
|
||||||
last_frame[assignments[i]-1] = f
|
last_frame[dist_assignments[i]-1] = f
|
||||||
last_angle[assignments[i]-1] = self.orientations[idx]
|
last_angle[dist_assignments[i]-1] = self.orientations[idx]
|
||||||
assignment_error = False
|
assignment_error = False
|
||||||
if steps > 0 and f % steps == 0:
|
if steps > 0 and f % steps == 0:
|
||||||
progress += 1
|
progress += 1
|
||||||
|
Loading…
Reference in New Issue
Block a user