[classifier] working but not really...
This commit is contained in:
parent
f1a4f4dc84
commit
430ee4fac7
@ -12,6 +12,17 @@ from fixtracks.utils.trackingdata import TrackingData
|
||||
|
||||
from IPython import embed
|
||||
|
||||
class Detection():
|
||||
def __init__(self, id, frame, track, position, orientation, length, userlabeled):
|
||||
self.id = id
|
||||
self.frame = frame
|
||||
self.track = track
|
||||
self.position = position
|
||||
self.score = 0.0
|
||||
self.angle = orientation
|
||||
self.length = length
|
||||
self.userlabeled = userlabeled
|
||||
|
||||
class WorkerSignals(QObject):
|
||||
error = Signal(str)
|
||||
running = Signal(bool)
|
||||
@ -24,7 +35,8 @@ class ConsitencyDataLoader(QRunnable):
|
||||
super().__init__()
|
||||
self.signals = WorkerSignals()
|
||||
self.data = data
|
||||
self.bendedness = self.positions = None
|
||||
self.bendedness = None
|
||||
self.positions = None
|
||||
self.lengths = None
|
||||
self.orientations = None
|
||||
self.userlabeled = None
|
||||
@ -70,6 +82,18 @@ class ConsistencyWorker(QRunnable):
|
||||
|
||||
@Slot()
|
||||
def run(self):
|
||||
def get_detections(frame, indices):
|
||||
detections = []
|
||||
for i in indices:
|
||||
if np.any(self.positions[i] < 0.1):
|
||||
logging.debug("Encountered probably invalid position %s", str(self.positions[i]))
|
||||
continue
|
||||
d = Detection(i, frame, self.tracks[i], self.positions[i],
|
||||
self.orientations[i], self.lengths[i],
|
||||
self.userlabeled[i])
|
||||
detections.append(d)
|
||||
return detections
|
||||
|
||||
def needs_checking(original, new):
|
||||
res = False
|
||||
for n, o in zip(new, original):
|
||||
@ -82,112 +106,135 @@ class ConsistencyWorker(QRunnable):
|
||||
print("all detections would be assigned to one track!")
|
||||
return res
|
||||
|
||||
def assign_by_distance(f, p):
|
||||
t1_step = f - last_frame[0]
|
||||
t2_step = f - last_frame[1]
|
||||
def assign_by_distance(d):
|
||||
t1_step = d.frame - last_detections[1].frame
|
||||
t2_step = d.frame - last_detections[2].frame
|
||||
if t1_step == 0 or t2_step == 0:
|
||||
print(f"framecount is zero! current frame {f}, last frame {last_frame[0]} and {last_frame[1]}")
|
||||
|
||||
distance_to_trackone = np.linalg.norm(p - last_pos[0])/t1_step
|
||||
distance_to_tracktwo = np.linalg.norm(p - last_pos[1])/t2_step
|
||||
print(f"framecount is zero! current frame {f}, last frame {last_detections[1].frame} and {last_detections[2].frame}")
|
||||
distance_to_trackone = np.linalg.norm(d.position - last_detections[1].position)/t1_step
|
||||
distance_to_tracktwo = np.linalg.norm(d.position - last_detections[2].position)/t2_step
|
||||
most_likely_track = np.argmin([distance_to_trackone, distance_to_tracktwo]) + 1
|
||||
distances = np.zeros(2)
|
||||
distances[0] = distance_to_trackone
|
||||
distances[1] = distance_to_tracktwo
|
||||
return most_likely_track, distances
|
||||
|
||||
def assign_by_orientation(f, o):
|
||||
t1_step = f - last_frame[0]
|
||||
t2_step = f - last_frame[1]
|
||||
orientationchange = (last_angle - o)
|
||||
orientationchange[orientationchange > 180] = 360 - orientationchange[orientationchange > 180]
|
||||
orientationchange /= np.array([t1_step, t2_step])
|
||||
# orientationchange = np.abs(np.unwrap((last_angle - o)/np.array([t1_step, t2_step])))
|
||||
most_likely_track = np.argmin(np.abs(orientationchange)) + 1
|
||||
return most_likely_track, orientationchange
|
||||
|
||||
def assign_by_length(o):
|
||||
length_difference = np.abs((last_length - o))
|
||||
most_likely_track = np.argmin(length_difference) + 1
|
||||
return most_likely_track, length_difference
|
||||
|
||||
def do_assignment(f, indices, assignments):
|
||||
for i, idx in enumerate(indices):
|
||||
self.tracks[idx] = assignments[i]
|
||||
last_pos[assignments[i]-1] = pp[i]
|
||||
last_frame[assignments[i]-1] = f
|
||||
last_angle[assignments[i]-1] = self.orientations[idx]
|
||||
last_length[assignments[i]-1] += ((self.lengths[idx] - last_length[assignments[i]-1])/processed)
|
||||
|
||||
# self.userlabeled
|
||||
|
||||
|
||||
|
||||
|
||||
last_pos = [self.positions[(self.tracks == 1) & (self.frames <= self._startframe)][-1],
|
||||
self.positions[(self.tracks == 2) & (self.frames <= self._startframe)][-1]]
|
||||
last_frame = [self.frames[(self.tracks == 1) & (self.frames <= self._startframe)][-1],
|
||||
self.frames[(self.tracks == 2) & (self.frames <= self._startframe)][-1]]
|
||||
last_angle = [self.orientations[(self.tracks == 1) & (self.frames <= self._startframe)][-1],
|
||||
self.orientations[(self.tracks == 2) & (self.frames <= self._startframe)][-1]]
|
||||
last_length = [self.lengths[(self.tracks == 1) & (self.frames <= self._startframe)][-1],
|
||||
self.lengths[(self.tracks == 2) & (self.frames <= self._startframe)][-1]]
|
||||
|
||||
def assign_by_orientation(d):
|
||||
t1_step = d.frame - last_detections[1].frame
|
||||
t2_step = d.frame - last_detections[2].frame
|
||||
orientationchanges = np.zeros(2)
|
||||
for i in [1, 2]:
|
||||
orientationchanges[i-1] = (last_detections[i].angle - d.angle)
|
||||
|
||||
orientationchanges[orientationchanges > 180] = 360 - orientationchanges[orientationchanges > 180]
|
||||
orientationchanges /= np.array([t1_step, t2_step])
|
||||
most_likely_track = np.argmin(np.abs(orientationchanges)) + 1
|
||||
return most_likely_track, orientationchanges
|
||||
|
||||
def assign_by_length(d):
|
||||
length_differences = np.zeros(2)
|
||||
length_differences[0] = np.abs((last_detections[1].length - d.length))
|
||||
length_differences[1] = np.abs((last_detections[2].length - d.length))
|
||||
most_likely_track = np.argmin(length_differences) + 1
|
||||
return most_likely_track, length_differences
|
||||
|
||||
unique_frames = np.unique(self.frames)
|
||||
steps = int((len(unique_frames) - self._startframe) // 100)
|
||||
errors = 0
|
||||
processed = 1
|
||||
progress = 0
|
||||
self._stoprequest = False
|
||||
maxframes = np.max(self.frames)
|
||||
startframe = np.max(last_frame)
|
||||
steps = int((maxframes - startframe) // 200)
|
||||
last_detections = {1: None, 2: None, -1: None}
|
||||
|
||||
for f in np.unique(self.frames[self.frames > startframe]):
|
||||
processed += 1
|
||||
self.signals.currentframe.emit(f)
|
||||
for f in unique_frames[unique_frames >= self._startframe]:
|
||||
if self._stoprequest:
|
||||
break
|
||||
error = False
|
||||
self.signals.currentframe.emit(f)
|
||||
indices = np.where(self.frames == f)[0]
|
||||
pp = self.positions[indices]
|
||||
originaltracks = self.tracks[indices]
|
||||
dist_assignments = np.zeros_like(originaltracks)
|
||||
angle_assignments = np.zeros_like(originaltracks)
|
||||
length_assignments = np.zeros_like(originaltracks)
|
||||
userlabeled = np.zeros_like(originaltracks)
|
||||
distances = np.zeros((len(originaltracks), 2))
|
||||
detections = get_detections(f, indices)
|
||||
done = [False, False]
|
||||
if len(detections) == 0:
|
||||
continue
|
||||
|
||||
if len(detections) > 1 and np.any([detections[0].userlabeled, detections[1].userlabeled]):
|
||||
# more than one detection
|
||||
if detections[0].userlabeled and detections[1].userlabeled:
|
||||
if detections[0].track == detections[1].track:
|
||||
error = True
|
||||
logging.info("Classification error both detections in the same frame are assigned to the same track!")
|
||||
elif detections[0].userlabeled and not detections[1].userlabeled:
|
||||
detections[1].track = 1 if detections[0].track == 2 else 2
|
||||
elif not detections[0].userlabeled and detections[1].userlabeled:
|
||||
detections[0].track = 1 if detections[1].track == 2 else 2
|
||||
|
||||
if not error:
|
||||
last_detections[detections[0].track] = detections[0]
|
||||
last_detections[detections[1].track] = detections[1]
|
||||
self.tracks[detections[0].id] = detections[0].track
|
||||
self.tracks[detections[1].id] = detections[1].track
|
||||
done[0] = True
|
||||
done[1] = True
|
||||
elif len(detections) == 1 and detections[0].userlabeled: # ony one detection and labeled
|
||||
last_detections[detections[0].track] = detections[0]
|
||||
done[0] = True
|
||||
|
||||
if np.sum(done) == len(detections):
|
||||
continue
|
||||
# if f == 2088:
|
||||
# embed()
|
||||
# return
|
||||
if error and self._stoponerror:
|
||||
self.signals.error.emit("Classification error both detections in the same frame are assigned to the same track!")
|
||||
break
|
||||
dist_assignments = np.zeros(2, dtype=int)
|
||||
orientation_assignments = np.zeros_like(dist_assignments)
|
||||
length_assignments = np.zeros_like(dist_assignments)
|
||||
distances = np.zeros((2, 2))
|
||||
orientations = np.zeros_like(distances)
|
||||
lengths = np.zeros_like(distances)
|
||||
assignments = np.zeros((2, 2))
|
||||
for i, d in enumerate(detections):
|
||||
dist_assignments[i], distances[i, :] = assign_by_distance(d)
|
||||
orientation_assignments[i], orientations[i,:] = assign_by_orientation(d)
|
||||
length_assignments[i], lengths[i, :] = assign_by_length(d)
|
||||
assignments[i, :] = dist_assignments # (dist_assignments * 10 + orientation_assignments + length_assignments) / 3
|
||||
|
||||
diffs = np.diff(assignments, axis=1)
|
||||
error = False
|
||||
temp = {}
|
||||
message = ""
|
||||
for i, d in enumerate(detections):
|
||||
temp = {}
|
||||
if diffs[i] == 0: # both are equally likely
|
||||
d.track = -1
|
||||
error = True
|
||||
message = "Classification error both detections in the same frame are assigned to the same track!"
|
||||
break
|
||||
if diffs[i] < 0:
|
||||
d.track = 1
|
||||
else:
|
||||
d.track = 2
|
||||
self.tracks[d.id] = d.track
|
||||
if d.track not in temp:
|
||||
temp[d.track] = d
|
||||
else:
|
||||
error = True
|
||||
message = "Double assignment to the same track!"
|
||||
break
|
||||
|
||||
for i, (idx, p) in enumerate(zip(indices, pp)):
|
||||
if self.userlabeled[idx]:
|
||||
print("user")
|
||||
userlabeled[i] = True
|
||||
last_pos[originaltracks[i]-1] = pp[i]
|
||||
last_frame[originaltracks[i]-1] = f
|
||||
last_angle[originaltracks[i]-1] = self.orientations[idx]
|
||||
last_length[originaltracks[i]-1] += ((self.lengths[idx] - last_length[originaltracks[i]-1]) / processed)
|
||||
continue
|
||||
dist_assignments[i], distances[i, :] = assign_by_distance(f, p)
|
||||
angle_assignments[i], orientations[i,:] = assign_by_orientation(f, self.orientations[idx])
|
||||
length_assignments[i], lengths[i, :] = assign_by_length(self.lengths[idx])
|
||||
if np.any(userlabeled):
|
||||
continue
|
||||
# check (re) assignment, update, and proceed
|
||||
if not needs_checking(originaltracks, dist_assignments):
|
||||
do_assignment(f, indices, dist_assignments)
|
||||
if not error:
|
||||
for k in temp:
|
||||
last_detections[temp[k].track] = temp[k]
|
||||
else:
|
||||
if not (np.all(length_assignments == 1) or np.all(length_assignments == 2)): # if I find a solution by body length
|
||||
logging.debug("frame %i: Decision based on body length", f)
|
||||
do_assignment(f, indices, length_assignments)
|
||||
elif not (np.all(angle_assignments == 1) or np.all(angle_assignments == 2)): # else there is a solution based on orientation
|
||||
logging.info("frame %i: Decision based on orientation", f)
|
||||
do_assignment(f, indices, angle_assignments)
|
||||
else:
|
||||
logging.info("frame %i: Cannot decide who is who")
|
||||
for idx in indices:
|
||||
self.tracks[idx] = -1
|
||||
errors += 1
|
||||
if self._stoponerror:
|
||||
break
|
||||
logging.info("frame %i: Cannot decide who is who! %s", f, message)
|
||||
for idx in indices:
|
||||
self.tracks[idx] = -1
|
||||
errors += 1
|
||||
if self._stoponerror:
|
||||
self.signals.error.emit(message)
|
||||
break
|
||||
processed += 1
|
||||
|
||||
if steps > 0 and f % steps == 0:
|
||||
progress += 1
|
||||
@ -486,18 +533,25 @@ class ConsistencyClassifier(QWidget):
|
||||
self._all_scores = self._dataworker.scores
|
||||
self._frames = self._dataworker.frames
|
||||
self._tracks = self._dataworker.tracks
|
||||
self._dataworker = None
|
||||
if np.sum(self._userlabeled) < 1:
|
||||
logging.error("ConsistencyTracker: I need at least 1 user-labeled frame to start with!")
|
||||
self.setEnabled(False)
|
||||
else:
|
||||
t1_userlabeled = self._frames[self._userlabeled & (self._tracks == 1)]
|
||||
t2_userlabeled = self._frames[self._userlabeled & (self._tracks == 2)]
|
||||
max_startframe = np.min([t1_userlabeled[-1], t2_userlabeled[-1]])
|
||||
min_startframe = np.max([t1_userlabeled[0], t2_userlabeled[0]])
|
||||
self._maxframes = np.max(self._frames)
|
||||
# FIXME the following line causes an error when there are no detections in the range
|
||||
min_frame = max([self._frames[self._tracks == 1][0], self._frames[self._tracks == 2][0]]) + 1
|
||||
self._maxframeslabel.setText(str(self._maxframes))
|
||||
self._startframe_spinner.setMinimum(min_frame)
|
||||
self._startframe_spinner.setMaximum(self._frames[-1])
|
||||
self._startframe_spinner.setValue(self._frames[0] + 1)
|
||||
self._startframe_spinner.setMinimum(min_startframe)
|
||||
self._startframe_spinner.setMaximum(max_startframe)
|
||||
self._startframe_spinner.setValue(min_startframe)
|
||||
self._startframe_spinner.setSingleStep(20)
|
||||
self._startbtn.setEnabled(True)
|
||||
self._assignedlabel.setText("0")
|
||||
self._errorlabel.setText("0")
|
||||
self._dataworker = None
|
||||
self.setEnabled(True)
|
||||
self.setEnabled(True)
|
||||
|
||||
@Slot(float)
|
||||
def on_progress(self, value):
|
||||
@ -612,16 +666,14 @@ def main():
|
||||
import pickle
|
||||
from fixtracks.info import PACKAGE_ROOT
|
||||
|
||||
datafile = PACKAGE_ROOT / "data/merged2.pkl"
|
||||
datafile = PACKAGE_ROOT / "data/merged_small_beginning.pkl"
|
||||
|
||||
with open(datafile, "rb") as f:
|
||||
df = pickle.load(f)
|
||||
data = TrackingData()
|
||||
data.setData(as_dict(df))
|
||||
data = TrackingData(as_dict(df))
|
||||
coords = data.coordinates()
|
||||
cogs = data.centerOfGravity()
|
||||
userlabeled = data["userlabeled"]
|
||||
embed()
|
||||
app = QApplication([])
|
||||
window = QWidget()
|
||||
window.setMinimumSize(200, 200)
|
||||
|
Loading…
Reference in New Issue
Block a user