fishbook/fishbook/baseline_data.py

93 lines
2.8 KiB
Python

from fishbook.fishbook import Dataset, RePro
import numpy as np
import nixio as nix
import os
from IPython import embed
class BaselineData(object):
def __init__(self, dataset:Dataset):
self.__data = []
self.__dataset = dataset
self.__cell = dataset.cells[0] # Beware: Assumption that there is only a single cell
self._get_data()
def _get_data(self):
if not self.__dataset:
self.__data = []
self.__data = []
repros = RePro.find_repros("BaselineActivity", cell_id=self.__cell.cell_id)
for r in repros:
self.__data.append(self.__read_data(r))
def __read_data(self, r:RePro):
if self.__dataset.has_nix:
return self.__read_data_from_nix(r)
else:
return self.__read_data_from_directory(r)
@property
def dataset(self):
return self.__dataset
def data(self, index:int=0):
return self.__data[0] if len(self.__data) >= index else None
@property
def size(self):
return len(self.__data)
def __str__(self):
str = "Baseline data of cell %s " % self.__cell.cell_id
def __read_data_from_nix(self, r:RePro)->np.ndarray:
data_source = os.path.join(self.__dataset.data_source, self.__dataset.dataset_id + ".nix")
if not os.path.exists(data_source):
print("Data not found! Trying from directory")
return self.__read_data_from_directory(r)
f = nix.File.open(data_source, nix.FileMode.ReadOnly)
b = f.blocks[0]
t = b.tags[r.repro_id]
if not t:
print("Tag not found!")
data = t.retrieve_data("Spikes-1")[:]
f.close()
return data
def __read_data_from_directory(self, r)->np.ndarray:
data = []
data_source = os.path.join(self.__dataset.data_source, "basespikes1.dat")
if os.path.exists(data_source):
found_run = False
with open(data_source, 'r') as f:
l = f.readline()
while l:
if "index" in l:
index = int(l.strip("#").strip().split(":")[-1])
found_run = index == r.run
if l.startswith("#Key") and found_run:
data = self.__do_read(f)
break
l = f.readline()
embed()
return data
def __do_read(self, f)->np.ndarray:
data = []
f.readline()
f.readline()
l = f.readline()
while l and "#" not in l and len(l.strip()) > 0:
data.append(float(l.strip()))
l = f.readline()
return np.asarray(data)
if __name__ == "__main__":
dataset = Dataset(dataset_id='2011-06-14-ag')
# dataset = Dataset(dataset_id='2018-11-09-aa-invivo-1')
baseline = BaselineData(dataset)
embed()