restructuring

This commit is contained in:
Jan Grewe 2020-07-22 22:43:11 +02:00
parent 14bed0cc6a
commit 914a861b26
3 changed files with 148 additions and 142 deletions

View File

@ -1,4 +1,2 @@
from fishbook.frontend.frontend_classes import Cell, Subject, Stimulus, Dataset, RePro
#import fishbook.reproclasses as repros
#import fishbook.database as database
__all__ = ['', '']
from fishbook.frontend.relacs_classes import BaselineData, FIData, FileStimulusData

View File

@ -1,8 +1,9 @@
from fishbook.fishbook import Dataset, RePro, Stimulus
from .frontend_classes import Dataset, RePro, Stimulus
from .util import BoltzmannFit, unzip_if_needed, gaussian_kernel, zero_crossings
import numpy as np
import nixio as nix
from scipy.stats import circstd
from scipy.optimize import curve_fit
# from scipy.optimize import curve_fit
import os
import subprocess
from tqdm import tqdm
@ -10,52 +11,6 @@ from tqdm import tqdm
from IPython import embed
def _zero_crossings(x, t, interpolate=False):
"""get the times at which a signal x
Args:
x ([type]): [description]
t ([type]): [description]
interpolate (bool, optional): [description]. Defaults to False.
Returns:
[type]: [description]
"""
dt = t[1] - t[0]
x_shift = np.roll(x, 1)
x_shift[0] = 0.0
xings = np.where((x >= 0 ) & (x_shift < 0))[0]
crossings = np.zeros(len(xings))
if interpolate:
for i, tf in enumerate(xings):
if x[tf] > 0.001:
m = (x[tf] - x[tf-1])/dt
crossings[i] = t[tf] - x[tf]/m
elif x[tf] < -0.001:
m = (x[tf + 1] - x[tf]) / dt
crossings[i] = t[tf] - x[tf]/m
else:
crossings[i] = t[tf]
else:
crossings = t[xings]
return crossings
def _unzip_if_needed(dataset, tracename='trace-1.raw'):
file_name = os.path.join(dataset, tracename)
if os.path.exists(file_name):
return
if os.path.exists(file_name + '.gz'):
print("\tunzip: %s" % tracename)
subprocess.check_call(["gunzip", os.path.join(dataset, tracename + ".gz")])
def gaussian_kernel(sigma, dt):
x = np.arange(-4. * sigma, 4. * sigma, dt)
y = np.exp(-0.5 * (x / sigma) ** 2) / np.sqrt(2. * np.pi) / sigma
return y
class BaselineData:
"""
Class representing the Baseline data that has been recorded within a given Dataset.
@ -134,7 +89,7 @@ class BaselineData:
eod_frequencies = []
for i in range(self.size):
eod, time = self.eod(i)
xings = _zero_crossings(eod, time, interpolate=False)
xings = zero_crossings(eod, time, interpolate=False)
eod_frequencies.append(len(xings)/xings[-1])
return 0.0 if len(eod_frequencies) < 1 else np.mean(eod_frequencies)
@ -154,7 +109,7 @@ class BaselineData:
return None
if len(self.__eod_times) < len(self.__eod_data):
eod, time = self.eod(index)
times = _zero_crossings(eod, time, interpolate=interpolate)
times = zero_crossings(eod, time, interpolate=interpolate)
else:
times = self.__eod_times[index]
return times
@ -272,7 +227,7 @@ class BaselineData:
def __read_eod_data_from_directory(self, r: RePro, duration) -> np.ndarray:
sr = self.__dataset.samplerate
_unzip_if_needed(self.__dataset.data_source, "trace-2.raw")
unzip_if_needed(self.__dataset.data_source, "trace-2.raw")
eod = np.fromfile(self.__dataset.data_source + "/trace-2.raw", np.float32)
eod = eod[:int(duration * sr)]
return eod
@ -329,94 +284,6 @@ class BaselineData:
return np.asarray(data)
class BoltzmannFit:
"""
Class representing a fit of a Boltzmann function to some data.
"""
def __init__(self, xvalues: np.ndarray, yvalues: np.ndarray, initial_params=None):
"""
Constructor. Takes the x and the y data and tries to fit a Boltzmann to it.
:param xvalues: numpy array of x (e.g. contrast) values
:param yvalues: numpy array of y (e.g. firing rate) values
:param initial_params: list of initial parameters, default None to autogenerate
"""
assert(len(xvalues) == len(yvalues))
self.__xvals = xvalues
self.__yvals = yvalues
self.__fit_params = None
self.__initial_params = initial_params
self.__x_sorted = np.unique(self.__xvals)
self.__y_avg = None
self.__y_err = None
self.__do_fit()
@staticmethod
def boltzmann(x, y_max, slope, inflection):
"""
The underlying Boltzmann function.
.. math::
f(x) = y_max / \exp{-slope*(x-inflection}
:param x: The x values.
:param y_max: The maximum value.
:param slope: The slope parameter k
:param inflection: the position of the inflection point.
:return: the y values.
"""
y = y_max / (1 + np.exp(-slope * (x - inflection)))
return y
def __do_fit(self):
self.__y_avg = np.zeros(self.__x_sorted.shape)
self.__y_err = np.zeros(self.__x_sorted.shape)
for i, c in enumerate(self.__x_sorted):
self.__y_avg[i] = np.mean(self.__yvals[self.__xvals == c])
self.__y_err[i] = np.std(self.__yvals[self.__xvals == c])
if self.__initial_params:
p = self.__initial_params
else:
p = [np.max(self.__y_avg), 0, 0]
self.__fit_params, _ = curve_fit(self.boltzmann, self.__x_sorted, self.__y_avg, p)
@property
def slope(self) -> float:
r"""
The slope of the linear part of the Boltzmann, i.e.
.. math::
s = f_max $\cdot$ k / 4
:return: the slope.
"""
return self.__fit_params[0] * self.__fit_params[1] / 4
@property
def parameters(self):
""" fit parameters
:return: The fit parameters.
"""
return self.__fit_params
@property
def x_data(self):
""" The x data sorted and unique used for fitting.
:return: the x data
"""
return self.__x_sorted
@property
def y_data(self):
"""
the Y data used for fitting, i.e. the average rate in the specified time window sorted by the x data.
:return: the average and the standard deviation of the y data
"""
return self.__y_avg, self.__y_err
def solve(self, xvalues=None):
if not xvalues:
xvalues = self.__x_sorted
return self.boltzmann(xvalues, *self.__fit_params)
class FIData:
"""

View File

@ -1,3 +1,7 @@
import numpy as np
from scipy.optimize import curve_fit
def safe_get_val(dictionary:dict, key, default=None):
return dictionary[key] if key in dictionary.keys() else default
@ -7,3 +11,140 @@ def results_check(results, id, text="ID"):
raise ValueError("%s %s does not exist!" % (text, id))
elif len(results) > 1:
raise ValueError("%s %s is not unique!" % (text, id))
def zero_crossings(x, t, interpolate=False):
"""get the times at which a signal x
Args:
x ([type]): [description]
t ([type]): [description]
interpolate (bool, optional): [description]. Defaults to False.
Returns:
[type]: [description]
"""
dt = t[1] - t[0]
x_shift = np.roll(x, 1)
x_shift[0] = 0.0
xings = np.where((x >= 0 ) & (x_shift < 0))[0]
crossings = np.zeros(len(xings))
if interpolate:
for i, tf in enumerate(xings):
if x[tf] > 0.001:
m = (x[tf] - x[tf-1])/dt
crossings[i] = t[tf] - x[tf]/m
elif x[tf] < -0.001:
m = (x[tf + 1] - x[tf]) / dt
crossings[i] = t[tf] - x[tf]/m
else:
crossings[i] = t[tf]
else:
crossings = t[xings]
return crossings
def unzip_if_needed(dataset, tracename='trace-1.raw'):
file_name = os.path.join(dataset, tracename)
if os.path.exists(file_name):
return
if os.path.exists(file_name + '.gz'):
print("\tunzip: %s" % tracename)
subprocess.check_call(["gunzip", os.path.join(dataset, tracename + ".gz")])
def gaussian_kernel(sigma, dt):
x = np.arange(-4. * sigma, 4. * sigma, dt)
y = np.exp(-0.5 * (x / sigma) ** 2) / np.sqrt(2. * np.pi) / sigma
return y
class BoltzmannFit:
"""
Class representing a fit of a Boltzmann function to some data.
"""
def __init__(self, xvalues: np.ndarray, yvalues: np.ndarray, initial_params=None):
"""
Constructor. Takes the x and the y data and tries to fit a Boltzmann to it.
:param xvalues: numpy array of x (e.g. contrast) values
:param yvalues: numpy array of y (e.g. firing rate) values
:param initial_params: list of initial parameters, default None to autogenerate
"""
assert(len(xvalues) == len(yvalues))
self.__xvals = xvalues
self.__yvals = yvalues
self.__fit_params = None
self.__initial_params = initial_params
self.__x_sorted = np.unique(self.__xvals)
self.__y_avg = None
self.__y_err = None
self.__do_fit()
@staticmethod
def boltzmann(x, y_max, slope, inflection):
"""
The underlying Boltzmann function.
.. math::
f(x) = y_max / \exp{-slope*(x-inflection}
:param x: The x values.
:param y_max: The maximum value.
:param slope: The slope parameter k
:param inflection: the position of the inflection point.
:return: the y values.
"""
y = y_max / (1 + np.exp(-slope * (x - inflection)))
return y
def __do_fit(self):
self.__y_avg = np.zeros(self.__x_sorted.shape)
self.__y_err = np.zeros(self.__x_sorted.shape)
for i, c in enumerate(self.__x_sorted):
self.__y_avg[i] = np.mean(self.__yvals[self.__xvals == c])
self.__y_err[i] = np.std(self.__yvals[self.__xvals == c])
if self.__initial_params:
p = self.__initial_params
else:
p = [np.max(self.__y_avg), 0, 0]
self.__fit_params, _ = curve_fit(self.boltzmann, self.__x_sorted, self.__y_avg, p)
@property
def slope(self) -> float:
r"""
The slope of the linear part of the Boltzmann, i.e.
.. math::
s = f_max $\cdot$ k / 4
:return: the slope.
"""
return self.__fit_params[0] * self.__fit_params[1] / 4
@property
def parameters(self):
""" fit parameters
:return: The fit parameters.
"""
return self.__fit_params
@property
def x_data(self):
""" The x data sorted and unique used for fitting.
:return: the x data
"""
return self.__x_sorted
@property
def y_data(self):
"""
the Y data used for fitting, i.e. the average rate in the specified time window sorted by the x data.
:return: the average and the standard deviation of the y data
"""
return self.__y_avg, self.__y_err
def solve(self, xvalues=None):
if not xvalues:
xvalues = self.__x_sorted
return self.boltzmann(xvalues, *self.__fit_params)