Merge branch 'master' of https://whale.am28.uni-tuebingen.de/git/jgrewe/fishBook
This commit is contained in:
commit
0160c583d7
@ -7,4 +7,9 @@ Database of data recorded in the group.
|
||||
## Assumptions & Caveats:
|
||||
* there is only a single subject in each dataset
|
||||
* each recording contains a single cell
|
||||
* RePro links to Cell and not to Dataset
|
||||
* RePro links to Cell and not to Dataset
|
||||
|
||||
|
||||
## FIXMEs
|
||||
* repro must have foreign keys to dataset and subject
|
||||
* Dataset finding samplerate in stimuli.dat can be improved
|
||||
|
@ -1,3 +1,4 @@
|
||||
from fishbook.fishbook import *
|
||||
from .fishbook import *
|
||||
from .reproclasses import BaselineData
|
||||
import fishbook.database as database
|
||||
__all__ = ['fishbook', 'database']
|
@ -1,93 +0,0 @@
|
||||
from fishbook.fishbook import Dataset, RePro
|
||||
import numpy as np
|
||||
import nixio as nix
|
||||
import os
|
||||
|
||||
from IPython import embed
|
||||
|
||||
|
||||
class BaselineData(object):
|
||||
|
||||
def __init__(self, dataset:Dataset):
|
||||
self.__data = []
|
||||
self.__dataset = dataset
|
||||
self.__cell = dataset.cells[0] # Beware: Assumption that there is only a single cell
|
||||
self._get_data()
|
||||
|
||||
def _get_data(self):
|
||||
if not self.__dataset:
|
||||
self.__data = []
|
||||
self.__data = []
|
||||
|
||||
repros = RePro.find_repros("BaselineActivity", cell_id=self.__cell.cell_id)
|
||||
for r in repros:
|
||||
self.__data.append(self.__read_data(r))
|
||||
|
||||
def __read_data(self, r:RePro):
|
||||
if self.__dataset.has_nix:
|
||||
return self.__read_data_from_nix(r)
|
||||
else:
|
||||
return self.__read_data_from_directory(r)
|
||||
|
||||
@property
|
||||
def dataset(self):
|
||||
return self.__dataset
|
||||
|
||||
def data(self, index:int=0):
|
||||
return self.__data[0] if len(self.__data) >= index else None
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
return len(self.__data)
|
||||
|
||||
def __str__(self):
|
||||
str = "Baseline data of cell %s " % self.__cell.cell_id
|
||||
|
||||
def __read_data_from_nix(self, r:RePro)->np.ndarray:
|
||||
data_source = os.path.join(self.__dataset.data_source, self.__dataset.dataset_id + ".nix")
|
||||
if not os.path.exists(data_source):
|
||||
print("Data not found! Trying from directory")
|
||||
return self.__read_data_from_directory(r)
|
||||
f = nix.File.open(data_source, nix.FileMode.ReadOnly)
|
||||
b = f.blocks[0]
|
||||
t = b.tags[r.repro_id]
|
||||
if not t:
|
||||
print("Tag not found!")
|
||||
data = t.retrieve_data("Spikes-1")[:]
|
||||
f.close()
|
||||
return data
|
||||
|
||||
def __read_data_from_directory(self, r)->np.ndarray:
|
||||
data = []
|
||||
data_source = os.path.join(self.__dataset.data_source, "basespikes1.dat")
|
||||
if os.path.exists(data_source):
|
||||
found_run = False
|
||||
with open(data_source, 'r') as f:
|
||||
l = f.readline()
|
||||
while l:
|
||||
if "index" in l:
|
||||
index = int(l.strip("#").strip().split(":")[-1])
|
||||
found_run = index == r.run
|
||||
if l.startswith("#Key") and found_run:
|
||||
data = self.__do_read(f)
|
||||
break
|
||||
l = f.readline()
|
||||
embed()
|
||||
return data
|
||||
|
||||
def __do_read(self, f)->np.ndarray:
|
||||
data = []
|
||||
f.readline()
|
||||
f.readline()
|
||||
l = f.readline()
|
||||
while l and "#" not in l and len(l.strip()) > 0:
|
||||
data.append(float(l.strip()))
|
||||
l = f.readline()
|
||||
return np.asarray(data)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
dataset = Dataset(dataset_id='2011-06-14-ag')
|
||||
# dataset = Dataset(dataset_id='2018-11-09-aa-invivo-1')
|
||||
baseline = BaselineData(dataset)
|
||||
embed()
|
@ -1,6 +1,9 @@
|
||||
from .database.database import Cells, Datasets, CellDatasetMap, Subjects, SubjectProperties, SubjectDatasetMap, Stimuli, Repros
|
||||
import nixio as nix
|
||||
import os
|
||||
import numpy as np
|
||||
from IPython import embed
|
||||
# from IPython import embed
|
||||
|
||||
|
||||
def _safe_get_val(dictionary:dict, key, default=None):
|
||||
return dictionary[key] if key in dictionary.keys() else default
|
||||
@ -26,11 +29,11 @@ class Cell:
|
||||
print("Empty Cell, not linked to any database entry!")
|
||||
|
||||
@property
|
||||
def cell_id(self):
|
||||
def id(self):
|
||||
return self.__tuple["cell_id"] if "cell_id" in self.__tuple.keys() else ""
|
||||
|
||||
@property
|
||||
def cell_type(self):
|
||||
def type(self):
|
||||
return self.__tuple["cell_type"] if "cell_type" in self.__tuple.keys() else ""
|
||||
|
||||
@property
|
||||
@ -54,7 +57,7 @@ class Cell:
|
||||
|
||||
@property
|
||||
def repro_runs(self):
|
||||
repros = (Repros & "cell_id = '%s'" % self.cell_id)
|
||||
repros = (Repros & "cell_id = '%s'" % self.id)
|
||||
return [RePro(tuple=r) for r in repros]
|
||||
|
||||
@staticmethod
|
||||
@ -62,7 +65,7 @@ class Cell:
|
||||
return np.unique(Cells.fetch("cell_type"))
|
||||
|
||||
@staticmethod
|
||||
def find_cells(cell_type=None, species=None, quality="good"):
|
||||
def find(cell_type=None, species=None, quality="good"):
|
||||
cs = Cells * CellDatasetMap * Datasets * Subjects
|
||||
if cell_type:
|
||||
cs = cs & "cell_type like '{0:s}'".format(cell_type)
|
||||
@ -74,12 +77,13 @@ class Cell:
|
||||
|
||||
def __str__(self):
|
||||
str = ""
|
||||
str += "Cell: %s \t type: %s\n"%(self.cell_id, self.cell_type)
|
||||
str += "Cell: %s \t type: %s\n"%(self.id, self.type)
|
||||
return str
|
||||
|
||||
|
||||
class Dataset:
|
||||
def __init__(self, dataset_id=None, tuple=None):
|
||||
self.__samplerate = 0.0
|
||||
if tuple:
|
||||
self.__tuple = tuple
|
||||
elif dataset_id:
|
||||
@ -89,9 +93,11 @@ class Dataset:
|
||||
self.__tuple = dsets.fetch(limit=1)[0]
|
||||
else:
|
||||
print("Empty dataset, not linked to any database entry!")
|
||||
if len(self.__tuple.keys()) > 0:
|
||||
self.__find_samplerate()
|
||||
|
||||
@property
|
||||
def dataset_id(self):
|
||||
def id(self):
|
||||
return self.__tuple["dataset_id"]
|
||||
|
||||
@property
|
||||
@ -136,8 +142,12 @@ class Dataset:
|
||||
subjs = (Subjects * (SubjectDatasetMap & self.__tuple))
|
||||
return [Subject(tuple=s) for s in subjs]
|
||||
|
||||
@property
|
||||
def samplerate(self):
|
||||
return self.__samplerate
|
||||
|
||||
@staticmethod
|
||||
def find_datasets(min_duration=None, experimenter=None, quality=None):
|
||||
def find(min_duration=None, experimenter=None, quality=None):
|
||||
dsets = Datasets
|
||||
if min_duration:
|
||||
dsets = dsets & "duration > %.2f" % min_duration
|
||||
@ -147,6 +157,32 @@ class Dataset:
|
||||
dsets = dsets & "quality like '{0:s}'".format(quality)
|
||||
return [Dataset(tuple=d) for d in dsets]
|
||||
|
||||
def __find_samplerate(self, trace_name="V-1"):
|
||||
if self.has_nix and os.path.exists(os.path.join(self.data_source, self.id, '.nix')):
|
||||
f = nix.File.open(os.path.join(self.data_source, self.id, '.nix'), nix.FileMode.ReadOnly)
|
||||
b = f.blocks[0]
|
||||
if trace_name in b.data_arrays:
|
||||
trace = b.data_arrays[trace_name]
|
||||
if trace.dimensions[0].dimension_type == nix.DimensionType.Sample:
|
||||
self.__samplerate = 1./trace.dimensions[0].sampling_interval
|
||||
else:
|
||||
print("Requested trace %s has no sampled dimension!" % s)
|
||||
else:
|
||||
print("Requested trace %s was not found!" % s)
|
||||
f.close()
|
||||
else:
|
||||
stim_file = os.path.join(self.data_source , 'stimuli.dat')
|
||||
if not os.path.exists(stim_file):
|
||||
return
|
||||
lines = None
|
||||
with open(stim_file, 'r') as f:
|
||||
lines = f.readlines()
|
||||
for l in lines:
|
||||
if "sample interval1" in l:
|
||||
si = l.strip().split(":")[-1][:-2]
|
||||
break
|
||||
self.__samplerate = 1000. / float(si)
|
||||
|
||||
|
||||
class RePro:
|
||||
def __init__(self, repro_id=None, tuple=None):
|
||||
@ -161,7 +197,7 @@ class RePro:
|
||||
print("Empty RePro, not linked to any database entry!")
|
||||
|
||||
@property
|
||||
def repro_id(self):
|
||||
def id(self):
|
||||
return _safe_get_val(self.__tuple, "repro_id", "")
|
||||
|
||||
@property
|
||||
@ -176,6 +212,14 @@ class RePro:
|
||||
def cell(self):
|
||||
return Cell(self.cell_id)
|
||||
|
||||
@property
|
||||
def dataset(self):
|
||||
datasets = (Cells & "cell_id = '%s'" % self.cell_id) * CellDatasetMap * Datasets
|
||||
d = datasets.proj('dataset_id', 'data_source', 'experimenter', 'setup', 'recording_date',
|
||||
'quality', 'comment', 'duration', 'has_nix').fetch(limit=1, as_dict=True)[0]
|
||||
del d["cell_id"]
|
||||
return Dataset(tuple=d)
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return _safe_get_val(self.__tuple, "repro_name", "")
|
||||
@ -194,11 +238,11 @@ class RePro:
|
||||
|
||||
@property
|
||||
def stimuli(self):
|
||||
stims = Stimuli & "repro_id = '%s'" % self.repro_id & "cell_id = '%s'" % self.cell_id
|
||||
stims = Stimuli & "repro_id = '%s'" % self.id & "cell_id = '%s'" % self.cell_id
|
||||
return [Stimulus(tuple=s) for s in stims]
|
||||
|
||||
@staticmethod
|
||||
def find_repros(name=None, cell_id=None, cell_type=None, species=None, settings=None, quality=None):
|
||||
def find(name=None, cell_id=None, cell_type=None, species=None, settings=None, quality=None):
|
||||
"""
|
||||
Cell type, quality, and species are ignored, if cell_id is provided
|
||||
:param repro_name:
|
||||
@ -265,7 +309,7 @@ class Subject:
|
||||
print("Empty Subject, not linked to any database entry!")
|
||||
|
||||
@property
|
||||
def subject_id(self):
|
||||
def id(self):
|
||||
return self.__tuple["subject_id"]
|
||||
|
||||
@property
|
||||
@ -282,7 +326,7 @@ class Subject:
|
||||
return (SubjectProperties & self.__tuple).fetch(as_dict=True)
|
||||
|
||||
@staticmethod
|
||||
def find_subjects(species=None):
|
||||
def find(species=None):
|
||||
subjs = Subjects & True
|
||||
if species:
|
||||
subjs = (Subjects & "species like '%{0:s}%'".format(species))
|
||||
|
160
fishbook/reproclasses.py
Normal file
160
fishbook/reproclasses.py
Normal file
@ -0,0 +1,160 @@
|
||||
from fishbook.fishbook import Dataset, RePro
|
||||
import numpy as np
|
||||
import nixio as nix
|
||||
import os
|
||||
import subprocess
|
||||
|
||||
from IPython import embed
|
||||
|
||||
|
||||
def _unzip_if_needed(dataset, tracename='trace-1.raw'):
|
||||
file_name = os.path.join(dataset, tracename)
|
||||
if os.path.exists(file_name):
|
||||
return
|
||||
if os.path.exists(file_name + '.gz'):
|
||||
print("\tunzip: %s" % tracename)
|
||||
subprocess.check_call(["gunzip", os.path.join(dataset, tracename + ".gz")])
|
||||
|
||||
|
||||
class BaselineData:
|
||||
|
||||
def __init__(self, dataset:Dataset):
|
||||
self.__spike_data = []
|
||||
self.__eod_data = []
|
||||
self.__dataset = dataset
|
||||
self.__repros = None
|
||||
self.__cell = dataset.cells[0] # Beware: Assumption that there is only a single cell
|
||||
self._get_data()
|
||||
|
||||
def _get_data(self):
|
||||
if not self.__dataset:
|
||||
return
|
||||
self.__repros = RePro.find("BaselineActivity", cell_id=self.__cell.id)
|
||||
for r in self.__repros:
|
||||
self.__spike_data.append(self.__read_spike_data(r))
|
||||
self.__eod_data.append(self.__read_eod_data(r, self.__spike_data[-1][-1]))
|
||||
|
||||
def __read_spike_data(self, r:RePro):
|
||||
if self.__dataset.has_nix:
|
||||
return self.__read_spike_data_from_nix(r)
|
||||
else:
|
||||
return self.__read_spike_data_from_directory(r)
|
||||
|
||||
def __read_eod_data(self, r:RePro, duration):
|
||||
if self.__dataset.has_nix:
|
||||
return self.__read_eod_data_from_nix(r, duration)
|
||||
else:
|
||||
return self.__read_eod_data_from_directory(r, duration)
|
||||
|
||||
@property
|
||||
def dataset(self):
|
||||
return self.__dataset
|
||||
|
||||
@property
|
||||
def cell(self):
|
||||
cells = self.__dataset.cells
|
||||
return cells if len(cells) > 1 else cells[0]
|
||||
|
||||
@property
|
||||
def subject(self):
|
||||
subjects = self.__dataset.subjects
|
||||
return subjects if len(subjects) > 1 else subjects[0]
|
||||
|
||||
def spike_data(self, index:int=0):
|
||||
return self.__spike_data[index] if len(self.__spike_data) >= index else None
|
||||
|
||||
def eod_data(self, index:int=0):
|
||||
eod = self.__eod_data[index] if len(self.__eod_data) >= index else None
|
||||
time = np.arange(len(eod)) / self.__dataset.samplerate
|
||||
return eod, time
|
||||
|
||||
@property
|
||||
def coefficient_of_variation(self):
|
||||
cvs = []
|
||||
for d in self.__spike_data:
|
||||
isis = np.diff(d)
|
||||
cvs.append(np.std(isis)/np.mean(d=isis))
|
||||
return cvs
|
||||
|
||||
@property
|
||||
def vector_strength(self):
|
||||
vss = []
|
||||
return vss
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
return len(self.__spike_data)
|
||||
|
||||
def __str__(self):
|
||||
str = "Baseline data of cell %s " % self.__cell.id
|
||||
|
||||
def __read_eod_data_from_nix(self, r:RePro, duration)->np.ndarray:
|
||||
data_source = os.path.join(self.__dataset.data_source, self.__dataset.id + ".nix")
|
||||
if not os.path.exists(data_source):
|
||||
print("Data not found! Trying from directory")
|
||||
return self.__read_eod_data_from_directory(r, duration)
|
||||
f = nix.File.open(data_source, nix.FileMode.ReadOnly)
|
||||
b = f.blocks[0]
|
||||
t = b.tags[r.id]
|
||||
if not t:
|
||||
print("Tag not found!")
|
||||
data = t.retrieve_data("EOD")[:]
|
||||
f.close()
|
||||
return data
|
||||
|
||||
def __read_eod_data_from_directory(self, r:RePro, duration)->np.ndarray:
|
||||
sr = self.__dataset.samplerate
|
||||
_unzip_if_needed(self.__dataset.data_source, "trace-2.raw")
|
||||
eod = np.fromfile(self.__dataset.data_source + "/trace-2.raw", np.float32)
|
||||
eod = eod[:int(duration * sr)]
|
||||
return eod
|
||||
|
||||
def __read_spike_data_from_nix(self, r:RePro)->np.ndarray:
|
||||
data_source = os.path.join(self.__dataset.data_source, self.__dataset.id + ".nix")
|
||||
if not os.path.exists(data_source):
|
||||
print("Data not found! Trying from directory")
|
||||
return self.__read_spike_data_from_directory(r)
|
||||
f = nix.File.open(data_source, nix.FileMode.ReadOnly)
|
||||
b = f.blocks[0]
|
||||
t = b.tags[r.id]
|
||||
if not t:
|
||||
print("Tag not found!")
|
||||
data = t.retrieve_data("Spikes-1")[:]
|
||||
f.close()
|
||||
return data
|
||||
|
||||
|
||||
def __read_spike_data_from_directory(self, r)->np.ndarray:
|
||||
data = []
|
||||
data_source = os.path.join(self.__dataset.data_source, "basespikes1.dat")
|
||||
if os.path.exists(data_source):
|
||||
found_run = False
|
||||
with open(data_source, 'r') as f:
|
||||
l = f.readline()
|
||||
while l:
|
||||
if "index" in l:
|
||||
index = int(l.strip("#").strip().split(":")[-1])
|
||||
found_run = index == r.run
|
||||
if l.startswith("#Key") and found_run:
|
||||
data = self.__do_read(f)
|
||||
break
|
||||
l = f.readline()
|
||||
return data
|
||||
|
||||
def __do_read(self, f)->np.ndarray:
|
||||
data = []
|
||||
f.readline()
|
||||
unit = f.readline().strip("#").strip()
|
||||
scale = 0.001 if unit == "ms" else 1
|
||||
l = f.readline()
|
||||
while l and "#" not in l and len(l.strip()) > 0:
|
||||
data.append(float(l.strip())*scale)
|
||||
l = f.readline()
|
||||
return np.asarray(data)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
dataset = Dataset(dataset_id='2011-06-14-ag')
|
||||
# dataset = Dataset(dataset_id='2018-11-09-aa-invivo-1')
|
||||
baseline = BaselineData(dataset)
|
||||
embed()
|
2
setup.py
2
setup.py
@ -8,5 +8,5 @@ setup(name='fishbook',
|
||||
packages=find_packages(exclude=['contrib', 'doc', 'tests*']),
|
||||
description='Database providing an overview of the electrophysiological data recorded in the group.',
|
||||
author='Jan Grewe',
|
||||
requires=['datajoint', 'numpy', 'nixio']
|
||||
requires=['datajoint', 'nixio', 'numpy', 'PyYAML']
|
||||
)
|
||||
|
10
test.py
10
test.py
@ -5,5 +5,11 @@ from IPython import embed
|
||||
|
||||
|
||||
data_dir = "/data/apteronotus"
|
||||
datasets = glob.glob(os.path.join(data_dir, '/data/apteronotus/2010-*'))
|
||||
fb.database.populate(datasets, False)
|
||||
datasets = sorted(glob.glob(os.path.join(data_dir, '201*')))
|
||||
dsets = []
|
||||
for d in datasets:
|
||||
if "2010" in d or "2011" in d:
|
||||
continue
|
||||
else:
|
||||
dsets.append(d)
|
||||
fb.database.populate(dsets, False)
|
||||
|
Loading…
Reference in New Issue
Block a user