efish_tracking/src/etrack/tracking_data.py
2024-06-01 20:21:14 +02:00

268 lines
9.8 KiB
Python

"""
Module that defines the TrackingData class that wraps the position data for a given node/bodypart that has been tracked.
"""
import numpy as np
class TrackingData(object):
"""Class that represents tracking data, i.e. positions of an agent tracked in an environment.
These data are the x, and y-positions, the time at which the agent was detected, and the quality associated with the position estimation.
TrackingData contains these data and offers a few functions to work with it.
Using the 'quality_threshold', 'temporal_limits', or the 'position_limits' data can be filtered (see filter_tracks function).
The 'interpolate' function allows to fill up the gaps that may result from filtering with linearly interpolated data points.
More may follow...
"""
def __init__(self, x, y, time, quality, node="", fps=None,
quality_threshold=None, temporal_limits=None, position_limits=None) -> None:
"""
Initialize a TrackingData object.
Parameters
----------
x : float
The x-coordinates of the tracking data.
y : float
The y-coordinates of the tracking data.
time : float
The time vector associated with the x-, and y-coordinates.
quality : float
The quality score associated with the position estimates.
node : str, optional
The node name associated with the data. Default is an empty string.
fps : float, optional
The frames per second of the tracking data. Default is None.
quality_threshold : float, optional
The quality threshold for the tracking data. Default is None.
temporal_limits : tuple, optional
The temporal limits for the tracking data. Default is None.
position_limits : tuple, optional
The position limits for the tracking data. Default is None.
"""
self._orgx = x
self._orgy = y
self._orgtime = time
self._orgquality = quality
self._x = x
self._y = y
self._time = time
self._quality = quality
self._node = node
self._threshold = quality_threshold
self._position_limits = position_limits
self._time_limits = temporal_limits
self._fps = fps
@property
def original_positions(self):
return self._orgx, self._orgy
@property
def original_quality(self):
return self._orgquality
def interpolate(self, start_time=None, end_time=None, min_count=5):
if len(self._x) < min_count:
print(
f"{self._node} data has less than {min_count} data points with sufficient quality ({len(self._x)})!"
)
return None, None, None
start = self._time[0] if start_time is None else start_time
end = self._time[-1] if end_time is None else end_time
time = np.arange(start, end, 1.0 / self._fps)
x = np.interp(time, self._time, self._x)
y = np.interp(time, self._time, self._y)
return x, y, time
@property
def quality_threshold(self):
"""Property that holds the quality filter setting.
Returns
-------
float : the quality threshold
"""
return self._threshold
@quality_threshold.setter
def quality_threshold(self, new_threshold):
"""Setter of the quality threshold that should be applied when filtering the data. Setting this to None removes the quality filter.
Data points that have a quality score below the given threshold are discarded.
Parameters
----------
new_threshold : float
"""
self._threshold = new_threshold
@property
def position_limits(self):
"""
Get the position limits of the tracking data.
Returns:
tuple: A 4-tuple containing the start x, and y positions, width and height limits.
"""
return self._position_limits
@position_limits.setter
def position_limits(self, new_limits):
"""Sets the limits for the position filter. 'new_limits' must be a 4-tuple of the form (x0, y0, width, height). If None, the limits will be removed.
Data points outside the position limits are discarded.
Parameters
----------
new_limits: 4-tuple
tuple of x-position, y-position, the width and the height. Passing None removes the filter
Raises
------
ValueError, if new_value is not a 4-tuple
"""
if new_limits is not None and not (
isinstance(new_limits, (tuple, list)) and len(new_limits) == 4
):
raise ValueError(
f"The new_limits vector must be a 4-tuple of the form (x, y, width, height)"
)
self._position_limits = new_limits
@property
def temporal_limits(self):
"""
Get the temporal limits of the tracking data.
Returns:
tuple: A tuple containing the start and end time of the tracking data.
"""
return self._time_limits
@temporal_limits.setter
def temporal_limits(self, new_limits):
"""Limits for temporal filter. The limits must be a 2-tuple of start and end time. Setting this to None removes the filter.
Data points the are associated with times outside the limits are discarded.
Parameters
----------
new_limits : 2-tuple
The new limits in the form (start, end) given in seconds.
Returns
-------
None
Raises
------
ValueError if the limits are not valid.
"""
if new_limits is not None and not (
isinstance(new_limits, (tuple, list)) and len(new_limits) == 2
):
raise ValueError(
f"The new_limits vector must be a 2-tuple of the form (start, end). "
)
self._time_limits = new_limits
def filter_tracks(self, align_time=True):
"""Applies the filters to the tracking data. All filters will be applied sequentially, i.e. an AND connection.
To change the filter settings use the setters for 'quality_threshold', 'temporal_limits', 'position_limits'. Setting them to None disables the respective filter discarding the setting.
Parameters
----------
align_time: bool
Controls whether the time vector is aligned to the first time point at which the agent is within the positional_limits. Default = True
"""
self._x = self._orgx.copy()
self._y = self._orgy.copy()
self._time = self._orgtime.copy()
self._quality = self.original_quality.copy()
if self.position_limits is not None:
x_max = self.position_limits[0] + self.position_limits[2]
y_max = self.position_limits[1] + self.position_limits[3]
indices = np.where(
(self._x >= self.position_limits[0])
& (self._x < x_max)
& (self._y >= self.position_limits[1])
& (self._y < y_max)
)
self._x = self._x[indices]
self._y = self._y[indices]
self._time = self._time[indices] - self._time[0] if align_time else 0.0
self._quality = self._quality[indices]
if self.temporal_limits is not None:
indices = np.where(
(self._time >= self.temporal_limits[0])
& (self._time < self.temporal_limits[1])
)
self._x = self._x[indices]
self._y = self._y[indices]
self._time = self._time[indices]
self._quality = self._quality[indices]
if self.quality_threshold is not None:
indices = np.where((self._quality >= self.quality_threshold))
self._x = self._x[indices]
self._y = self._y[indices]
self._time = self._time[indices]
self._quality = self._quality[indices]
def positions(self):
"""Returns the filtered data (if filters have been applied, otherwise the original data).
Returns
-------
np.ndarray
The x-positions
np.ndarray
The y-positions
np.ndarray
The time vector
np.ndarray
The detection quality
"""
return self._x, self._y, self._time, self._quality
def speed(self, x=None, y=None, t=None):
""" Returns the agent's speed as a function of time and position. The speed estimation is associated to the time/position between two sample points. If any of the arguments is not provided, the function will use the x,y coordinates that are stored within the object, otherwise, if all are provided, the user-provided values will be used.
Since the velocities are estimated from the difference between two sample points the returned velocities and positions are assigned to positions and times between the respective sampled positions/times.
Parameters
----------
x: np.ndarray
The x-coordinates, defaults to None
y: np.ndarray
The y-coordinates, defaults to None
t: np.ndarray
The time vector, defaults to None
Returns
-------
np.ndarray:
The time vector.
np.ndarray:
The speed.
tuple of np.ndarray
The position
"""
if x is None or y is None or t is None:
x = self._x.copy()
y = self._y.copy()
t = self._time.copy()
dt = np.diff(t)
speed = np.sqrt(np.diff(x)**2 + np.diff(y)**2) / dt
t = t[:-1] + dt / 2
x = x[:-1] + np.diff(x) / 2
y = y[:-1] + np.diff(y) / 2
return t, speed, (x, y)
def __repr__(self) -> str:
s = f"Tracking data of node '{self._node}'!"
return s