efish_tracking/etrack/tracking_data.py
2023-02-10 18:45:57 +01:00

208 lines
7.1 KiB
Python

import numpy as np
class TrackingData(object):
"""Class that represents tracking data, i.e. positions of an agent tracked in an environment.
These data are the x, and y-positions, the time at which the agent was detected, and the quality associated with the position estimation.
TrackingData contains these data and offers a few functions to work with it.
Using the 'quality_threshold', 'temporal_limits', or the 'position_limits' data can be filtered (see filter_tracks function).
The 'interpolate' function allows to fill up the gaps that be result from filtering with linearly interpolated data points.
More may follow...
"""
def __init__(
self,
x,
y,
time,
quality,
node="",
fps=None,
quality_threshold=None,
temporal_limits=None,
position_limits=None,
) -> None:
self._orgx = x
self._orgy = y
self._orgtime = time
self._orgquality = quality
self._x = x
self._y = y
self._time = time
self._quality = quality
self._node = node
self._threshold = quality_threshold
self._position_limits = position_limits
self._time_limits = temporal_limits
self._fps = fps
@property
def original_positions(self):
return self._orgx, self._orgy
@property
def original_quality(self):
return self._orgquality
def interpolate(self, start_time=None, end_time=None, min_count=5):
if len(self._x) < min_count:
print(
f"{self._node} data has less than {min_count} data points with sufficient quality ({len(self._x)})!"
)
return None, None, None
start = self._time[0] if start_time is None else start_time
end = self._time[-1] if end_time is None else end_time
time = np.arange(start, end, 1.0 / self._fps)
x = np.interp(time, self._time, self._x)
y = np.interp(time, self._time, self._y)
return x, y, time
@property
def quality_threshold(self):
return self._threshold
@quality_threshold.setter
def quality_threshold(self, new_threshold):
"""Setter of the quality threshold that should be applied when filterin the data. Setting this to None removes the quality filter.
Parameters
----------
new_threshold : float
"""
self._threshold = new_threshold
@property
def position_limits(self):
return self._position_limits
@position_limits.setter
def position_limits(self, new_limits):
"""Sets the limits for the position filter. 'new_limits' must be a 4-tuple of the form (x0, y0, width, height). If None, the limits will be removed.
Parameters
----------
new_limits: 4-tuple
tuple of x-position, y-position, the width and the height. Passing None removes the filter
Raises
------
ValueError, if new_value is not a 4-tuple
"""
if new_limits is not None and not (
isinstance(new_limits, (tuple, list)) and len(new_limits) == 4
):
raise ValueError(
f"The new_limits vector must be a 4-tuple of the form (x, y, width, height)"
)
self._position_limits = new_limits
@property
def temporal_limits(self):
return self._time_limits
@temporal_limits.setter
def temporal_limits(self, new_limits):
"""Limits for temporal filter. The limits must be a 2-tuple of start and end time. Setting this to None removes the filter.
Parameters
----------
new_limits : 2-tuple
The new limits in the form (start, end) given in seconds.
"""
if new_limits is not None and not (
isinstance(new_limits, (tuple, list)) and len(new_limits) == 2
):
raise ValueError(
f"The new_limits vector must be a 2-tuple of the form (start, end). "
)
self._time_limits = new_limits
def filter_tracks(self, align_time=True):
"""Applies the filters to the tracking data. All filters will be applied sequentially, i.e. an AND connection.
To change the filter settings use the setters for 'quality_threshold', 'temporal_limits', 'position_limits'. Setting them to None disables the respective filter discarding the setting.
Parameters
----------
align_time: bool
Controls whether the time vector is aligned to the first time point at which the agent is within the positional_limits. Default = True
"""
self._x = self._orgx.copy()
self._y = self._orgy.copy()
self._time = self._orgtime.copy()
self._quality = self.original_quality.copy()
if self.position_limits is not None:
x_max = self.position_limits[0] + self.position_limits[2]
y_max = self.position_limits[1] + self.position_limits[3]
indices = np.where(
(self._x >= self.position_limits[0])
& (self._x < x_max)
& (self._y >= self.position_limits[1])
& (self._y < y_max)
)
self._x = self._x[indices]
self._y = self._y[indices]
self._time = self._time[indices] - self._time[0] if align_time else 0.0
self._quality = self._quality[indices]
if self.temporal_limits is not None:
indices = np.where(
(self._time >= self.temporal_limits[0])
& (self._time < self.temporal_limits[1])
)
self._x = self._x[indices]
self._y = self._y[indices]
self._time = self._time[indices]
self._quality = self._quality[indices]
if self.quality_threshold is not None:
indices = np.where((self._quality >= self.quality_threshold))
self._x = self._x[indices]
self._y = self._y[indices]
self._time = self._time[indices]
self._quality = self._quality[indices]
def positions(self):
"""Returns the filtered data (if filters have been applied).
Returns
-------
np.ndarray
The x-positions
np.ndarray
The y-positions
np.ndarray
The time vector
np.ndarray
The detection quality
"""
return self._x, self._y, self._time, self._quality
def speed(self):
"""Returns the agent's speed as a function of time and position. The speed estimation is associated to the time/position between two sample points.
Returns
-------
np.ndarray:
The time vector.
np.ndarray:
The speed.
tuple of np.ndarray
The position
"""
speed = np.sqrt(np.diff(self._x) ** 2 + np.diff(self._y) ** 2) / np.diff(
self._time
)
t = self._time[:-1] + np.diff(self._time) / 2
x = self._x[:-1] + np.diff(self._x) / 2
y = self._y[:-1] + np.diff(self._y) / 2
return t, speed, (x, y)
def __repr__(self) -> str:
s = f"Tracking data of node '{self._node}'!"
return s