[trackingData] new class that represents tracking data ...
With this we separate reading and handling of tracking data. io classes handle reading
This commit is contained in:
parent
9046e70592
commit
30a035f82d
134
etrack/tracking_data.py
Normal file
134
etrack/tracking_data.py
Normal file
@ -0,0 +1,134 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
class TrackingData(object):
|
||||
"""Class that represents tracking data, i.e. positions of an agent tracked in an environment.
|
||||
These data are the x, and y-positions, the time at which the agent was detected, and the quality associated with the position estimation.
|
||||
TrackingData contains these data and offers a few functions to work with it.
|
||||
Using the 'quality_threshold', 'temporal_limits', or the 'position_limits' data can be filtered (see filter_tracks function).
|
||||
The 'interpolate' function allows to fill up the gaps that be result from filtering with linearly interpolated data points.
|
||||
|
||||
More may follow...
|
||||
"""
|
||||
def __init__(self, x, y, time, quality, node="", fps=None, quality_threshold=None, temporal_limits=None, position_limits=None) -> None:
|
||||
self._orgx = x
|
||||
self._orgy = y
|
||||
self._orgtime = time
|
||||
self._orgquality = quality
|
||||
self._x = x
|
||||
self._y = y
|
||||
self._time = time
|
||||
self._quality = quality
|
||||
self._node = node
|
||||
self._threshold = quality_threshold
|
||||
self._position_limits = position_limits
|
||||
self._time_limits = temporal_limits
|
||||
|
||||
@property
|
||||
def original_positions(self):
|
||||
return self._orgx, self._orgy
|
||||
|
||||
@property
|
||||
def original_quality(self):
|
||||
return self._orgquality
|
||||
|
||||
def interpolate(self, min_count=10):
|
||||
if len(self._x) < min_count:
|
||||
print(f"{self._node} data has less than {min_count} data points with sufficient quality!")
|
||||
return None
|
||||
self._x = np.interp(self._orgtime, self._time, self._y)
|
||||
self._y = np.interp(self._orgtime, self._time, self._y)
|
||||
|
||||
@property
|
||||
def quality_threshold(self):
|
||||
return self._threshold
|
||||
|
||||
@quality_threshold.setter
|
||||
def quality_threshold(self, new_threshold):
|
||||
"""Setter of the quality threshold that should be applied when filterin the data. Setting this to None removes the quality filter.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
new_threshold : float
|
||||
|
||||
"""
|
||||
self._threshold = new_threshold
|
||||
|
||||
@property
|
||||
def position_limits(self):
|
||||
return self._position_limits
|
||||
|
||||
@position_limits.setter
|
||||
def position_limits(self, new_limits):
|
||||
"""Sets the limits for the position filter. 'new_limits' must be a 4-tuple of the form (x0, y0, width, height). If None, the limits will be removed.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
new_limits: 4-tuple
|
||||
tuple of x-position, y-position, the width and the height. Passing None removes the filter
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError, if new_value is not a 4-tuple
|
||||
"""
|
||||
if new_limits is not None and not (isinstance(new_limits, (tuple, list)) and len(new_limits) == 4):
|
||||
raise ValueError(f"The new_limits vector must be a 4-tuple of the form (x, y, width, height)")
|
||||
self._position_limits = new_limits
|
||||
|
||||
@property
|
||||
def temporal_limits(self):
|
||||
return self._time_limits
|
||||
|
||||
@temporal_limits.setter
|
||||
def temporal_limits(self, new_limits):
|
||||
"""Limits for temporal filter. The limits must be a 2-tuple of start and end time. Setting this to None removes the filter.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
new_limits : 2-tuple
|
||||
The new limits in the form (start, end) given in seconds.
|
||||
"""
|
||||
if new_limits is not None and not (isinstance(new_limits, (tuple, list)) and len(new_limits) == 2):
|
||||
raise ValueError(f"The new_limits vector must be a 2-tuple of the form (start, end). ")
|
||||
self._time_limits = new_limits
|
||||
|
||||
def filter_tracks(self):
|
||||
"""Applies the filters to the tracking data. All filters will be applied squentially, i.e. an AND connection.
|
||||
To change the filter settings use the setters for 'quality_threshold', 'temporal_limits', 'position_limits'. Setting them to None disables the respective filter discarding the setting.
|
||||
"""
|
||||
self._x = self._orgx.copy()
|
||||
self._y = self._orgy.copy()
|
||||
self._time = self._orgtime.copy()
|
||||
self._quality = self.original_quality.copy()
|
||||
|
||||
if self.position_limits is not None:
|
||||
x_max = self.position_limits[0] + self.position_limits[2]
|
||||
y_max = self.position_limits[1] + self.position_limits[3]
|
||||
indices = np.where((self._x >= self.position_limits[0]) & (self._x < x_max) &
|
||||
(self._y >= self.position_limits[1]) & (self._y < y_max))
|
||||
self._x = self._x[indices]
|
||||
self._y = self._y[indices]
|
||||
self._time = self._time[indices]
|
||||
self._quality = self._quality[indices]
|
||||
|
||||
if self.temporal_limits is not None:
|
||||
indices = np.where((self._time >= self.temporal_limits[0]) &
|
||||
(self._time < self.temporal_limits[1]))
|
||||
self._x = self._x[indices]
|
||||
self._y = self._y[indices]
|
||||
self._time = self._time[indices]
|
||||
self._quality = self._quality[indices]
|
||||
|
||||
if self.quality_threshold is not None:
|
||||
indices = np.where((self._quality >= self.quality_threshold))
|
||||
self._x = self._x[indices]
|
||||
self._y = self._y[indices]
|
||||
self._time = self._time[indices]
|
||||
self._quality = self._quality[indices]
|
||||
|
||||
def positions(self):
|
||||
return self._x, self._y, self._time, self._quality
|
||||
|
||||
def __repr__(self) -> str:
|
||||
s = f"Tracking data of node '{self._node}'!"
|
||||
return s
|
Loading…
Reference in New Issue
Block a user