chirp_probing/response_discriminability.py
2020-09-27 17:16:24 +02:00

259 lines
12 KiB
Python

import os
import glob
import pandas as pd
import nixio as nix
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, roc_auc_score
from IPython import embed
import multiprocessing
from joblib import Parallel, delayed
from util import firing_rate, despine, extract_am, within_group_distance, across_group_distance
from nix_util import read_baseline, sort_blocks, get_spikes, get_signals, get_chirp_metadata
figure_folder = "figures"
data_folder = "data"
def get_rates(spike_trains, duration, dt, kernel_width):
"""Convert the spike trains (list of spike_times) to rates using a Gaussian kernel of the given size.
Args:
spike_trains ([type]): [description]
duration ([type]): [description]
dt ([type]): [description]
kernel_width ([type]): [description]
Returns:
np.ndarray: Matrix of firing rates, 1. dimension is the number of trials
np.ndarray: the time vector
"""
time = np.arange(0.0, duration, dt)
rates = np.zeros((len(spike_trains), len(time)))
for i, sp in enumerate(spike_trains):
rates[i, :] = firing_rate(sp, duration, kernel_width, dt)
return rates, time
def get_firing_rate(block_map, df, contrast, condition, kernel_width=0.0005):
"""Retruns the firing rates and the spikes
Args:
block_map ([type]): [description]
df ([type]): [description]
contrast ([type]): [description]
condition ([type]): [description]
kernel_width (float, optional): [description]. Defaults to 0.0005.
Returns:
np.ndarray: the time vector.
np.ndarray: the rates with the first dimension representing the trials.
np.adarray: the spike trains.
"""
block = block_map[(contrast, df, condition)]
spikes = get_spikes(block)
duration = float(block.metadata["stimulus parameter"]["duration"])
dt = float(block.metadata["stimulus parameter"]["dt"])
rates, time = get_rates(spikes, duration, dt, kernel_width)
return time, rates, spikes
def foreign_fish_detection_beat(block_map, df, all_contrasts, all_conditions, kernel_width=0.0005, cell_name="", store_roc=False):
detection_performances = []
for contrast in all_contrasts:
print(" " * 50, end="\r")
print("Contrast: %.3f" % contrast, end="\r")
no_other_block = block_map[(contrast, df, "no-other")]
self_block = block_map[(contrast, df, "self")]
# get some metadata assuming they are all the same for each condition, which they should
duration, dt, _, chirp_duration, chirp_times = get_chirp_metadata(self_block)
interchirp_starts = np.add(chirp_times, 1.5 * chirp_duration)[:-1]
interchirp_ends = np.subtract(chirp_times, 1.5 * chirp_duration)[1:]
ici = np.floor(np.mean(np.subtract(interchirp_ends, interchirp_starts))*1000) / 1000
# get the spiking responses
no_other_spikes = get_spikes(no_other_block)
self_spikes = get_spikes(self_block)
# get firing rates
no_other_rates, _ = get_rates(no_other_spikes, duration, dt, kernel_width)
self_rates, _ = get_rates(self_spikes, duration, dt, kernel_width)
# get the response snippets between chrips
no_other_snippets = np.zeros((len(interchirp_starts) * no_other_rates.shape[0], int(ici / dt)))
self_snippets = np.zeros_like(no_other_snippets)
for i in range(no_other_rates.shape[0]):
for j, start in enumerate(interchirp_starts):
start_index = int(start/dt)
end_index = start_index + no_other_snippets.shape[1]
index = i * len(interchirp_starts) + j
no_other_snippets[index, :] = no_other_rates[i, start_index:end_index]
self_snippets[index, :] = self_rates[i, start_index:end_index]
# get the distances
baseline_dist = within_group_distance(no_other_snippets)
comp_dist = across_group_distance(no_other_snippets, self_snippets)
# sort and perfom ROC analysis
triangle_indices = np.tril_indices_from(baseline_dist, -1)
valid_distances_baseline = baseline_dist[triangle_indices]
temp1 = np.zeros_like(valid_distances_baseline)
valid_distances_comparison = comp_dist.ravel()
temp2 = np.ones_like(valid_distances_comparison)
group = np.hstack((temp1, temp2))
score = np.hstack((valid_distances_baseline, valid_distances_comparison))
fpr, tpr, _ = roc_curve(group, score, pos_label=1)
auc = roc_auc_score(group, score)
if store_roc:
detection_performances.append({"cell": cell_name, "detection_task": "beat", "contrast": contrast, "df": df, "kernel_width": kernel_width, "auc": auc, "true_positives": tpr, "false_positives": fpr})
else:
detection_performances.append({"cell": cell_name, "detection_task": "beat", "contrast": contrast, "df": df, "kernel_width": kernel_width, "auc": auc})
print("\n")
return detection_performances
def foreign_fish_detection_chirp(block_map, df, all_contrasts, all_conditions, kernel_width=0.0005, cell_name="", store_roc=False):
detection_performances = []
for contrast in all_contrasts:
print(" " * 50, end="\r")
print("Contrast: %.3f" % contrast, end="\r")
no_other_block = block_map[(contrast, df, "no-other")]
self_block = block_map[(contrast, df, "self")]
other_block = block_map[(contrast, df, "self")]
# get some metadata assuming they are all the same for each condition, which they should
duration, dt, _, chirp_duration, chirp_times = get_chirp_metadata(self_block)
# get the spiking responses
no_other_spikes = get_spikes(no_other_block)
self_spikes = get_spikes(self_block)
other_spikes = get_spikes(other_block)
# get firing rates
no_other_rates, _ = get_rates(no_other_spikes, duration, dt, kernel_width)
self_rates, _ = get_rates(self_spikes, duration, dt, kernel_width)
other_rates, _ = get_rates(other_spikes, duration, dt, kernel_width)
# get the chirp response snippets
alone_chirping_snippets = np.zeros((len(chirp_times) * no_other_rates.shape[0], int(chirp_duration / dt)))
self_snippets = np.zeros_like(alone_chirping_snippets)
other_snippets = np.zeros_like(alone_chirping_snippets)
silence_snippets = np.zeros_like(alone_chirping_snippets)
for i in range(no_other_rates.shape[0]):
for j, chirp_time in enumerate(chirp_times):
start_index = int((chirp_time - chirp_duration/2 + 0.003)/dt)
end_index = start_index + alone_chirping_snippets.shape[1]
index = i * len(chirp_times) + j
alone_chirping_snippets[index, :] = no_other_rates[i, start_index:end_index]
self_snippets[index, :] = self_rates[i, start_index:end_index]
other_snippets[index, :] = other_rates[i, start_index:end_index]
silence_start_index = int((chirp_time + 1.5 * chirp_duration)/dt)
silence_end_index = silence_start_index + alone_chirping_snippets.shape[1]
silence_snippets[index, :] = other_rates[i, silence_start_index:silence_end_index]
# get the distances
# 1. Soliloquy
# 2. Nobody chirps, all alone aka baseline response
# 3. I chirp while the other is present compared to self chirping without the other one present
# 4. the otherone chrips to me compared to baseline with anyone chirping
alone_chirping_dist = within_group_distance(alone_chirping_snippets)
silence_dist = within_group_distance(silence_snippets)
self_vs_alone_dist = across_group_distance(alone_chirping_snippets, self_snippets)
other_vs_silence_dist = across_group_distance(silence_snippets, other_snippets)
# sort and perfom ROC analysis for two comparisons
# 1. soliloquy vs. self chirping in company
# 2. other chirping vs. nobody is chirping
triangle_indices = np.tril_indices_from(alone_chirping_dist, -1)
valid_no_other_distances = alone_chirping_dist[triangle_indices]
no_other_temp = np.zeros_like(valid_no_other_distances)
valid_silence_distances = silence_dist[triangle_indices]
silence_temp = np.zeros_like(valid_silence_distances)
valid_self_vs_alone_distances = self_vs_alone_dist.ravel()
self_vs_alone_temp = np.ones_like(valid_self_vs_alone_distances)
valid_other_vs_silence_distances = other_vs_silence_dist.ravel()
other_vs_silence_temp = np.ones_like(valid_other_vs_silence_distances)
group = np.hstack((no_other_temp, self_vs_alone_temp))
score = np.hstack((valid_no_other_distances, valid_self_vs_alone_distances))
fpr, tpr, _ = roc_curve(group, score, pos_label=1)
auc = roc_auc_score(group, score)
if store_roc:
detection_performances.append({"cell": cell_name, "detection_task": "self vs soliloquy", "contrast": contrast, "df": df, "kernel_width": kernel_width, "auc": auc, "true_positives": tpr, "false_positives": fpr})
else:
detection_performances.append({"cell": cell_name, "detection_task": "self vs soliloquy", "contrast": contrast, "df": df, "kernel_width": kernel_width, "auc": auc})
group = np.hstack((silence_temp, other_vs_silence_temp))
score = np.hstack((valid_silence_distances, valid_other_vs_silence_distances))
fpr, tpr, _ = roc_curve(group, score, pos_label=1)
auc = roc_auc_score(group, score)
if store_roc:
detection_performances.append({"cell": cell_name, "detection_task": "other vs quietness", "contrast": contrast, "df": df, "kernel_width": kernel_width, "auc": auc, "true_positives": tpr, "false_positives": fpr})
else:
detection_performances.append({"cell": cell_name, "detection_task": "other vs quietness", "contrast": contrast, "df": df, "kernel_width": kernel_width, "auc": auc})
print("\n")
return detection_performances
def foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=None, cell_name="", store_roc=False):
dfs = [current_df] if current_df is not None else all_dfs
kernels = [0.00025, 0.0005, 0.001, 0.0025]
result_dicts = []
for df in dfs:
for kw in kernels:
print("df: %i, kernel: %.4f" % (df, kw))
print("Foreign fish detection during beat:")
result_dicts.extend(foreign_fish_detection_beat(block_map, df, all_contrasts, all_conditions, kw, cell_name, store_roc))
print("Foreign fish detection during chirp:")
result_dicts.extend(foreign_fish_detection_chirp(block_map, df, all_contrasts, all_conditions, kw, cell_name, store_roc))
return result_dicts
def estimate_chirp_phase(am, chirp_times):
pass
def process_cell(filename, dfs=[], contrasts=[], conditions=[]):
print(filename)
nf = nix.File.open(filename, nix.FileMode.ReadOnly)
block_map, all_contrasts, all_dfs, all_conditions = sort_blocks(nf)
if "baseline" in block_map.keys():
baseline_spikes = read_baseline(block_map["baseline"])
else:
print("ERROR: no baseline data for file %s!" % filename)
results = foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=None,
cell_name=filename.split(os.path.sep)[-1].split(".nix")[0], store_roc=False)
nf.close()
return results
def main():
num_cores = multiprocessing.cpu_count() - 6
nix_files = sorted(glob.glob(os.path.join(data_folder, "cell*.nix")))
processed_list = Parallel(n_jobs=num_cores)(delayed(process_cell)(nix_file) for nix_file in nix_files)
results = []
for pr in processed_list:
results.extend(pr)
df = pd.DataFrame(results)
df.to_csv(os.path.join(data_folder, "discimination_results.csv"), sep=";")
if __name__ == "__main__":
main()