import numpy as np def despine(axis, spines=None, hide_ticks=True): def hide_spine(spine): spine.set_visible(False) for spine in axis.spines.keys(): if spines is not None: if spine in spines: hide_spine(axis.spines[spine]) else: hide_spine(axis.spines[spine]) if hide_ticks: axis.xaxis.set_ticks([]) axis.yaxis.set_ticks([]) def gaussKernel(sigma, dt): """ Creates a Gaussian kernel with a given standard deviation and an integral of 1. Args: sigma (float): The standard deviation of the kernel. dt (float): The temporal resolution of the kernel, given in seconds. Returns: numpy.ndarray : the kernel in the range -4 to +4 sigma """ x = np.arange(-4. * sigma, 4. * sigma, dt) y = np.exp(-0.5 * (x / sigma) ** 2) / np.sqrt(2. * np.pi) / sigma return y def firing_rate(spikes, duration, sigma=0.005, dt=1./20000.): """Convert spike times to a firing rate using the kernel convolution with a Gaussian kernel Args: spikes (iterable): list of spike times, times should be in seconds duration (float): duration of the trial in seconds sigma (float, optional): standard deviation of the Gaussian kernel. Defaults to 0.005s. dt (float, optional): The stepsize of the trace. Defaults to 1./20000.s. Returns: np.ndarray: the firing rate """ binary = np.zeros(int(np.round(duration/dt))) indices = np.asarray(np.round(spikes / dt), dtype=np.int) binary[indices[indices < len(binary)]] = 1 kernel = gaussKernel(sigma, dt) rate = np.convolve(kernel, binary, mode="same") return rate