import glob import os import nixio as nix import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from matplotlib.collections import PatchCollection from matplotlib.patches import ConnectionPatch from nix_util import sort_blocks, read_baseline, get_signals from util import despine figure_folder = "figures" data_folder = "data" def plot_comparisons(current_df=20): files = sorted(glob.glob(os.path.join(data_folder, "*.nix"))) if len(files) < 1: print("plot comparisons: no data found!") return filename = files[0] nf = nix.File.open(filename, nix.FileMode.ReadOnly) block_map, all_contrasts, _, all_conditions = sort_blocks(nf) conditions = ["no-other", "self", "other"] min_time = 0.5 max_time = min_time + 0.5 fig = plt.figure(figsize=(6.5, 2.)) fig_grid = (3, len(all_conditions)*3+2) axes = [] for i, condition in enumerate(conditions): # plot the signals block = block_map[(all_contrasts[0], current_df, condition)] _, self_freq, other_freq, time = get_signals(block) self_eodf = block.metadata["stimulus parameter"]["eodfs"]["self"] other_eodf = block.metadata["stimulus parameter"]["eodfs"]["other"] # plot frequency traces ax = plt.subplot2grid(fig_grid, (0, i * 3 + i), rowspan=2, colspan=3, fig=fig) ax.plot(time[(time > min_time) & (time < max_time)], self_freq[(time > min_time) & (time < max_time)], color="#ff7f0e", label="%iHz" % self_eodf) ax.text(min_time-0.05, self_eodf, "%iHz" % self_eodf, color="#ff7f0e", va="center", ha="right", fontsize=9) if other_freq is not None: ax.plot(time[(time > min_time) & (time < max_time)], other_freq[(time > min_time) & (time < max_time)], color="#1f77b4", label="%iHz" % other_eodf) ax.text(min_time-0.05, other_eodf, "%iHz" % other_eodf, color="#1f77b4", va="center", ha="right", fontsize=9) # ax.set_title(condition_labels[i]) ax.set_ylim([735, 885]) despine(ax, ["top", "bottom", "left", "right"], True) axes.append(ax) rects = [] rect = Rectangle((0.675, 740), 0.098, 140) rects.append(rect) rect = Rectangle((0.57, 740), 0.098, 140) rects.append(rect) pc = PatchCollection(rects, facecolor=None, alpha=0.15, edgecolor="k", ls="--") axes[0].add_collection(pc) rects = [] rect = Rectangle((0.675, 740), 0.098, 140) rects.append(rect) rect = Rectangle((0.575, 740), 0.098, 140) rects.append(rect) pc = PatchCollection(rects, facecolor=None, alpha=0.15, edgecolor="k", ls="--") axes[1].add_collection(pc) rects = [] rect = Rectangle((0.57, 740), 0.098, 140) rects.append(rect) pc = PatchCollection(rects, facecolor=None, alpha=0.15, edgecolor="k", ls="--") axes[2].add_collection(pc) con = ConnectionPatch(xyA=(0.625, 735), xyB=(0.625, 740), coordsA="data", coordsB="data", axesA=axes[0], axesB=axes[1], arrowstyle="<->", shrinkB=5, connectionstyle="arc3,rad=.35") axes[1].add_artist(con) con = ConnectionPatch(xyA=(0.725, 885), xyB=(0.725, 880), coordsA="data", coordsB="data", axesA=axes[0], axesB=axes[1], arrowstyle="<->", shrinkB=5, connectionstyle="arc3,rad=-.25") axes[1].add_artist(con) con = ConnectionPatch(xyA=(0.725, 735), xyB=(0.625, 740), coordsA="data", coordsB="data", axesA=axes[1], axesB=axes[2], arrowstyle="<->", shrinkB=5, connectionstyle="arc3,rad=.35") axes[1].add_artist(con) axes[0].text(1., 660, "2.") axes[1].text(1.05, 660, "3.") axes[0].text(1.1, 890, "1.") fig.subplots_adjust(bottom=0.1, top=0.8, left=0.1, right=0.9) fig.savefig(os.path.join(figure_folder, "comparisons.pdf")) plt.close() nf.close() def create_response_plot(filename, current_df=20, figure_name=None): files = sorted(glob.glob(os.path.join(data_folder, "*.nix"))) if len(files) < 1: print("plot comparisons: no data found!") return filename = files[0] nf = nix.File.open(filename, nix.FileMode.ReadOnly) block_map, all_contrasts, _, all_conditions = sort_blocks(nf) conditions = ["no-other", "self", "other"] condition_labels = ["soliloquy", "self chirping", "other chirping"] min_time = 0.5 max_time = min_time + 0.5 fig = plt.figure(figsize=(6.5, 5.5)) fig_grid = (len(all_contrasts)*2 + 6, len(all_conditions)*3+2) all_contrasts = sorted(all_contrasts, reverse=True) for i, condition in enumerate(conditions): # plot the signals block = block_map[(all_contrasts[0], current_df, condition)] signal, self_freq, other_freq, time = get_signals(block) am = extract_am(signal) self_eodf = block.metadata["stimulus parameter"]["eodfs"]["self"] other_eodf = block.metadata["stimulus parameter"]["eodfs"]["other"] # plot frequency traces ax = plt.subplot2grid(fig_grid, (0, i * 3 + i), rowspan=2, colspan=3, fig=fig) ax.plot(time[(time > min_time) & (time < max_time)], self_freq[(time > min_time) & (time < max_time)], color="#ff7f0e", label="%iHz" % self_eodf) ax.text(min_time-0.05, self_eodf, "%iHz" % self_eodf, color="#ff7f0e", va="center", ha="right", fontsize=9) if other_freq is not None: ax.plot(time[(time > min_time) & (time < max_time)], other_freq[(time > min_time) & (time < max_time)], color="#1f77b4", label="%iHz" % other_eodf) ax.text(min_time-0.05, other_eodf, "%iHz" % other_eodf, color="#1f77b4", va="center", ha="right", fontsize=9) ax.set_title(condition_labels[i]) despine(ax, ["top", "bottom", "left", "right"], True) # plot the am ax = plt.subplot2grid(fig_grid, (3, i * 3 + i), rowspan=2, colspan=3, fig=fig) ax.plot(time[(time > min_time) & (time < max_time)], signal[(time > min_time) & (time < max_time)], color="#2ca02c", label="signal") ax.plot(time[(time > min_time) & (time < max_time)], am[(time > min_time) & (time < max_time)], color="#d62728", label="am") despine(ax, ["top", "bottom", "left", "right"], True) ax.set_ylim([-1.25, 1.25]) ax.legend(ncol=2, loc=(0.01, -0.5), fontsize=7, markerscale=0.5, frameon=False) # for each contrast plot the firing rate for j, contrast in enumerate(all_contrasts): t, rates, _ = get_firing_rate(block_map, current_df, contrast, condition) avg_resp = np.mean(rates, axis=0) error = np.std(rates, axis=0) ax = plt.subplot2grid(fig_grid, (j*2 + 6, i * 3 + i), rowspan=2, colspan=3) ax.plot(t[(t > min_time) & (t < max_time)], avg_resp[(t > min_time) & (t < max_time)], color="k", lw=0.5) ax.fill_between(t[(t > min_time) & (t < max_time)], (avg_resp - error)[(t > min_time) & (t < max_time)], (avg_resp + error)[(t > min_time) & (t < max_time)], color="k", lw=0.0, alpha=0.25) ax.set_ylim([0, 750]) ax.set_xlabel("") ax.set_ylabel("") ax.set_xticks(np.arange(min_time, max_time+.01, 0.250)) ax.set_xticklabels(map(int, (np.arange(min_time, max_time + .01, 0.250) - min_time) * 1000)) ax.set_xticks(np.arange(min_time, max_time+.01, 0.125), minor=True) if j < len(all_contrasts) -1: ax.set_xticklabels([]) ax.set_yticks(np.arange(0.0, 751., 500)) ax.set_yticks(np.arange(0.0, 751., 125), minor=True) if i > 0: ax.set_yticklabels([]) despine(ax, ["top", "right"], False) if i == 2: ax.text(max_time + 0.025*max_time, 350, "c=%.3f" % all_contrasts[j], color="#d62728", ha="left", fontsize=7) if i == 1: ax.set_xlabel("time [ms]") if i == 0: ax.set_ylabel("frequency [Hz]", va="center") ax.yaxis.set_label_coords(-0.45, 3.5) name = figure_name if figure_name is not None else "chirp_responses.pdf" name = (name + ".pdf") if ".pdf" not in name else name plt.savefig(os.path.join(figure_folder, name)) plt.close() nf.close() def response_examples(*kwargs): if filename in kwargs: #fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_20Hz.pdf" #create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, 20, figure_name=fig_name) #fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_-100Hz.pdf" #create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, -100, figure_name=fig_name) def main(task=None, parameter={}): plot_tasks = {"comparisons": plot_comparisons, "response_examples": create_response_plot} if task is not None and task in plot_tasks.keys(): plot_tasks[task](*parameter) elif task is None: for t in plot_tasks.keys(): plot_tasks[t](*parameter) if __name__ == "__main__": main("comparisons") def plot_examples(filename, dfs=[], contrasts=[], conditions=[]): # plot the responses #fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_20Hz.pdf" #create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, 20, figure_name=fig_name) #fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_-100Hz.pdf" #create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, -100, figure_name=fig_name) # sketch showing the comparisons #plot_comparisons(block_map, all_dfs, all_contrasts, all_conditions, 20) # plot the discrimination analyses #cell_name = filename.split(os.path.sep)[-1].split(".nix")[0] # results = foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=20, # cell_name=cell_name, store_roc=True) # pdf = pd.DataFrame(results) # plot_detection_results(pdf, 20, 0.001, cell_name) #nf.close() pass