extract despine method progress with response plot
This commit is contained in:
parent
fa3f3f8ab2
commit
dde8bd842d
17
chirp_ams.py
17
chirp_ams.py
@ -3,22 +3,7 @@ import scipy.signal as sig
|
|||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
from chirp_stimulation import create_chirp
|
from chirp_stimulation import create_chirp
|
||||||
from IPython import embed
|
from util import despine
|
||||||
|
|
||||||
def despine(axis, spines=None, hide_ticks=True):
|
|
||||||
|
|
||||||
def hide_spine(spine):
|
|
||||||
spine.set_visible(False)
|
|
||||||
|
|
||||||
for spine in axis.spines.keys():
|
|
||||||
if spines is not None:
|
|
||||||
if spine in spines:
|
|
||||||
hide_spine(axis.spines[spine])
|
|
||||||
else:
|
|
||||||
hide_spine(axis.spines[spine])
|
|
||||||
if hide_ticks:
|
|
||||||
axis.xaxis.set_ticks([])
|
|
||||||
axis.yaxis.set_ticks([])
|
|
||||||
|
|
||||||
|
|
||||||
def get_signals(eodfs, condition, contrast, chirp_size, chirp_duration, chirp_amplitude_dip,
|
def get_signals(eodfs, condition, contrast, chirp_size, chirp_duration, chirp_amplitude_dip,
|
||||||
|
@ -39,7 +39,7 @@ def save(filename, name, stimulus_settings, model_settings, self_signal, other_s
|
|||||||
b.metadata = mdata
|
b.metadata = mdata
|
||||||
|
|
||||||
# save stimulus
|
# save stimulus
|
||||||
stim_da = b.create_data_array("complete_stimulus", "nix.timeseries.sampled", dtype=nix.DataType.Float,
|
stim_da = b.create_data_array("complete stimulus", "nix.timeseries.sampled.stimulus", dtype=nix.DataType.Float,
|
||||||
data=complete_stimulus)
|
data=complete_stimulus)
|
||||||
stim_da.label = "voltage"
|
stim_da.label = "voltage"
|
||||||
stim_da.label = "mV/cm"
|
stim_da.label = "mV/cm"
|
||||||
@ -49,7 +49,7 @@ def save(filename, name, stimulus_settings, model_settings, self_signal, other_s
|
|||||||
|
|
||||||
self_freq_da = None
|
self_freq_da = None
|
||||||
if self_freq is not None:
|
if self_freq is not None:
|
||||||
self_freq_da = b.create_data_array("self frequency", "nix.timeseries.sampled", dtype=nix.DataType.Float,
|
self_freq_da = b.create_data_array("self frequency", "nix.timeseries.sampled.frequency", dtype=nix.DataType.Float,
|
||||||
data=self_freq)
|
data=self_freq)
|
||||||
self_freq_da.label = "frequency"
|
self_freq_da.label = "frequency"
|
||||||
self_freq_da.label = "Hz"
|
self_freq_da.label = "Hz"
|
||||||
@ -169,7 +169,8 @@ def simulate_responses(stimulus_params, model_params, repeats=10, deltaf=20):
|
|||||||
if condition == "self":
|
if condition == "self":
|
||||||
v_0 = np.random.rand(1)[0]
|
v_0 = np.random.rand(1)[0]
|
||||||
cell_params["v_zero"] = v_0
|
cell_params["v_zero"] = v_0
|
||||||
no_other_spikes.append(simulate(np.hstack((pre_stim, self_signal)), **cell_params))
|
sp = simulate(np.hstack((pre_stim, self_signal)), **cell_params)
|
||||||
|
no_other_spikes.append(sp[sp > pre_time[-1]] - pre_time[-1])
|
||||||
if condition == "self":
|
if condition == "self":
|
||||||
name = "contrast_%.3f_condition_no-other_deltaf_%i" %(contrast, deltaf)
|
name = "contrast_%.3f_condition_no-other_deltaf_%i" %(contrast, deltaf)
|
||||||
save(filename, name, params, cell_params, self_signal, None, self_freq, None, self_signal, no_other_spikes)
|
save(filename, name, params, cell_params, self_signal, None, self_freq, None, self_signal, no_other_spikes)
|
||||||
|
@ -4,7 +4,7 @@ import nixio as nix
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
from util import firing_rate
|
from util import firing_rate, despine
|
||||||
|
|
||||||
from IPython import embed
|
from IPython import embed
|
||||||
|
|
||||||
@ -42,8 +42,9 @@ def sort_blocks(nix_file):
|
|||||||
|
|
||||||
def get_firing_rate(block_map, df, contrast, condition, kernel_width=0.0005):
|
def get_firing_rate(block_map, df, contrast, condition, kernel_width=0.0005):
|
||||||
block = block_map[(contrast, df, condition)]
|
block = block_map[(contrast, df, condition)]
|
||||||
print((contrast, df, condition))
|
print(block.name)
|
||||||
response_map = {}
|
response_map = {}
|
||||||
|
spikes = []
|
||||||
for da in block.data_arrays:
|
for da in block.data_arrays:
|
||||||
if "spike_times" in da.type and "response" in da.name:
|
if "spike_times" in da.type and "response" in da.name:
|
||||||
resp_id = int(da.name.split("_")[-1])
|
resp_id = int(da.name.split("_")[-1])
|
||||||
@ -53,18 +54,81 @@ def get_firing_rate(block_map, df, contrast, condition, kernel_width=0.0005):
|
|||||||
time = np.arange(0.0, duration, dt)
|
time = np.arange(0.0, duration, dt)
|
||||||
rates = np.zeros((len(response_map.keys()), len(time)))
|
rates = np.zeros((len(response_map.keys()), len(time)))
|
||||||
for i, k in enumerate(response_map.keys()):
|
for i, k in enumerate(response_map.keys()):
|
||||||
rates[i,:] = firing_rate(response_map[k][:], duration, kernel_width, dt)
|
spikes.append(response_map[k][:])
|
||||||
return time, rates
|
rates[i,:] = firing_rate(spikes[-1], duration, kernel_width, dt)
|
||||||
|
return time, rates, spikes
|
||||||
|
|
||||||
|
|
||||||
|
def get_signals(block):
|
||||||
|
print(block.name)
|
||||||
|
self_freq = None
|
||||||
|
other_freq = None
|
||||||
|
signal = None
|
||||||
|
time = None
|
||||||
|
if "complete stimulus" not in block.data_arrays or "self frequency" not in block.data_arrays:
|
||||||
|
raise ValueError("Signals not stored in block!")
|
||||||
|
if "no-other" not in block.name and "other frequency" not in block.data_arrays:
|
||||||
|
raise ValueError("Signals not stored in block!")
|
||||||
|
|
||||||
|
signal = block.data_arrays["complete stimulus"][:]
|
||||||
|
time = np.asarray(block.data_arrays["complete stimulus"].dimensions[0].axis(len(signal)))
|
||||||
|
self_freq = block.data_arrays["self frequency"][:]
|
||||||
|
if "no-other" not in block.name:
|
||||||
|
other_freq = block.data_arrays["other frequency"][:]
|
||||||
|
return signal, self_freq, other_freq, time
|
||||||
|
|
||||||
|
|
||||||
def create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, current_df):
|
def create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, current_df):
|
||||||
conditions = ["no-other", "self", "other"]
|
conditions = ["no-other", "self", "other"]
|
||||||
condition_labels = ["alone", "self", "other"]
|
condition_labels = ["alone", "self", "other"]
|
||||||
|
max_time = 0.5
|
||||||
fig = plt.figure(figsize=(4.5, 5.5))
|
|
||||||
|
fig = plt.figure(figsize=(6.5, 5.5))
|
||||||
|
fig_grid = (len(all_contrasts) + 1, len(all_conditions)*3+2)
|
||||||
|
all_contrasts = sorted(all_contrasts, reverse=True)
|
||||||
|
|
||||||
|
for i, condition in enumerate(conditions):
|
||||||
|
# plot the signals
|
||||||
|
block = block_map[(all_contrasts[0], current_df, condition)]
|
||||||
|
_, self_freq, other_freq, time = get_signals(block)
|
||||||
|
self_eodf = block.metadata["stimulus parameter"]["eodfs"]["self"]
|
||||||
|
other_eodf = block.metadata["stimulus parameter"]["eodfs"]["other"]
|
||||||
|
|
||||||
|
ax = plt.subplot2grid(fig_grid, (0, i * 3 + i), rowspan=1, colspan=3, fig=fig)
|
||||||
|
ax.plot(time[time < max_time], self_freq[time < max_time], color="#ff7f0e", label="%iHz" % self_eodf)
|
||||||
|
ax.text(-0.05, self_eodf, "%iHz" % self_eodf, color="#ff7f0e", va="center", ha="right", fontsize=9)
|
||||||
|
if other_freq is not None:
|
||||||
|
ax.plot(time[time < max_time], other_freq[time < max_time], color="#1f77b4", label="%iHz" % other_eodf)
|
||||||
|
ax.text(-0.05, other_eodf, "%iHz" % other_eodf, color="#1f77b4", va="center", ha="right", fontsize=9)
|
||||||
|
ax.set_title(condition_labels[i])
|
||||||
|
despine(ax, ["top", "bottom", "left", "right"], True)
|
||||||
|
|
||||||
|
# for the largest contrast plot the raster with psth, only a section of the data (e.g. 1s)
|
||||||
|
t, rates, spikes = get_firing_rate(block_map, current_df, all_contrasts[0], condition, kernel_width=0.001)
|
||||||
|
avg_resp = np.mean(rates, axis=0)
|
||||||
|
error = np.std(rates, axis=0)
|
||||||
|
|
||||||
|
ax = plt.subplot2grid(fig_grid, (1, i * 3 + i), rowspan=1, colspan=3)
|
||||||
|
ax.plot(t[t < max_time], avg_resp[t < max_time], color="k", lw=0.5)
|
||||||
|
ax.fill_between(t[t < max_time], (avg_resp - error)[t < max_time], (avg_resp + error)[t < max_time], color="k", lw=None, alpha=0.25)
|
||||||
|
despine(ax, ["top", "right"], False)
|
||||||
|
|
||||||
|
# for all other contrast plot the firing rate alone
|
||||||
|
for j in range(1, len(all_contrasts)):
|
||||||
|
contrast = all_contrasts[j]
|
||||||
|
t, rates, _ = get_firing_rate(block_map, current_df, contrast, condition)
|
||||||
|
avg_resp = np.mean(rates, axis=0)
|
||||||
|
error = np.std(rates, axis=0)
|
||||||
|
ax = plt.subplot2grid(fig_grid, (j+1, i * 3 + i), rowspan=1, colspan=3)
|
||||||
|
ax.plot(t[t < max_time], avg_resp[t < max_time], color="k", lw=0.5)
|
||||||
|
#ax.fill_between(t[t < max_time], (avg_resp - error)[t < max_time], (avg_resp + error)[t < max_time], color="k", lw=None, alpha=0.25)
|
||||||
|
despine(ax, ["top", "right"], False)
|
||||||
|
|
||||||
|
plt.savefig("chirp_responses.pdf")
|
||||||
|
plt.close()
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
embed()
|
|
||||||
|
|
||||||
|
|
||||||
def process_cell(filename, dfs=[], contrasts=[], conditions=[]):
|
def process_cell(filename, dfs=[], contrasts=[], conditions=[]):
|
||||||
@ -75,7 +139,7 @@ def process_cell(filename, dfs=[], contrasts=[], conditions=[]):
|
|||||||
else:
|
else:
|
||||||
print("ERROR: no baseline data for file %s!" % filename)
|
print("ERROR: no baseline data for file %s!" % filename)
|
||||||
|
|
||||||
|
create_response_plot(block_map, all_contrasts, all_dfs, all_conditions, 20)
|
||||||
"""
|
"""
|
||||||
if len(dfs) == 0:
|
if len(dfs) == 0:
|
||||||
dfs = all_dfs
|
dfs = all_dfs
|
||||||
|
16
util.py
16
util.py
@ -1,5 +1,21 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
def despine(axis, spines=None, hide_ticks=True):
|
||||||
|
|
||||||
|
def hide_spine(spine):
|
||||||
|
spine.set_visible(False)
|
||||||
|
|
||||||
|
for spine in axis.spines.keys():
|
||||||
|
if spines is not None:
|
||||||
|
if spine in spines:
|
||||||
|
hide_spine(axis.spines[spine])
|
||||||
|
else:
|
||||||
|
hide_spine(axis.spines[spine])
|
||||||
|
if hide_ticks:
|
||||||
|
axis.xaxis.set_ticks([])
|
||||||
|
axis.yaxis.set_ticks([])
|
||||||
|
|
||||||
|
|
||||||
def gaussKernel(sigma, dt):
|
def gaussKernel(sigma, dt):
|
||||||
""" Creates a Gaussian kernel with a given standard deviation and an integral of 1.
|
""" Creates a Gaussian kernel with a given standard deviation and an integral of 1.
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user