add chirpsize to the loops
This commit is contained in:
parent
0435b91e97
commit
814e223134
@ -57,3 +57,5 @@ Won't do, this is trivial?!
|
|||||||
* Raab et al show this is also the case with rises.
|
* Raab et al show this is also the case with rises.
|
||||||
* Check role of AFRs and rises in Tallarovic et al, Hupe et al.
|
* Check role of AFRs and rises in Tallarovic et al, Hupe et al.
|
||||||
* we actually do not observe chirps without stimulation
|
* we actually do not observe chirps without stimulation
|
||||||
|
|
||||||
|
### correlated discrimunation results with different cell characteristics.
|
||||||
|
@ -14,6 +14,7 @@ def sort_blocks(nix_file):
|
|||||||
block_map = {}
|
block_map = {}
|
||||||
contrasts = []
|
contrasts = []
|
||||||
deltafs = []
|
deltafs = []
|
||||||
|
chirp_sizes = []
|
||||||
conditions = []
|
conditions = []
|
||||||
for b in nix_file.blocks:
|
for b in nix_file.blocks:
|
||||||
if "baseline" not in b.name.lower():
|
if "baseline" not in b.name.lower():
|
||||||
@ -27,10 +28,14 @@ def sort_blocks(nix_file):
|
|||||||
dltf = float(name_parts[5])
|
dltf = float(name_parts[5])
|
||||||
if dltf not in deltafs:
|
if dltf not in deltafs:
|
||||||
deltafs.append(dltf)
|
deltafs.append(dltf)
|
||||||
block_map[(cntrst, dltf, cndtn)] = b
|
chirpsize = int(name_parts[7])
|
||||||
|
if chirpsize not in chirp_sizes:
|
||||||
|
chirp_sizes.append(chirpsize)
|
||||||
|
|
||||||
|
block_map[(cntrst, dltf, chirpsize, cndtn)] = b
|
||||||
else:
|
else:
|
||||||
block_map["baseline"] = b
|
block_map["baseline"] = b
|
||||||
return block_map, contrasts, deltafs, conditions
|
return block_map, contrasts, deltafs, chirp_sizes, conditions
|
||||||
|
|
||||||
|
|
||||||
def get_spikes(block):
|
def get_spikes(block):
|
||||||
|
2
plots.py
2
plots.py
@ -308,7 +308,7 @@ def performance_plot(args):
|
|||||||
errors[i] = np.std(df.auc[(df.kernel_width == kernel_width) & (df.contrast == c) & (df.df == d) & (df.detection_task == t)])
|
errors[i] = np.std(df.auc[(df.kernel_width == kernel_width) & (df.contrast == c) & (df.df == d) & (df.detection_task == t)])
|
||||||
df_ax.errorbar(dfs, performances, yerr=errors, fmt=".-", label="%.2f" % c)
|
df_ax.errorbar(dfs, performances, yerr=errors, fmt=".-", label="%.2f" % c)
|
||||||
df_ax.set_ylim([0.25, 1.0])
|
df_ax.set_ylim([0.25, 1.0])
|
||||||
df_ax.set_ylabel("performance", fontsize=8)
|
df_ax.set_ylabel("performance", fontsize=8, rotation=180)
|
||||||
df_ax.set_xlabel(r"$\Delta_f$ [Hz]", fontsize=8)
|
df_ax.set_xlabel(r"$\Delta_f$ [Hz]", fontsize=8)
|
||||||
df_ax.hlines(0.5, dfs[0], dfs[-1], color="k", ls="--", lw=0.2)
|
df_ax.hlines(0.5, dfs[0], dfs[-1], color="k", ls="--", lw=0.2)
|
||||||
df_ax.legend(fontsize=7, ncol=4, frameon=False, loc="lower center", mode="expand", handlelength=1.0, handletextpad=0.25)
|
df_ax.legend(fontsize=7, ncol=4, frameon=False, loc="lower center", mode="expand", handlelength=1.0, handletextpad=0.25)
|
||||||
|
@ -149,7 +149,7 @@ def simulate_responses(stimulus_params, model_params, repeats=10, deltaf=20):
|
|||||||
del cell_params["cell"]
|
del cell_params["cell"]
|
||||||
del cell_params["EODf"]
|
del cell_params["EODf"]
|
||||||
conditions = ["other", "self"]
|
conditions = ["other", "self"]
|
||||||
|
chirp_size = stimulus_params["chirp_size"]
|
||||||
pre_time, pre_stim = get_pre_stimulus(stimulus_params["eodfs"]["self"], dt=model_params["deltat"])
|
pre_time, pre_stim = get_pre_stimulus(stimulus_params["eodfs"]["self"], dt=model_params["deltat"])
|
||||||
for contrast in stimulus_params["contrasts"]:
|
for contrast in stimulus_params["contrasts"]:
|
||||||
params = stimulus_params.copy()
|
params = stimulus_params.copy()
|
||||||
@ -159,7 +159,7 @@ def simulate_responses(stimulus_params, model_params, repeats=10, deltaf=20):
|
|||||||
|
|
||||||
for condition in conditions:
|
for condition in conditions:
|
||||||
print("\tcontrast: %s, condition: %s" %(contrast, condition), " "*10, end="\r")
|
print("\tcontrast: %s, condition: %s" %(contrast, condition), " "*10, end="\r")
|
||||||
block_name = "contrast_%.3f_condition_%s_deltaf_%i" %(contrast, condition, deltaf)
|
block_name = "contrast_%.3f_condition_%s_deltaf_%i_chirpsize_%i" %(contrast, condition, deltaf, chirp_size)
|
||||||
params["condition"] = condition
|
params["condition"] = condition
|
||||||
time, self_signal, self_freq, other_signal, other_freq = get_signals(**params)
|
time, self_signal, self_freq, other_signal, other_freq = get_signals(**params)
|
||||||
full_signal = (self_signal + other_signal)
|
full_signal = (self_signal + other_signal)
|
||||||
@ -177,7 +177,7 @@ def simulate_responses(stimulus_params, model_params, repeats=10, deltaf=20):
|
|||||||
sp = simulate(np.hstack((pre_stim, self_signal)), **cell_params)
|
sp = simulate(np.hstack((pre_stim, self_signal)), **cell_params)
|
||||||
no_other_spikes.append(sp[sp > pre_time[-1]] - pre_time[-1])
|
no_other_spikes.append(sp[sp > pre_time[-1]] - pre_time[-1])
|
||||||
if condition == "self":
|
if condition == "self":
|
||||||
name = "contrast_%.3f_condition_no-other_deltaf_%i" %(contrast, deltaf)
|
name = "contrast_%.3f_condition_no-other_deltaf_%i_chirpsize_%i" %(contrast, deltaf, chirp_size)
|
||||||
save(filename, name, params, cell_params, self_signal, None, self_freq, None, self_signal, no_other_spikes)
|
save(filename, name, params, cell_params, self_signal, None, self_freq, None, self_signal, no_other_spikes)
|
||||||
save(filename, block_name, params, cell_params, self_signal, other_signal, self_freq, other_freq, full_signal, spikes)
|
save(filename, block_name, params, cell_params, self_signal, other_signal, self_freq, other_freq, full_signal, spikes)
|
||||||
print("\n")
|
print("\n")
|
||||||
@ -185,6 +185,7 @@ def simulate_responses(stimulus_params, model_params, repeats=10, deltaf=20):
|
|||||||
|
|
||||||
def simulate_cell(cell_id, models):
|
def simulate_cell(cell_id, models):
|
||||||
deltafs = [-200, -100, -50, -20, -10, -5, 5, 10, 20, 50, 100, 200] # Hz, difference frequency between self and other
|
deltafs = [-200, -100, -50, -20, -10, -5, 5, 10, 20, 50, 100, 200] # Hz, difference frequency between self and other
|
||||||
|
chirp_sizes = [40, 60, 100]
|
||||||
stimulus_params = { "eodfs": {"self": 0.0, "other": 0.0}, # eod frequency in Hz, to be overwritten
|
stimulus_params = { "eodfs": {"self": 0.0, "other": 0.0}, # eod frequency in Hz, to be overwritten
|
||||||
"contrasts": [20, 10, 5, 2.5, 1.25, 0.625, 0.3125],
|
"contrasts": [20, 10, 5, 2.5, 1.25, 0.625, 0.3125],
|
||||||
"chirp_size": 100, # Hz, frequency excursion
|
"chirp_size": 100, # Hz, frequency excursion
|
||||||
@ -200,9 +201,11 @@ def simulate_cell(cell_id, models):
|
|||||||
save_baseline_response(filename, "baseline response", baseline_spikes, model_params)
|
save_baseline_response(filename, "baseline response", baseline_spikes, model_params)
|
||||||
|
|
||||||
print("Cell: %s" % model_params["cell"])
|
print("Cell: %s" % model_params["cell"])
|
||||||
|
for cs in chirp_sizes:
|
||||||
for deltaf in deltafs:
|
for deltaf in deltafs:
|
||||||
stimulus_params["eodfs"] = {"self": model_params["EODf"], "other": model_params["EODf"] + deltaf}
|
stimulus_params["eodfs"] = {"self": model_params["EODf"], "other": model_params["EODf"] + deltaf}
|
||||||
stimulus_params["dt"] = model_params["deltat"]
|
stimulus_params["dt"] = model_params["deltat"]
|
||||||
|
stimulus_params["chirp_size"] = cs
|
||||||
|
|
||||||
print("\t Deltaf: %i" % deltaf)
|
print("\t Deltaf: %i" % deltaf)
|
||||||
chirp_times = np.arange(stimulus_params["chirp_duration"],
|
chirp_times = np.arange(stimulus_params["chirp_duration"],
|
||||||
@ -216,7 +219,7 @@ def main():
|
|||||||
models = load_models("models.csv")
|
models = load_models("models.csv")
|
||||||
num_cores = multiprocessing.cpu_count() - 6
|
num_cores = multiprocessing.cpu_count() - 6
|
||||||
|
|
||||||
Parallel(n_jobs=num_cores)(delayed(simulate_cell)(cell_id, models) for cell_id in range(len(models[:10])))
|
Parallel(n_jobs=num_cores)(delayed(simulate_cell)(cell_id, models) for cell_id in range(len(models[:20])))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
@ -60,17 +60,32 @@ def get_firing_rate(block_map, df, contrast, condition, kernel_width=0.0005):
|
|||||||
return time, rates, spikes
|
return time, rates, spikes
|
||||||
|
|
||||||
|
|
||||||
|
def foreign_fish_detection_beat(block_map, df, cs, all_contrasts, all_conditions, kernel_width=0.0005, cell_name="", store_roc=False):
|
||||||
|
"""Tries to detect the presence of a foreign fish by estimating the discriminability of the responses during the beat
|
||||||
|
versus the responses without another fish beeing there, i.e. the baseline activity.
|
||||||
|
|
||||||
|
Applies a ROC analysis to the response segments between chirps. Calculates a) the distances between the baseline responses and
|
||||||
|
b) distances between the baseline and beat responses. Tests whether distances in b) are larger than a)
|
||||||
|
Args:
|
||||||
|
block_map ([type]): maps nix blocks to combination of stimulus parameters
|
||||||
|
df ([type]): the difference frequency that should be used
|
||||||
|
cs ([type]): ths chirpsize that should be used
|
||||||
|
all_contrasts ([type]): list of all used contrasts
|
||||||
|
all_conditions ([type]): list of all chirp conditions, i.e. self, other, or no-other
|
||||||
|
kernel_width (float, optional): std of Gaussian kernel. Defaults to 0.0005.
|
||||||
|
cell_name (str, optional): name of the cell. Defaults to "".
|
||||||
|
store_roc (bool, optional): if true the full false positives and true positives will be returned leads to huge file sizes!. Defaults to False.
|
||||||
|
|
||||||
|
Returns:
|
||||||
def foreign_fish_detection_beat(block_map, df, all_contrasts, all_conditions, kernel_width=0.0005, cell_name="", store_roc=False):
|
list of dictionaries: the results, auc is the area under the curve, i.e. the discrimination performance in the range [0, 1]. The 'detection_task' is 'beat'
|
||||||
|
"""
|
||||||
detection_performances = []
|
detection_performances = []
|
||||||
|
|
||||||
for contrast in all_contrasts:
|
for contrast in all_contrasts:
|
||||||
print(" " * 50, end="\r")
|
print(" " * 50, end="\r")
|
||||||
print("Contrast: %.3f" % contrast, end="\r")
|
print("Contrast: %.3f" % contrast, end="\r")
|
||||||
no_other_block = block_map[(contrast, df, "no-other")]
|
no_other_block = block_map[(contrast, df, cs, "no-other")]
|
||||||
self_block = block_map[(contrast, df, "self")]
|
self_block = block_map[(contrast, df, cs, "self")]
|
||||||
|
|
||||||
# get some metadata assuming they are all the same for each condition, which they should
|
# get some metadata assuming they are all the same for each condition, which they should
|
||||||
duration, dt, _, chirp_duration, chirp_times = get_chirp_metadata(self_block)
|
duration, dt, _, chirp_duration, chirp_times = get_chirp_metadata(self_block)
|
||||||
@ -112,25 +127,52 @@ def foreign_fish_detection_beat(block_map, df, all_contrasts, all_conditions, ke
|
|||||||
|
|
||||||
group = np.hstack((temp1, temp2))
|
group = np.hstack((temp1, temp2))
|
||||||
score = np.hstack((valid_distances_baseline, valid_distances_comparison))
|
score = np.hstack((valid_distances_baseline, valid_distances_comparison))
|
||||||
fpr, tpr, _ = roc_curve(group, score, pos_label=1)
|
|
||||||
auc = roc_auc_score(group, score)
|
auc = roc_auc_score(group, score)
|
||||||
if store_roc:
|
if store_roc:
|
||||||
detection_performances.append({"cell": cell_name, "detection_task": "beat", "contrast": contrast, "df": df, "kernel_width": kernel_width, "auc": auc, "true_positives": tpr, "false_positives": fpr})
|
fpr, tpr, _ = roc_curve(group, score, pos_label=1)
|
||||||
|
detection_performances.append({"cell": cell_name, "detection_task": "beat", "contrast": contrast, "df": df, "kernel_width": kernel_width, "chirpsize": cs, "auc": auc, "true_positives": tpr, "false_positives": fpr})
|
||||||
else:
|
else:
|
||||||
detection_performances.append({"cell": cell_name, "detection_task": "beat", "contrast": contrast, "df": df, "kernel_width": kernel_width, "auc": auc})
|
detection_performances.append({"cell": cell_name, "detection_task": "beat", "contrast": contrast, "df": df, "kernel_width": kernel_width, "chirpsize": cs, "auc": auc})
|
||||||
print("\n")
|
print("\n")
|
||||||
return detection_performances
|
return detection_performances
|
||||||
|
|
||||||
|
|
||||||
def foreign_fish_detection_chirp(block_map, df, all_contrasts, all_conditions, kernel_width=0.0005, cell_name="", store_roc=False):
|
def foreign_fish_detection_chirp(block_map, df, cs, all_contrasts, all_conditions, kernel_width=0.0005, cell_name="", store_roc=False):
|
||||||
|
"""Tries to detect the presence of a foreign fish by estimating the discriminability of the chirp
|
||||||
|
responses in the presence of another fish versus the responses without another fish beeing around.
|
||||||
|
|
||||||
|
Applies a ROC analysis to the response segments containing the chirp. Does two discrimination tests:
|
||||||
|
1) compares the responses to self-chirping alone to the responses to self-chriping in company.
|
||||||
|
2) compares the responess to other-chirping to the response during the beat.
|
||||||
|
|
||||||
|
Tests the assumptions that the distances a) between the self-chriping alone and self-chriping in company
|
||||||
|
are larger than the distances within the the self-chirping alone condition and b) the distances between
|
||||||
|
other-chirping in company and no one is chirping in company (i.e. beat) are larger than the distances
|
||||||
|
within the beat responses.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
block_map ([type]): maps nix blocks to combination of stimulus parameters
|
||||||
|
df ([type]): the difference frequency that should be used
|
||||||
|
cs ([type]): ths chirpsize that should be used
|
||||||
|
all_contrasts ([type]): list of all used contrasts
|
||||||
|
all_conditions ([type]): list of all chirp conditions, i.e. self, other, or no-other
|
||||||
|
kernel_width (float, optional): std of Gaussian kernel. Defaults to 0.0005.
|
||||||
|
cell_name (str, optional): name of the cell. Defaults to "".
|
||||||
|
store_roc (bool, optional): if true the full false positives and true positives will be returned leads to huge file sizes!. Defaults to False.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list of dictionaries: the results, auc is the area under the curve, i.e. the discrimination performance in the range [0, 1].
|
||||||
|
The 'detection_task' is either "self vs soliloquy" for 1) or "other vs quietness" for 2)
|
||||||
|
|
||||||
|
"""
|
||||||
detection_performances = []
|
detection_performances = []
|
||||||
|
|
||||||
for contrast in all_contrasts:
|
for contrast in all_contrasts:
|
||||||
print(" " * 50, end="\r")
|
print(" " * 50, end="\r")
|
||||||
print("Contrast: %.3f" % contrast, end="\r")
|
print("Contrast: %.3f" % contrast, end="\r")
|
||||||
no_other_block = block_map[(contrast, df, "no-other")]
|
no_other_block = block_map[(contrast, df, cs, "no-other")]
|
||||||
self_block = block_map[(contrast, df, "self")]
|
self_block = block_map[(contrast, df, cs, "self")]
|
||||||
other_block = block_map[(contrast, df, "self")]
|
other_block = block_map[(contrast, df, cs, "self")]
|
||||||
|
|
||||||
# get some metadata assuming they are all the same for each condition, which they should
|
# get some metadata assuming they are all the same for each condition, which they should
|
||||||
duration, dt, _, chirp_duration, chirp_times = get_chirp_metadata(self_block)
|
duration, dt, _, chirp_duration, chirp_times = get_chirp_metadata(self_block)
|
||||||
@ -191,54 +233,52 @@ def foreign_fish_detection_chirp(block_map, df, all_contrasts, all_conditions, k
|
|||||||
|
|
||||||
group = np.hstack((no_other_temp, self_vs_alone_temp))
|
group = np.hstack((no_other_temp, self_vs_alone_temp))
|
||||||
score = np.hstack((valid_no_other_distances, valid_self_vs_alone_distances))
|
score = np.hstack((valid_no_other_distances, valid_self_vs_alone_distances))
|
||||||
fpr, tpr, _ = roc_curve(group, score, pos_label=1)
|
|
||||||
auc = roc_auc_score(group, score)
|
auc = roc_auc_score(group, score)
|
||||||
if store_roc:
|
if store_roc:
|
||||||
detection_performances.append({"cell": cell_name, "detection_task": "self vs soliloquy", "contrast": contrast, "df": df, "kernel_width": kernel_width, "auc": auc, "true_positives": tpr, "false_positives": fpr})
|
fpr, tpr, _ = roc_curve(group, score, pos_label=1)
|
||||||
|
detection_performances.append({"cell": cell_name, "detection_task": "self vs soliloquy", "contrast": contrast, "df": df, "kernel_width": kernel_width, "chirpsize": cs, "auc": auc, "true_positives": tpr, "false_positives": fpr})
|
||||||
else:
|
else:
|
||||||
detection_performances.append({"cell": cell_name, "detection_task": "self vs soliloquy", "contrast": contrast, "df": df, "kernel_width": kernel_width, "auc": auc})
|
detection_performances.append({"cell": cell_name, "detection_task": "self vs soliloquy", "contrast": contrast, "df": df, "kernel_width": kernel_width, "chirpsize": cs, "auc": auc})
|
||||||
group = np.hstack((silence_temp, other_vs_silence_temp))
|
group = np.hstack((silence_temp, other_vs_silence_temp))
|
||||||
score = np.hstack((valid_silence_distances, valid_other_vs_silence_distances))
|
score = np.hstack((valid_silence_distances, valid_other_vs_silence_distances))
|
||||||
fpr, tpr, _ = roc_curve(group, score, pos_label=1)
|
|
||||||
auc = roc_auc_score(group, score)
|
auc = roc_auc_score(group, score)
|
||||||
if store_roc:
|
if store_roc:
|
||||||
detection_performances.append({"cell": cell_name, "detection_task": "other vs quietness", "contrast": contrast, "df": df, "kernel_width": kernel_width, "auc": auc, "true_positives": tpr, "false_positives": fpr})
|
fpr, tpr, _ = roc_curve(group, score, pos_label=1)
|
||||||
|
detection_performances.append({"cell": cell_name, "detection_task": "other vs quietness", "contrast": contrast, "df": df, "kernel_width": kernel_width, "chirpsize": cs, "auc": auc, "true_positives": tpr, "false_positives": fpr})
|
||||||
else:
|
else:
|
||||||
detection_performances.append({"cell": cell_name, "detection_task": "other vs quietness", "contrast": contrast, "df": df, "kernel_width": kernel_width, "auc": auc})
|
detection_performances.append({"cell": cell_name, "detection_task": "other vs quietness", "contrast": contrast, "df": df, "kernel_width": kernel_width, "chirpsize": cs, "auc": auc})
|
||||||
|
|
||||||
print("\n")
|
print("\n")
|
||||||
return detection_performances
|
return detection_performances
|
||||||
|
|
||||||
|
|
||||||
def foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=None, cell_name="", store_roc=False):
|
def foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, all_chirpsizes, current_df=None, current_chirpsize=None, cell_name="", store_roc=False):
|
||||||
dfs = [current_df] if current_df is not None else all_dfs
|
dfs = [current_df] if current_df is not None else all_dfs
|
||||||
|
chirp_sizes = [current_chirpsize] if current_chirpsize is not None else all_chirpsizes
|
||||||
kernels = [0.00025, 0.0005, 0.001, 0.0025]
|
kernels = [0.00025, 0.0005, 0.001, 0.0025]
|
||||||
result_dicts = []
|
result_dicts = []
|
||||||
|
for cs in chirp_sizes:
|
||||||
for df in dfs:
|
for df in dfs:
|
||||||
for kw in kernels:
|
for kw in kernels:
|
||||||
print("df: %i, kernel: %.4f" % (df, kw))
|
print("cs: %i Hz, df: %i Hz, kernel: %.4fs" % (cs, df, kw))
|
||||||
print("Foreign fish detection during beat:")
|
print("Foreign fish detection during beat:")
|
||||||
result_dicts.extend(foreign_fish_detection_beat(block_map, df, all_contrasts, all_conditions, kw, cell_name, store_roc))
|
result_dicts.extend(foreign_fish_detection_beat(block_map, df, cs, all_contrasts, all_conditions, kw, cell_name, store_roc))
|
||||||
print("Foreign fish detection during chirp:")
|
print("Foreign fish detection during chirp:")
|
||||||
result_dicts.extend(foreign_fish_detection_chirp(block_map, df, all_contrasts, all_conditions, kw, cell_name, store_roc))
|
result_dicts.extend(foreign_fish_detection_chirp(block_map, df, cs, all_contrasts, all_conditions, kw, cell_name, store_roc))
|
||||||
|
|
||||||
return result_dicts
|
return result_dicts
|
||||||
|
|
||||||
|
|
||||||
def estimate_chirp_phase(am, chirp_times):
|
def process_cell(filename):
|
||||||
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
def process_cell(filename, dfs=[], contrasts=[], conditions=[]):
|
|
||||||
print(filename)
|
print(filename)
|
||||||
nf = nix.File.open(filename, nix.FileMode.ReadOnly)
|
nf = nix.File.open(filename, nix.FileMode.ReadOnly)
|
||||||
block_map, all_contrasts, all_dfs, all_conditions = sort_blocks(nf)
|
block_map, all_contrasts, all_dfs, all_chirpsizes, all_conditions = sort_blocks(nf)
|
||||||
if "baseline" in block_map.keys():
|
if "baseline" in block_map.keys():
|
||||||
baseline_spikes = read_baseline(block_map["baseline"])
|
baseline_spikes = read_baseline(block_map["baseline"])
|
||||||
else:
|
else:
|
||||||
print("ERROR: no baseline data for file %s!" % filename)
|
print("ERROR: no baseline data for file %s!" % filename)
|
||||||
results = foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=None,
|
results = foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, all_chirpsizes,
|
||||||
|
current_df=None, current_chirpsize=None,
|
||||||
cell_name=filename.split(os.path.sep)[-1].split(".nix")[0], store_roc=False)
|
cell_name=filename.split(os.path.sep)[-1].split(".nix")[0], store_roc=False)
|
||||||
nf.close()
|
nf.close()
|
||||||
return results
|
return results
|
||||||
@ -253,7 +293,8 @@ def main():
|
|||||||
for pr in processed_list:
|
for pr in processed_list:
|
||||||
results.extend(pr)
|
results.extend(pr)
|
||||||
df = pd.DataFrame(results)
|
df = pd.DataFrame(results)
|
||||||
df.to_csv(os.path.join(data_folder, "discimination_results.csv"), sep=";")
|
df.to_csv(os.path.join(data_folder, "discimination_results2.csv"), sep=";")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
Loading…
Reference in New Issue
Block a user