diff --git a/.gitignore b/.gitignore
index f1bdbf6..bcc47ed 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,2 +1,4 @@
 .vscode/.ropeproject/config.py
 .vscode/.ropeproject/objectdb
+figures
+data
diff --git a/chirp_ams.py b/chirp_ams.py
index 1ff3170..dbd6c94 100644
--- a/chirp_ams.py
+++ b/chirp_ams.py
@@ -1,3 +1,4 @@
+import os
 import numpy as np 
 import scipy.signal as sig 
 import matplotlib.pyplot as plt
@@ -5,6 +6,8 @@ import matplotlib.pyplot as plt
 from chirp_stimulation import create_chirp
 from util import despine
 
+figure_folder = "figures"
+
 
 def get_signals(eodfs, condition, contrast, chirp_size, chirp_duration, chirp_amplitude_dip,
                 chirp_times, duration, dt):
@@ -107,5 +110,5 @@ if __name__ == "__main__":
 
         
     fig.subplots_adjust(left=0.1, bottom=0.1, top=0.99, right=0.99)
-    plt.savefig("Chirp_induced_ams.pdf")
+    plt.savefig(os.path.join(figure_folder, "Chirp_induced_AMs.pdf"))
     plt.close()
\ No newline at end of file
diff --git a/response_discriminability.py b/response_discriminability.py
index 96eed60..3a4fb66 100644
--- a/response_discriminability.py
+++ b/response_discriminability.py
@@ -2,11 +2,14 @@ import os
 import glob
 import nixio as nix
 import numpy as np
+import scipy.signal as sig 
 import matplotlib.pyplot as plt
+from IPython import embed
 
 from util import firing_rate, despine
+figure_folder = "figures"
+data_folder = "data"
 
-from IPython import embed
 
 def read_baseline(block):
     spikes = []
@@ -42,7 +45,6 @@ def sort_blocks(nix_file):
 
 def get_firing_rate(block_map, df, contrast, condition, kernel_width=0.0005):
     block = block_map[(contrast, df, condition)]
-    print(block.name)
     response_map = {}
     spikes = []
     for da in block.data_arrays:
@@ -60,7 +62,6 @@ def get_firing_rate(block_map, df, contrast, condition, kernel_width=0.0005):
 
 
 def get_signals(block):
-    print(block.name)
     self_freq = None
     other_freq = None
     signal = None
@@ -78,39 +79,79 @@ def get_signals(block):
     return signal, self_freq, other_freq, time
 
 
-def create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, current_df):
+def extract_am(signal):
+    # first add some padding
+    front_pad = np.flip(signal[:int(len(signal)/100)])
+    back_pad = np.flip(signal[-int(len(signal)/100):])
+    padded = np.hstack((front_pad, signal, back_pad))
+    # do the hilbert and take abs
+    am = np.abs(sig.hilbert(padded))
+    am = am[len(front_pad):-len(back_pad)]
+    return am 
+
+
+def create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, current_df, figure_name=None):
     conditions = ["no-other", "self", "other"]
-    condition_labels = ["alone", "self", "other"]
-    max_time = 0.5
+    condition_labels = ["soliloquy", "self chirping", "other chirping"]
+    min_time = 0.5
+    max_time = min_time + 0.5
 
     fig = plt.figure(figsize=(6.5, 5.5))
-    fig_grid = (len(all_contrasts) + 1, len(all_conditions)*3+2)
+    fig_grid = (len(all_contrasts)*2 + 6, len(all_conditions)*3+2)
     all_contrasts = sorted(all_contrasts, reverse=True)
 
     for i, condition in enumerate(conditions):
         # plot the signals
         block = block_map[(all_contrasts[0], current_df, condition)]
-        _, self_freq, other_freq, time = get_signals(block)
+        signal, self_freq, other_freq, time = get_signals(block)
+        am = extract_am(signal)
+        
         self_eodf = block.metadata["stimulus parameter"]["eodfs"]["self"]
         other_eodf = block.metadata["stimulus parameter"]["eodfs"]["other"]
-
-        ax = plt.subplot2grid(fig_grid, (0, i * 3 + i), rowspan=1, colspan=3, fig=fig)
-        ax.plot(time[time < max_time], self_freq[time < max_time], color="#ff7f0e", label="%iHz" % self_eodf)
-        ax.text(-0.05, self_eodf, "%iHz" % self_eodf, color="#ff7f0e", va="center", ha="right", fontsize=9)
+        
+        # plot frequency traces
+        ax = plt.subplot2grid(fig_grid, (0, i * 3 + i), rowspan=2, colspan=3, fig=fig)
+        ax.plot(time[(time > min_time) & (time < max_time)], self_freq[(time > min_time) & (time < max_time)],
+                color="#ff7f0e", label="%iHz" % self_eodf)
+        ax.text(min_time-0.05, self_eodf, "%iHz" % self_eodf, color="#ff7f0e", va="center", ha="right", fontsize=9)
         if other_freq is not None:
-            ax.plot(time[time < max_time], other_freq[time < max_time], color="#1f77b4", label="%iHz" % other_eodf)
-            ax.text(-0.05, other_eodf, "%iHz" % other_eodf, color="#1f77b4", va="center", ha="right", fontsize=9)       
+            ax.plot(time[(time > min_time) & (time < max_time)], other_freq[(time > min_time) & (time < max_time)],
+                    color="#1f77b4", label="%iHz" % other_eodf)
+            ax.text(min_time-0.05, other_eodf, "%iHz" % other_eodf, color="#1f77b4", va="center", ha="right", fontsize=9)       
         ax.set_title(condition_labels[i])
         despine(ax, ["top", "bottom", "left", "right"], True)
         
+        # plot the am
+        ax = plt.subplot2grid(fig_grid, (3, i * 3 + i), rowspan=2, colspan=3, fig=fig)
+        ax.plot(time[(time > min_time) & (time < max_time)], signal[(time > min_time) & (time < max_time)],
+                color="#2ca02c", label="signal")
+        ax.plot(time[(time > min_time) & (time < max_time)], am[(time > min_time) & (time < max_time)],
+                color="#d62728", label="am")
+        despine(ax, ["top", "bottom", "left", "right"], True)
+        ax.set_ylim([-1.25, 1.25])
+        ax.legend(ncol=2, loc=(0.01, -0.5), fontsize=7, markerscale=0.5, frameon=False)
+        
         # for the largest contrast plot the raster with psth, only a section of the data (e.g. 1s)
         t, rates, spikes = get_firing_rate(block_map, current_df, all_contrasts[0], condition, kernel_width=0.001)
         avg_resp = np.mean(rates, axis=0)
         error = np.std(rates, axis=0)
 
-        ax = plt.subplot2grid(fig_grid, (1, i * 3 + i), rowspan=1, colspan=3)
-        ax.plot(t[t < max_time], avg_resp[t < max_time], color="k", lw=0.5)
-        ax.fill_between(t[t < max_time], (avg_resp - error)[t < max_time], (avg_resp + error)[t < max_time], color="k", lw=None, alpha=0.25)
+        ax = plt.subplot2grid(fig_grid, (6, i * 3 + i), rowspan=2, colspan=3)
+        ax.plot(t[(t > min_time) & (t < max_time)], avg_resp[(t > min_time) & (t < max_time)],
+                color="k", lw=0.5)
+        ax.fill_between(t[(t > min_time) & (t < max_time)], (avg_resp - error)[(t > min_time) & (t < max_time)],
+                        (avg_resp + error)[(t > min_time) & (t < max_time)], color="k", lw=0.0, alpha=0.25)
+        ax.set_ylim([0, 750])
+        ax.set_xlabel("")
+        ax.set_ylabel("")
+        ax.set_xticks(np.arange(min_time, max_time+.01, 0.250))
+        ax.set_xticklabels(map(int, (np.arange(min_time, max_time + .01, 0.250) - min_time) * 1000))
+        ax.set_xticks(np.arange(min_time, max_time+.01, 0.0625), minor=True)
+        ax.set_xticklabels([])
+        ax.set_yticks(np.arange(0.0, 751., 500)) 
+        ax.set_yticks(np.arange(0.0, 751., 125), minor=True) 
+        if i > 0:
+            ax.set_yticklabels([])
         despine(ax, ["top", "right"], False)
         
         # for all other contrast plot the firing rate alone
@@ -119,46 +160,54 @@ def create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, curr
             t, rates, _ = get_firing_rate(block_map, current_df, contrast, condition)
             avg_resp = np.mean(rates, axis=0)
             error = np.std(rates, axis=0)
-            ax = plt.subplot2grid(fig_grid, (j+1, i * 3 + i), rowspan=1, colspan=3)
-            ax.plot(t[t < max_time], avg_resp[t < max_time], color="k", lw=0.5)
-            #ax.fill_between(t[t < max_time], (avg_resp - error)[t < max_time], (avg_resp + error)[t < max_time], color="k", lw=None, alpha=0.25)
+            ax = plt.subplot2grid(fig_grid, (j*2 + 6, i * 3 + i), rowspan=2, colspan=3)
+            ax.plot(t[(t > min_time) & (t < max_time)], avg_resp[(t > min_time) & (t < max_time)], color="k", lw=0.5)
+            ax.fill_between(t[(t > min_time) & (t < max_time)], (avg_resp - error)[(t > min_time) & (t < max_time)],
+                            (avg_resp + error)[(t > min_time) & (t < max_time)], color="k", lw=0.0, alpha=0.25)
+            ax.set_ylim([0, 750])
+            ax.set_xlabel("")
+            ax.set_ylabel("")
+            ax.set_xticks(np.arange(min_time, max_time+.01, 0.250))
+            ax.set_xticklabels(map(int, (np.arange(min_time, max_time + .01, 0.250) - min_time) * 1000))
+            ax.set_xticks(np.arange(min_time, max_time+.01, 0.125), minor=True)
+            if j < len(all_contrasts) -1:
+                ax.set_xticklabels([])
+            ax.set_yticks(np.arange(0.0, 751., 500)) 
+            ax.set_yticks(np.arange(0.0, 751., 125), minor=True)   
+            if i > 0:
+                ax.set_yticklabels([])
             despine(ax, ["top", "right"], False)
-        
-    plt.savefig("chirp_responses.pdf")
+        if i == 1:
+            ax.set_xlabel("time [ms]")
+        if i == 0:
+            ax.set_ylabel("frequency [Hz]", va="center")
+            ax.yaxis.set_label_coords(-0.45, 3.5)
+
+    name = figure_name if figure_name is not None else "chirp_responses.pdf"
+    name = (name + ".pdf") if ".pdf" not in name else name
+    plt.savefig(os.path.join(figure_folder, name))
     plt.close()
-    return
-        
-    
 
 
 def process_cell(filename, dfs=[], contrasts=[], conditions=[]):
     nf = nix.File.open(filename, nix.FileMode.ReadOnly)
-    block_map, all_dfs, all_contrasts, all_conditions  = sort_blocks(nf)
+    block_map, all_contrasts, all_dfs, all_conditions  = sort_blocks(nf)
     if "baseline" in block_map.keys():
         baseline_spikes = read_baseline(block_map["baseline"])
     else:
         print("ERROR: no baseline data for file %s!" % filename)
-
-    create_response_plot(block_map, all_contrasts, all_dfs, all_conditions, 20)
-    """
-    if len(dfs) == 0:
-        dfs = all_dfs
-    if len(contrasts) == 0:
-        contrasts = all_contrasts
-    if len(conditions) == 0:
-        conditions = all_conditions
+    fig_name = filename.split(".nix")[0] + "_df_20Hz.pdf"
+    create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, 20, figure_name=fig_name)
+    fig_name = filename.split(".nix")[0] + "_df_-100Hz.pdf"
+    create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, -100, figure_name=fig_name)
+    
     
-    for df in dfs:
-        for condition in conditions:
-            for contrast in contrasts:
-                time, rates = get_firing_rate(block_map, df, contrast, condition, kernel_width=0.0025)
-    """         
     
     nf.close()
 
 
 def main():
-    nix_files = sorted(glob.glob("cell*.nix"))
+    nix_files = sorted(glob.glob(os.path.join(data_folder, "cell*.nix")))
     for nix_file in nix_files:
         process_cell(nix_file, dfs=[20], contrasts=[20], conditions=["self"])