diff --git a/punit_responses.py b/punit_responses.py index 68ec34b..f360bb6 100644 --- a/punit_responses.py +++ b/punit_responses.py @@ -1,5 +1,6 @@ import numpy as np import nixio as nix +import argparse import os from numpy.core.fromnumeric import repeat from traitlets.traitlets import Instance @@ -183,11 +184,11 @@ def simulate_responses(stimulus_params, model_params, repeats=10, deltaf=20): print("\n") -def simulate_cell(cell_id, models): - deltafs = [-200, -100, -50, -20, -10, -5, 5, 10, 20, 50, 100, 200] # Hz, difference frequency between self and other - chirp_sizes = [40, 60, 100] +def simulate_cell(cell_id, models, args): + deltafs = args.deltafs # Hz, difference frequency between self and other + chirp_sizes = args.chirpsizes # Hz, the chirp size, i.e. the frequency excursion stimulus_params = { "eodfs": {"self": 0.0, "other": 0.0}, # eod frequency in Hz, to be overwritten - "contrasts": [20, 10, 5, 2.5, 1.25, 0.625, 0.3125], + "contrasts": args.contrasts, "chirp_size": 100, # Hz, frequency excursion "chirp_duration": 0.015, # s, chirp duration "chirp_amplitude_dip": 0.05, # %, amplitude drop during chirp @@ -212,14 +213,32 @@ def simulate_cell(cell_id, models): stimulus_params["duration"] - stimulus_params["chirp_duration"], 1./stimulus_params["chirp_frequency"]) stimulus_params["chirp_times"] = chirp_times - simulate_responses(stimulus_params, model_params, repeats=25, deltaf=deltaf) + simulate_responses(stimulus_params, model_params, repeats=args.trials, deltaf=deltaf) def main(): + parser = argparse.ArgumentParser(description="Simulate P-unit responses using the model parameters from the models.csv file. Calling it without any arguments works with the defaults, may need some time.") + parser.add_argument("-n", "--number", type=int, default=20, help="Number of simulated neurons. Randomly chosen from model list. Defaults to 20") + parser.add_argument("-t", "--trials", type=int, default=25, help="Number of stimulus repetitions, trials. Defaults to 25") + parser.add_argument("-dfs", "--deltafs", type=float, nargs="+", default=[-200, -100, -50, -20, -10, -5, 5, 10, 20, 50, 100, 200], + help="List of difference frequencies. Defaults to [-200, -100, -50, -20, -10, -5, 5, 10, 20, 50, 100, 200]") + parser.add_argument("-cs", "--chirpsizes", type=float, nargs="+", default=[40, 60, 100], + help="List of chirp sizes. Defaults to [40, 60, 100]") + parser.add_argument("-ct", "--contrasts", type=float, nargs="+", default=[20, 10, 5, 2.5, 1.25, 0.625, 0.3125], + help="List of foreign fish contrasts. Defaults to [20, 10, 5, 2.5, 1.25, 0.625, 0.3125].") + parser.add_argument("-o", "--output_folder", type=str, default=data_folder, help="Where to store the data. Defaults to %s"%os.path.join(".", data_folder)) + parser.add_argument("-j", "--jobs", type=int, default=max(1, int(np.floor(multiprocessing.cpu_count() * 0.5))), help="Number of parallel processes (simulations) defaults to half of the available cores.") + args = parser.parse_args() + models = load_models("models.csv") - num_cores = multiprocessing.cpu_count() - 6 + num_models = args.number + if args.number > len(models): + print("INFO: number of cells larger than number of available models. Reset to max number of models.") + num_models = len(models) + indices = list(range(len(models))) + np.random.shuffle(indices) - Parallel(n_jobs=num_cores)(delayed(simulate_cell)(cell_id, models) for cell_id in range(len(models[:20]))) + Parallel(n_jobs=args.jobs)(delayed(simulate_cell)(cell_id, models, args) for cell_id in indices) if __name__ == "__main__":