more on the foreign fish detection, some notes
This commit is contained in:
parent
a208965344
commit
1f8d9a3624
@ -32,13 +32,19 @@ Dimensionalities involved, The beat frequency, the distance (contrast), the chir
|
||||
* with foreign generated chirps
|
||||
Won't do, this is trivial?!
|
||||
|
||||
### 2. Use Alex' model to get the P-unit responses
|
||||
### 2. Use Alex' model to get the P-unit responses --> Done
|
||||
|
||||
* implement the Chripstimulus class
|
||||
* move along the same lines as for the input signals
|
||||
* create the stimulus for a range of contrasts, with self of the other fish chirping, each stimulus phase contains a phase in wich there is no foreign fish.
|
||||
* calculate a bunch (10) trials for each condition and estimate the detecatability of a foreign fish
|
||||
* estimate the distance between the responses without the other fish and the beat response as well as the chirp response.
|
||||
|
||||
### 3. Does the chirp increase the detectablility of another animal?
|
||||
|
||||
* Work out the difference between baseline activity and a foreign chirp response:
|
||||
* calculate the discriminability between the baseline (no-other fish present) and the another fish is present for each contrast
|
||||
* Work out the difference between the soliloquy and the response to self generated chirp in a communication context
|
||||
* Compare to the beat alone parts of the responses.
|
||||
|
||||
## Random thoughts
|
||||
|
||||
@ -46,3 +52,4 @@ Won't do, this is trivial?!
|
||||
* Raab et al show this is also the case with rises.
|
||||
* Check role of AFRs and rises in Tallarovic et al, Hupe et al.
|
||||
* we actually do not observe chirps without stimulation
|
||||
*
|
||||
|
@ -43,25 +43,89 @@ def sort_blocks(nix_file):
|
||||
return block_map, contrasts, deltafs, conditions
|
||||
|
||||
|
||||
def get_firing_rate(block_map, df, contrast, condition, kernel_width=0.0005):
|
||||
block = block_map[(contrast, df, condition)]
|
||||
def get_spikes(block):
|
||||
"""Get the spike trains.
|
||||
|
||||
Args:
|
||||
block ([type]): [description]
|
||||
|
||||
Returns:
|
||||
list of np.ndarray: the spike trains.
|
||||
"""
|
||||
response_map = {}
|
||||
spikes = []
|
||||
|
||||
for da in block.data_arrays:
|
||||
if "spike_times" in da.type and "response" in da.name:
|
||||
resp_id = int(da.name.split("_")[-1])
|
||||
response_map[resp_id] = da
|
||||
for k in sorted(response_map.keys()):
|
||||
spikes.append(response_map[k][:])
|
||||
|
||||
return spikes
|
||||
|
||||
|
||||
def get_rates(spike_trains, duration, dt, kernel_width):
|
||||
"""Convert the spike trains (list of spike_times) to rates using a Gaussian kernel of the given size.
|
||||
|
||||
Args:
|
||||
spike_trains ([type]): [description]
|
||||
duration ([type]): [description]
|
||||
dt ([type]): [description]
|
||||
kernel_width ([type]): [description]
|
||||
|
||||
Returns:
|
||||
np.ndarray: Matrix of firing rates, 1. dimension is the number of trials
|
||||
np.ndarray: the time vector
|
||||
"""
|
||||
time = np.arange(0.0, duration, dt)
|
||||
rates = np.zeros((len(spike_trains), len(time)))
|
||||
for i, sp in enumerate(spike_trains):
|
||||
rates[i, :] = firing_rate(sp, duration, kernel_width, dt)
|
||||
|
||||
return rates, time
|
||||
|
||||
|
||||
def get_firing_rate(block_map, df, contrast, condition, kernel_width=0.0005):
|
||||
"""Retruns the firing rates and the spikes
|
||||
|
||||
Args:
|
||||
block_map ([type]): [description]
|
||||
df ([type]): [description]
|
||||
contrast ([type]): [description]
|
||||
condition ([type]): [description]
|
||||
kernel_width (float, optional): [description]. Defaults to 0.0005.
|
||||
|
||||
Returns:
|
||||
np.ndarray: the time vector.
|
||||
np.ndarray: the rates with the first dimension representing the trials.
|
||||
np.adarray: the spike trains.
|
||||
"""
|
||||
block = block_map[(contrast, df, condition)]
|
||||
spikes = get_spikes(block)
|
||||
duration = float(block.metadata["stimulus parameter"]["duration"])
|
||||
dt = float(block.metadata["stimulus parameter"]["dt"])
|
||||
time = np.arange(0.0, duration, dt)
|
||||
rates = np.zeros((len(response_map.keys()), len(time)))
|
||||
for i, k in enumerate(response_map.keys()):
|
||||
spikes.append(response_map[k][:])
|
||||
rates[i,:] = firing_rate(spikes[-1], duration, kernel_width, dt)
|
||||
|
||||
rates, time = get_rates(spikes, duration, dt, kernel_width)
|
||||
return time, rates, spikes
|
||||
|
||||
|
||||
def get_signals(block):
|
||||
"""Read the fish signals from block.
|
||||
|
||||
Args:
|
||||
block ([type]): the block containing the data for a given df, contrast and condition
|
||||
|
||||
Raises:
|
||||
ValueError: when the complete stimulus data is not found
|
||||
ValueError: when the no-other animal data is not found
|
||||
|
||||
Returns:
|
||||
np.ndarray: the complete signal
|
||||
np.ndarray: the frequency profile of the recorded fish
|
||||
np.ndarray: the frequency profile of the other fish
|
||||
np.ndarray: the time axis
|
||||
"""
|
||||
self_freq = None
|
||||
other_freq = None
|
||||
signal = None
|
||||
@ -80,11 +144,19 @@ def get_signals(block):
|
||||
|
||||
|
||||
def extract_am(signal):
|
||||
# first add some padding
|
||||
"""Extract the amplitude modulation from a signal using the Hilbert transform. Performs padding to avoid artefacts at beginning and end.
|
||||
|
||||
Args:
|
||||
signal (np.ndarray): the signal
|
||||
|
||||
Returns:
|
||||
np.ndarray: the am, i.e. the absolute value of the Hilbert transform.
|
||||
"""
|
||||
# first add some padding to both ends
|
||||
front_pad = np.flip(signal[:int(len(signal)/100)])
|
||||
back_pad = np.flip(signal[-int(len(signal)/100):])
|
||||
padded = np.hstack((front_pad, signal, back_pad))
|
||||
# do the hilbert and take abs
|
||||
# do the hilbert and take abs, cut away the padding
|
||||
am = np.abs(sig.hilbert(padded))
|
||||
am = am[len(front_pad):-len(back_pad)]
|
||||
return am
|
||||
@ -130,33 +202,9 @@ def create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, curr
|
||||
despine(ax, ["top", "bottom", "left", "right"], True)
|
||||
ax.set_ylim([-1.25, 1.25])
|
||||
ax.legend(ncol=2, loc=(0.01, -0.5), fontsize=7, markerscale=0.5, frameon=False)
|
||||
"""
|
||||
# for the largest contrast plot the raster with psth, only a section of the data (e.g. 1s)
|
||||
t, rates, spikes = get_firing_rate(block_map, current_df, all_contrasts[0], condition, kernel_width=0.001)
|
||||
avg_resp = np.mean(rates, axis=0)
|
||||
error = np.std(rates, axis=0)
|
||||
|
||||
ax = plt.subplot2grid(fig_grid, (6, i * 3 + i), rowspan=2, colspan=3)
|
||||
ax.plot(t[(t > min_time) & (t < max_time)], avg_resp[(t > min_time) & (t < max_time)],
|
||||
color="k", lw=0.5)
|
||||
ax.fill_between(t[(t > min_time) & (t < max_time)], (avg_resp - error)[(t > min_time) & (t < max_time)],
|
||||
(avg_resp + error)[(t > min_time) & (t < max_time)], color="k", lw=0.0, alpha=0.25)
|
||||
ax.set_ylim([0, 750])
|
||||
ax.set_xlabel("")
|
||||
ax.set_ylabel("")
|
||||
ax.set_xticks(np.arange(min_time, max_time+.01, 0.250))
|
||||
ax.set_xticklabels(map(int, (np.arange(min_time, max_time + .01, 0.250) - min_time) * 1000))
|
||||
ax.set_xticks(np.arange(min_time, max_time+.01, 0.0625), minor=True)
|
||||
ax.set_xticklabels([])
|
||||
ax.set_yticks(np.arange(0.0, 751., 500))
|
||||
ax.set_yticks(np.arange(0.0, 751., 125), minor=True)
|
||||
if i > 0:
|
||||
ax.set_yticklabels([])
|
||||
despine(ax, ["top", "right"], False)
|
||||
"""
|
||||
# for all other contrast plot the firing rate alone
|
||||
for j in range(0, len(all_contrasts)):
|
||||
contrast = all_contrasts[j]
|
||||
|
||||
# for each contrast plot the firing rate
|
||||
for j, contrast in enumerate(all_contrasts):
|
||||
t, rates, _ = get_firing_rate(block_map, current_df, contrast, condition)
|
||||
avg_resp = np.mean(rates, axis=0)
|
||||
error = np.std(rates, axis=0)
|
||||
@ -193,14 +241,53 @@ def create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, curr
|
||||
plt.close()
|
||||
|
||||
|
||||
def chrip_detection_soliloquy(spikes, chirp_times, kernel_width=0.0005):
|
||||
#
|
||||
pass
|
||||
def foreign_fish_detection_beat(block_map, df, all_contrasts, all_conditions, kernel_width=0.0005):
|
||||
detection_performance = {}
|
||||
for contrast in all_contrasts:
|
||||
no_other_block = block_map[(contrast, df, "no-other")]
|
||||
self_block = block_map[(contrast, df, "self")]
|
||||
|
||||
# get some metadata assuming they are all the same for each condition
|
||||
duration = float(self_block.metadata["stimulus parameter"]["duration"])
|
||||
dt = float(self_block.metadata["stimulus parameter"]["dt"])
|
||||
chirp_duration = self_block.metadata["stimulus parameter"]["chirp_duration"]
|
||||
chirp_times = self_block.metadata["stimulus parameter"]["chirp_times"]
|
||||
interchirp_starts = []
|
||||
interchirp_ends = []
|
||||
for ct in chirp_times:
|
||||
interchirp_starts.append(ct + 1.5 * chirp_duration)
|
||||
interchirp_ends.append(ct - 1.5 * chirp_duration)
|
||||
del interchirp_ends[0]
|
||||
del interchirp_starts[-1]
|
||||
# get the spiking responses
|
||||
no_other_spikes = get_spikes(no_other_block)
|
||||
self_spikes = get_spikes(self_block)
|
||||
# get firing rates
|
||||
no_other_rates = get_rates(no_other_spikes, duration, dt, kernel_width)
|
||||
self_rates = get_rates(self_spikes, duration, dt, kernel_width)
|
||||
|
||||
# get the response snippets between chrips
|
||||
|
||||
# get the distances and do the roc
|
||||
embed()
|
||||
break;
|
||||
return detection_performance
|
||||
|
||||
|
||||
def chirp_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=None, current_condition=None):
|
||||
def foreign_fish_detection_chirp(block_map, df, all_contrasts, all_conditions, kernel_width=0.0005):
|
||||
#
|
||||
return None
|
||||
|
||||
|
||||
pass
|
||||
def foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=None, kernel_width=0.0005):
|
||||
dfs = [current_df] if current_df is not None else all_dfs
|
||||
detection_performance_beat = []
|
||||
detection_performance_chirp = []
|
||||
for df in dfs:
|
||||
detection_performance_beat.append(foreign_fish_detection_beat(block_map, df, all_contrasts, all_conditions, kernel_width))
|
||||
detection_performance_chirp.append(foreign_fish_detection_chirp(block_map, df, all_contrasts, all_conditions, kernel_width))
|
||||
|
||||
return detection_performance_beat, detection_performance_chirp
|
||||
|
||||
|
||||
def process_cell(filename, dfs=[], contrasts=[], conditions=[]):
|
||||
@ -210,11 +297,11 @@ def process_cell(filename, dfs=[], contrasts=[], conditions=[]):
|
||||
baseline_spikes = read_baseline(block_map["baseline"])
|
||||
else:
|
||||
print("ERROR: no baseline data for file %s!" % filename)
|
||||
fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_20Hz.pdf"
|
||||
create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, 20, figure_name=fig_name)
|
||||
fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_-100Hz.pdf"
|
||||
create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, -100, figure_name=fig_name)
|
||||
chirp_detection(block_map, all_dfs, all_contrasts, all_conditions)
|
||||
# fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_20Hz.pdf"
|
||||
# create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, 20, figure_name=fig_name)
|
||||
# fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_-100Hz.pdf"
|
||||
# create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, -100, figure_name=fig_name)
|
||||
foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=20)
|
||||
|
||||
|
||||
nf.close()
|
||||
|
66
util.py
66
util.py
@ -1,4 +1,7 @@
|
||||
from typing import ValuesView
|
||||
import numpy as np
|
||||
from numpy.lib.function_base import iterable
|
||||
from numpy.lib.index_tricks import diag_indices
|
||||
|
||||
def despine(axis, spines=None, hide_ticks=True):
|
||||
|
||||
@ -49,4 +52,65 @@ def firing_rate(spikes, duration, sigma=0.005, dt=1./20000.):
|
||||
kernel = gaussKernel(sigma, dt)
|
||||
|
||||
rate = np.convolve(kernel, binary, mode="same")
|
||||
return rate
|
||||
return rate
|
||||
|
||||
|
||||
def spiketrain_distance(spikes, duration, dt, kernel_width=0.001):
|
||||
"""Calculate the Euclidean distance between spike trains. Firing rates are estimated using the kernel
|
||||
convloution technique applying a Gaussian kernel of the given standard deviation.
|
||||
|
||||
Args:
|
||||
spikes (list of iterable): list of spike trains. event times are given in seconds.
|
||||
duration (float): duration of a trial given in seconds.
|
||||
dt (float): stepsize of the recording, given in seconds.
|
||||
kernel_width (float, optional): standard deviation of the Gaussian kernel used to estimate the firing rate. Defaults to 0.001.
|
||||
|
||||
Returns:
|
||||
np.ndarray: the distances
|
||||
"""
|
||||
# perform some checks
|
||||
if not isinstance(spikes, list):
|
||||
raise ValueError("spikes must be a list of spike trains, aka iterables of spike times.")
|
||||
if len(spikes) > 1 and not isinstance(spikes[0], iterable):
|
||||
raise ValueError("spikes must be a list of spike trains, aka iterables of spike times.")
|
||||
|
||||
rates = np.zeros((len(spikes), int(duration/dt)))
|
||||
for i in range(len(spikes)):
|
||||
rates[i,:] = firing_rate(spikes[0], duration, kernel_width, dt)
|
||||
|
||||
distances = np.zeros((len(spikes), len(spikes)))
|
||||
for i in range(len(spikes)):
|
||||
for j in range(len(spikes)):
|
||||
if i < j:
|
||||
distances[i, j] = np.sqrt(np.sum((rates[i,:] - rates[j,:])**2))
|
||||
distances[j, i] = distances[i, j]
|
||||
elif i == j:
|
||||
distances[i, j] = 0.0
|
||||
else:
|
||||
break
|
||||
|
||||
return distances
|
||||
|
||||
|
||||
def rate_distance(rates1, rates2, axis=0):
|
||||
distances = np.zeros((rates1.shape[axis], rates2.shape[axis]))
|
||||
for i in range(distances.shape[0]):
|
||||
for j in range(distances.shape[1]):
|
||||
distances[i, j] = np.sqrt(np.sum((rates1[i,:] - rates2[j,:])**2))
|
||||
|
||||
return distances
|
||||
|
||||
|
||||
def rate_distance(rates, axis=0):
|
||||
distances = np.zeros((rates.shape[axis], rates.shape[axis]))
|
||||
if axis == 1:
|
||||
rates = rates.T
|
||||
for i in range(distances.shape[0]):
|
||||
for j in range(distances.shape[1]):
|
||||
if i < j:
|
||||
distances[i, j] = np.sqrt(np.sum((rates[i,:] - rates[j,:])**2))
|
||||
distances[j, i] = distances[i, j]
|
||||
elif i == j:
|
||||
distances[i, j] = 0.0
|
||||
else:
|
||||
break
|
||||
|
Loading…
Reference in New Issue
Block a user