add model and p-unit respones

This commit is contained in:
Jan Grewe 2020-09-07 13:09:59 +02:00
parent 83969d2a04
commit 037ebeb9b4
2 changed files with 202 additions and 0 deletions

83
model.py Normal file
View File

@ -0,0 +1,83 @@
from IPython.terminal.embed import embed
from numba.core.types import float64
import numpy as np
try:
from numba import jit
except ImportError:
def jit(nopython):
def decorator_jit(func):
return func
return decorator_jit
def load_models(file):
""" Load model parameter from csv file.
Parameters
----------
file: string
Name of file with model parameters.
Returns
-------
parameters: list of dict
For each cell a dictionary with model parameters.
"""
parameters = []
with open(file, 'r') as file:
header_line = file.readline()
header_parts = header_line.strip().split(",")
keys = header_parts
for line in file:
line_parts = line.strip().split(",")
parameter = {}
for i in range(len(keys)):
parameter[keys[i]] = float(line_parts[i]) if i > 0 else line_parts[i]
parameters.append(parameter)
return parameters
@jit(nopython=True)
def simulate(stimulus, deltat=0.00005, v_zero=0.0, a_zero=2.0, threshold=1.0, v_base=0.0,
delta_a=0.08, tau_a=0.1, v_offset=-10.0, mem_tau=0.015, noise_strength=0.05,
input_scaling=60.0, dend_tau=0.001, ref_period=0.001, **kwargs):
""" Simulate a P-unit.
Returns
-------
spike_times: 1-D array
Simulated spike times in seconds.
"""
# initial conditions:
v_dend = stimulus[0]
v_mem = v_zero
adapt = a_zero
# prepare noise:
noise = np.random.randn(len(stimulus))
noise *= noise_strength / np.sqrt(deltat)
# rectify stimulus array:
stimulus = stimulus.copy()
stimulus[stimulus < 0.0] = 0.0
# integrate:
spike_times = []
for i in range(len(stimulus)):
v_dend += (-v_dend + stimulus[i]) / dend_tau * deltat
v_mem += (v_base - v_mem + v_offset + (
v_dend * input_scaling) - adapt + noise[i]) / mem_tau * deltat
adapt += -adapt / tau_a * deltat
# refractory period:
if len(spike_times) > 0 and (deltat * i) - spike_times[-1] < ref_period + deltat/2:
v_mem = v_base
# threshold crossing:
if v_mem > threshold:
v_mem = v_base
spike_times.append(i * deltat)
adapt += delta_a / tau_a
return np.array(spike_times)

119
punit_responses.py Normal file
View File

@ -0,0 +1,119 @@
import numpy as np
import nixio as nix
import os
from numpy.core.fromnumeric import repeat
from traitlets.traitlets import Instance
from chirp_ams import get_signals
from model import simulate, load_models
from IPython import embed
import matplotlib.pyplot as plt
def append_settings(section, sec_name, sec_type, settings):
section = section.create_section(sec_name, sec_type)
for k in settings.keys():
if isinstance(settings[k], dict):
append_settings(section, k, "settings", settings[k])
else:
if isinstance(settings[k], np.ndarray):
if len(settings[k].shape) == 1:
section[k] = list(settings[k])
else:
section[k] = settings[k]
def save(filename, name, stimulus_settings, model_settings, stimulus, responses, overwrite=False):
print("saving! ", filename, name)
if os.path.exists(filename) and not overwrite:
nf = nix.File.open(filename, nix.FileMode.ReadWrite)
else:
nf = nix.File.open(filename, mode=nix.FileMode.Overwrite,
compression=nix.Compression.DeflateNormal)
if name in nf.blocks:
print("Data with this name is already stored! ", name)
nf.close()
return
mdata = nf.create_section(name, "nix.simulation")
append_settings(mdata, "model parameter", "nix.model.settings", model_settings)
append_settings(mdata, "stimulus parameter", "nix.stimulus.settings", stimulus_settings)
b = nf.create_block(name, "nix.simulation")
b.metadata = mdata
# save stimulus
stim_da = b.create_data_array("stimulus", "nix.timeseries.sampled", dtype=nix.DataType.Float,
data=stimulus)
stim_da.label = "voltage"
stim_da.label = "mv/cm"
dim = stim_da.append_sampled_dimension(model_settings["deltat"])
dim.label = "time"
dim.unit = "s"
# save responses
for i in range(len(responses)):
da = b.create_data_array("response_%i" %i, "nix.timeseries.events.spike_times",
dtype=nix.DataType.Float, data=responses[i])
da.label = "time"
da.unit = "s"
dim = da.append_range_dimension()
dim.link_data_array(da, [-1])
nf.close()
pass
def plot_responses():
pass
def simulate_responses(stimulus_params, model_params, repeats=10):
cell_params = model_params.copy()
cell = cell_params["cell"]
del cell_params["cell"]
del cell_params["EODf"]
for c in stimulus_params["contrasts"]:
print("creating stimuli\n\tcontrast: ", str(c), "\t condition: ",
stimulus_params["condition"])
params = stimulus_params.copy()
del params["contrasts"]
del params["chirp_frequency"]
params["contrast"] = c
time, self_signal, self_freq, other_signal, other_freq = get_signals(**params)
signal = (self_signal + other_signal)
signal /= np.max(signal)
print("create p-unit responses for cell: ", cell)
spikes = []
for r in range(repeats):
spikes.append(simulate(signal, **cell_params))
save("test.nix", "contrast_%.3f_condition_%s" %(c, stimulus_params["condition"]), params,
cell_params, signal, spikes)
def main():
cell_id = 20
models = load_models("models.csv")
deltaf = 20. # Hz, difference frequency between self and other
model_params = models[cell_id]
stimulus_params = {"eodfs": {"self": model_params["EODf"],
"other": model_params["EODf"] + deltaf},
"contrasts": [20, 10, 5, 2.5, 1.25, 0.625, 0.3125],
"chirp_size": 100, # Hz, frequency excursion
"chirp_duration": 0.015, # s, chirp duration
"chirp_amplitude_dip": 0.05, # %, amplitude drop during chirp
"chirp_frequency": 5, # Hz, how often does the fish chirp
"duration": 5., # s, total duration of simulation
"dt": model_params["deltat"], # s, stepsize of the simulation
}
chirp_times = np.arange(stimulus_params["chirp_duration"],
stimulus_params["duration"] - stimulus_params["chirp_duration"],
1./stimulus_params["chirp_frequency"])
stimulus_params["chirp_times"] = chirp_times
conditions = ["other", "self"]
for c in conditions:
stimulus_params["condition"] = c
simulate_responses(stimulus_params, model_params, repeats=25)
pass
if __name__ == "__main__":
main()