line_tracking_of_fish_movement/plot_jans_pdf.py

397 lines
18 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import matplotlib.colors as mcolors
import matplotlib.gridspec as gridspec
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
from IPython import embed
from scipy import stats, optimize
import pandas as pd
import math
import os
from IPython import embed
from eventdetection import threshold_crossings, merge_events
import helper_functions as hf
from params import *
from statisitic_functions import significance_bar, cohen_d
import itertools
def get_recording_number_in_time_bins(time_bins):
"""
Calculates the number of the recordings in the time bins
:param time_bins: numpy array with borders of the time bins
:return: time_bins_recording: numpy array with the number of recordings to that specific time bin
"""
# variables
time_bins_recordings = np.zeros(len(time_bins) - 1)
# load data
for index, filename_idx in enumerate([0, 1, 2, 3]):
filename = sorted(os.listdir('../data/'))[filename_idx]
time_points = np.load('../data/' + filename + '/all_hms.npy', allow_pickle=True)
# in which bins is this recording, fill time_bins_recordings
unique_time_points = np.unique(np.hstack(time_points))
for idx, tb in enumerate(time_bins[:-1]):
if np.any((unique_time_points >= tb) & (unique_time_points <= time_bins[idx + 1])):
time_bins_recordings[idx] += 1
return time_bins_recordings
def func(x, a, tau, c):
return a * np.exp(-x / tau) + c
def calc_movement(cbf, i):
movement = cbf[0, :, i] + cbf[1, :, i]
movement[np.isnan(movement)] = 0
re_mov = cbf[0, :, i] - cbf[1, :, i]
re_mov[np.isnan(re_mov)] = 0
return movement, re_mov
if __name__ == '__main__':
###################################################################################################################
# parameter and variables
# plot params
inch = 2.54
c = 0
cat_v1 = [0, 0, 750, 0]
cat_v2 = [750, 750, 1000, 1000]
cat_n = ['Eigenmannia', 'Apteronotus', 'Apteronotus']
# time
# time_bins 5 min
time_factor = 60 * 60
# tb2 = np.arange(0, 24 * time_factor + 1, 2)
tb5 = np.arange(0, 24 * time_factor + 1, 5)
# tb10 = np.arange(0, 24 * time_factor + 1, 10)
tb15 = np.arange(0, 24 * time_factor + 1, 15)
# tb30 = np.arange(0, 24 * time_factor + 1, 30)
tb60 = np.arange(0, 24 * time_factor + 1, 60)
tb150 = np.arange(0, 24 * time_factor + 1, 150)
# tb180 = np.arange(0, 24 * time_factor + 1, 180)
tb300 = np.arange(0, 24 * time_factor + 1, 300)
# time_edges = np.array([4.5, 6.5, 16.5, 18.5]) * time_factor
# day = time_bins[:-1][(time_bins[:-1] >= time_edges[1]) & (time_bins[:-1] <= time_edges[2])]
# dusk = time_bins[:-1][(time_bins[:-1] >= time_edges[2]) & (time_bins[:-1] <= time_edges[3])]
# night = time_bins[:-1][(time_bins[:-1] <= time_edges[0]) | (time_bins[:-1] >= time_edges[3])]
# dawn = time_bins[:-1][(time_bins[:-1] >= time_edges[0]) & (time_bins[:-1] <= time_edges[1])]
###################################################################################################################
# load data
###################################################################################################################
# load all the data of one day
# cbf2 = np.load('../data/cbf2.npy', allow_pickle=True)
cbf5 = np.load('../data/cbf5.npy', allow_pickle=True)
# cbf10 = np.load('../data/cbf10.npy', allow_pickle=True)
cbf15 = np.load('../data/cbf15.npy', allow_pickle=True)
# cbf30 = np.load('../data/cbf30.npy', allow_pickle=True)
cbf60 = np.load('../data/cbf60.npy', allow_pickle=True)
cbf150 = np.load('../data/cbf150.npy', allow_pickle=True)
# cbf180 = np.load('../data/cbf180.npy', allow_pickle=True)
cbf300 = np.load('../data/cbf300.npy', allow_pickle=True)
stl = np.load('../data/stl.npy', allow_pickle=True)
names = np.load('../data/n.npy', allow_pickle=True)
freq = np.load('../data/f.npy', allow_pickle=True)
trajectories = np.load('../data/trajectories.npy', allow_pickle=True)
trajec_x = np.load('../data/trajec_x.npy', allow_pickle=True)
###############################################################################################################
# variables
for index, filename_idx in enumerate([0]):
filename = sorted(os.listdir('../data/'))[filename_idx]
all_Ctime_v = np.load('../data/' + filename + '/all_Ctime_v.npy', allow_pickle=True)
sampling_rate = 1 / np.diff(all_Ctime_v[0])[0] # in sec
cbf_counter = 0
###################################################################################################################
# analysis
for i in range(len(trajectories)):
if names[i] == 'unknown':
continue
# mov2, re_mov2 = calc_movement(cbf2, cbf_counter)
mov5, re_mov5 = calc_movement(cbf5, cbf_counter)
# mov10, re_mov10 = calc_movement(cbf10, cbf_counter)
mov15, re_mov15 = calc_movement(cbf15, cbf_counter)
# mov30, re_mov30 = calc_movement(cbf30, cbf_counter)
mov60, re_mov60 = calc_movement(cbf60, cbf_counter)
mov150, re_mov150 = calc_movement(cbf150, cbf_counter)
# mov180, re_mov180 = calc_movement(cbf180, cbf_counter)
mov300, re_mov300 = calc_movement(cbf300, cbf_counter)
cbf_counter += 1
trajec = trajectories[i]
t_x = trajec_x[i]
fig = plt.figure(constrained_layout=True, figsize=[20 / inch, 26 / inch])
gs = gridspec.GridSpec(ncols=2, nrows=6, figure=fig, hspace=0.01, wspace=0.01,
height_ratios=[1, 1, 1, 1, 1, 1], width_ratios=[4,1],left=0.1, bottom=0.15, right=0.95,
top=0.95)
ax0 = fig.add_subplot(gs[0, 0])
ax1 = fig.add_subplot(gs[1, 0], sharex=ax0)
ax2 = fig.add_subplot(gs[2, 0], sharex=ax0)
ax3 = fig.add_subplot(gs[3, 0], sharex=ax0)
ax4 = fig.add_subplot(gs[4, 0], sharex=ax0)
ax5 = fig.add_subplot(gs[5, 0], sharex=ax0)
# ax6 = fig.add_subplot(gs[6, 0], sharex=ax0)
ax11 = fig.add_subplot(gs[1, 1])
ax21 = fig.add_subplot(gs[2, 1])
ax31 = fig.add_subplot(gs[3, 1])
ax41 = fig.add_subplot(gs[4, 1])
ax51 = fig.add_subplot(gs[5, 1])
# ax61 = fig.add_subplot(gs[6, 1])
ax0.plot(t_x/60/60, trajec)
# ax1.plot(tb2[:-1]/60/60, mov2)
ax1.plot(tb5[:-1]/60/60, mov5)
# ax3.plot(tb10[:-1]/60/60, mov10)
ax2.plot(tb15[:-1]/60/60, mov15)
# ax3.plot(tb30[:-1]/60/60, mov30)
ax3.plot(tb60[:-1]/60/60, mov60)
ax4.plot(tb150[:-1]/60/60, mov150)
ax5.plot(tb300[:-1]/60/60, mov300)
# ax11.hist(mov2, bins=np.linspace(1,np.max(mov2),int(np.max(mov2))))
ax11.hist(mov5, bins=np.linspace(1,np.max(mov5)+1,int(np.max(mov5)+1)))
# ax31.hist(mov10, bins=np.linspace(1,np.max(mov10),int(np.max(mov10))))
ax21.hist(mov15, bins=np.linspace(1,np.max(mov15)+1,int(np.max(mov15)+1)))
# ax31.hist(mov30, bins=np.linspace(1,np.max(mov30),int(np.max(mov30))))
ax31.hist(mov60, bins=np.linspace(1,np.max(mov60)+1,int(np.max(mov60)+1)))
ax41.hist(mov150, bins=np.linspace(1,np.max(mov150)+1,int(np.max(mov150)+1)))
ax51.hist(mov300, bins=np.linspace(1,np.max(mov300)+1,int(np.max(mov300)+1)))
# ax7.hist(mov2)
tag = ['trajectory', '5', '15', '60', '150', '300']
for idx, ax in enumerate([ax0, ax1, ax2, ax3, ax4, ax5]):
xl_min=np.min(t_x)/60/60
xl_max=np.max(t_x)/60/60
ax.set_xlim([xl_min ,xl_max])
ax.text(0.01, 0.7, tag[idx], transform=ax.transAxes, fontsize='small')
if ax != ax0:
ax.set_ylabel('n')
ax0.set_ylim([0,15])
ax0.invert_yaxis()
ax0.set_ylabel('electrode')
ax5.set_xlabel('Time [h]')
fig.suptitle('EODf '+str(np.round(freq[i],2))+' '+names[i], fontsize=12)
# embed()
# quit()
fig.savefig('../../../jan_plots/trajec'+str(i)+'.pdf')
plt.close()
# ###############################################################################################################
# # roll time axis
# start = []
# stop = []
# for j in range(len(roaming_events)):
# start.extend(roaming_events[j][0])
# stop.extend(roaming_events[j][1])
#
# N_rec_time_bins = get_recording_number_in_time_bins(time_bins[::int((60 / bin_len) * 60)])
#
# # rolled time axis for nicer plot midnight in the middle start noon
# N_start, bin_edges = np.histogram(np.array(start) * 5, bins=time_bins[::int((60 / bin_len) * 60)])
# N_stop, bin_edges2 = np.histogram(np.array(stop) * 5, bins=time_bins[::int((60 / bin_len) * 60)])
# rolled_start = np.roll(N_start / N_rec_time_bins, int(len(N_start) / 2))
# rolled_stop = np.roll(N_stop / N_rec_time_bins, int(len(N_stop) / 2))
# rolled_bins = (bin_edges[:-1] / time_factor) + 0.5
#
# ###############################################################################################################
# # figure 1: max_channel_changes per time zone and per duration of the roaming event
# fig = plt.figure(constrained_layout=True, figsize=[15 / inch, 14 / inch])
# gs = gridspec.GridSpec(ncols=6, nrows=3, figure=fig, hspace=0.01, wspace=0.01,
# height_ratios=[1, 1, 1], width_ratios=[1, 1, 1, 1, 1, 1], left=0.1, bottom=0.15, right=0.95,
# top=0.95)
#
# ax0 = fig.add_subplot(gs[0, :])
# ax1 = fig.add_subplot(gs[1, :3])
# ax2 = fig.add_subplot(gs[1, 3:], sharex=ax1)
# ax3 = fig.add_subplot(gs[2, :2], sharey=ax2)
# ax4 = fig.add_subplot(gs[2, 2:4], sharey=ax2)
# ax5 = fig.add_subplot(gs[2, 4:])
#
# # axins = inset_axes(ax1, width='30%', height='60%')
#
# # bar plot
# ax0.bar(rolled_bins, rolled_start, color=color2[4])
# print('bar plot')
# print('day: mean ', np.round(np.mean([rolled_start[:6], rolled_start[18:]]), 2),
# ' std: ', np.round(np.std([rolled_start[:6], rolled_start[18:]]), 2))
#
# print('night: mean ', np.round(np.mean(rolled_start[6:18]), 2),
# ' std: ', np.round(np.std(rolled_start[6:18]), 2))
#
# ax0.plot([16.5, 6.5], [20, 20], color=color_diffdays[0], lw=7)
# ax0.plot([16.5, 18.5], [20, 20], color=color_diffdays[3], lw=7)
# ax0.plot([4.5, 6.5], [20, 20], color=color_diffdays[3], lw=7)
#
# ###############################################################################################################
# # curve_fit: tau, std, n
# curvefit_stat = []
#
# xdata = np.linspace(0.0, 10., 500)
# y_speeds = []
# for plot_zone, color_zone, day_zone, pos_zone in \
# zip([day, dusk, night, dawn], [6, 1, 4, 0], ['day', 'dusk', 'night', 'dawn'], [1, 2, 3, 4]):
#
# # boxplot ax1
# props_e = dict(linewidth=2, color=color2[color_zone])
# bp = ax1.boxplot(dauer[np.in1d(wann * 5, plot_zone)], positions=[pos_zone], widths=0.7,
# showfliers=False, vert=False,
# boxprops=props_e, medianprops=props_e, capprops=props_e, whiskerprops=props_e)
#
# x_n = [item.get_xdata() for item in bp['whiskers']][1][1]
# n = len(dauer[np.in1d(wann * 5, plot_zone)])
# ax1.text(x_n + 2, pos_zone, str(n), ha='left', va='center')
# print('dauer: ', day_zone, np.median(dauer[np.in1d(wann * 5, plot_zone)]),
# ' 25, 75: ', np.percentile(dauer[np.in1d(wann * 5, plot_zone)], [25, 75]))
#
# # curve fit
# x_dauer = dauer[dauer <= 10][np.in1d(wann[dauer <= 10] * 5, plot_zone)]
# y_speed = speeds[dauer <= 10][np.in1d(wann[dauer <= 10] * 5, plot_zone)]
# y_speeds.append(y_speed)
#
# popt, pcov = optimize.curve_fit(func, x_dauer, y_speed)
# perr = np.sqrt(np.diag(pcov))
# print(day_zone, popt, 'perr', perr[1])
# curvefit_stat.append(np.array([popt[1], perr[1], n]))
#
# # plot dauer vs speed
# ax2.plot(x_dauer, y_speed, 'o', alpha=0.3, color=color2[color_zone])
#
# ax3.plot(x_dauer, y_speed, 'o', alpha=0.3, color=color2[color_zone])
#
# # plot curve fit
# ax4.plot(xdata, func(xdata, *popt), '-', color=color2[color_zone], label=day_zone)
# ax4.set_ylim(ax2.get_ylim())
#
# curvefit_stat = np.array(curvefit_stat)
# # plot std of tau
# ax5.bar([0, 1, 2, 3], curvefit_stat[:, 0], yerr=curvefit_stat[:, 1], color=color2[4])
#
# ###############################################################################################################
# # statistic
# day_group = [day, dusk, night, dawn]
# for subset in itertools.combinations([0, 1, 2, 3], 2):
# mean1, std1, n1 = curvefit_stat[subset[0]]
# mean2, std2, n2 = curvefit_stat[subset[1]]
# t, p = stats.ttest_ind_from_stats(mean1, std1, n1, mean2, std2, n2)
# d = cohen_d(y_speeds[subset[0]], y_speeds[subset[1]])
# print(['day', 'dusk', 'night', 'dawn'][subset[0]], ['day', 'dusk', 'night', 'dawn'][subset[1]], 't: ',
# np.round(t, 2), 'p: ', np.round(p, 4), 'd: ', d)
#
# print(stats.mannwhitneyu(dauer[dauer <= 100][np.in1d(wann[dauer <= 100] * 5, day_group[subset[0]])],
# dauer[dauer <= 100][np.in1d(wann[dauer <= 100] * 5, day_group[subset[1]])]))
# if subset[0] == 0 and subset[1] == 2:
# significance_bar(ax5, p, None, subset[0], subset[1], 4.)
#
# ###############################################################################################################
# # labels
# ax0.set_ylabel('# Roaming Events', fontsize=fs)
# ax0.set_xticks([0, 6, 12, 18, 24])
# ax0.set_xticklabels(['12:00', '18:00', '00:00', '06:00', '12:00'])
# ax0.set_xlabel('Time', fontsize=fs)
#
# ax1.set_yticks([1, 2, 3, 4])
# ax1.set_yticklabels(['day', 'dusk', 'night', 'dawn'])
# ax1.set_xlabel('Duration [min]', fontsize=fs)
# ax1.invert_yaxis()
#
# ax2.set_xlabel('Duration [min]', fontsize=fs)
# ax2.set_ylabel('Speed [m/min]', fontsize=fs)
# ax2.set_ylim([0, 27])
#
# ax3.set_ylabel('Speed [m/min]', fontsize=fs)
# ax3.set_xlabel('Duration [min]', fontsize=fs)
# ax3.set_xlim([0, 10])
#
# ax4.set_xlabel('Duration [min]', fontsize=fs)
# ax4.set_xlim([0, 10])
#
# ax5.set_xticks([0, 1, 2, 3])
# ax5.set_xticklabels(['day', 'dusk', 'night', 'dawn'], rotation=45)
# ax5.set_ylabel(r'$\tau$')
#
# tagx = [-0.05, -0.07, -0.07, -0.17, -0.17, -0.17]
# for idx, ax in enumerate([ax0, ax1, ax2, ax3, ax4, ax5]):
# ax.make_nice_ax()
# ax.text(tagx[idx], 1.05, chr(ord('A') + idx), transform=ax.transAxes, fontsize='large')
#
# # fig.align_ylabels()
# # fig.savefig(save_path + 'roaming_events.pdf')
# # fig.savefig(save_path_pres + 'roaming_events.pdf')
#
# ###############################################################################################################
# # figure 2:
# linregress_stat = []
# fig2 = plt.figure(constrained_layout=True, figsize=[15 / inch, 10 / inch])
# gs = gridspec.GridSpec(ncols=1, nrows=2, figure=fig2, hspace=0.05, wspace=0.0,
# height_ratios=[1, 2], left=0.1, bottom=0.15, right=0.95, top=0.95)
#
# ax21 = fig2.add_subplot(gs[0, 0])
# ax23 = fig2.add_subplot(gs[1, 0])
#
# for plot_zone, color_zone, day_zone, bar_pos, pos_zone in \
# zip([day, dusk, night, dawn], [6, 1, 4, 0], ['day', 'dusk', 'night', 'dawn'], [-0.3, -0.1, 0.1, 0.3],
# [0, 1, 2, 3]):
# # pdf
# N_roam, bin_roam = np.histogram(roam_dist[np.in1d(wann * 5, plot_zone)], bins=np.linspace(0, 15, 16))
# N_roam = N_roam / np.sum(N_roam) / (bin_roam[1] - bin_roam[0])
# ax21.plot(bin_roam[:-1], N_roam, color=color2[color_zone], label=day_zone)
# ax21.set_xlabel('Distance [m]')
# ax21.set_ylabel('PDF')
# ax21.set_xlim([1, 15])
#
# # duration vs distance
# ax23.plot(dauer[np.in1d(wann * 5, plot_zone)], roam_dist[np.in1d(wann * 5, plot_zone)], 'o',
# color=color2[color_zone], alpha=0.3)
# res = stats.linregress(dauer[np.in1d(wann * 5, plot_zone)], roam_dist[np.in1d(wann * 5, plot_zone)])
# print(day_zone, res.slope)
# linregress_stat.append(np.array([res.slope, res.stderr, len(dauer[np.in1d(wann * 5, plot_zone)])]))
# ax23.set_xlabel('Duration [min]')
# ax23.set_ylabel('Distance [m]')
# ax23.set_xlim([0, 100])
#
# print('linregress')
# for subset in itertools.combinations([0, 1, 2, 3], 2):
# mean1, std1, n1 = linregress_stat[subset[0]]
# mean2, std2, n2 = linregress_stat[subset[1]]
# t, p = stats.ttest_ind_from_stats(mean1, std1, n1, mean2, std2, n2)
# d = cohen_d(y_speeds[subset[0]], y_speeds[subset[1]])
# # print(['day', 'dusk', 'night', 'dawn'][subset[0]], ['day', 'dusk', 'night', 'dawn'][subset[1]], 't: ',
# # np.round(t, 2), 'p: ', np.round(p, 4), 'd: ', d)
# # print(np.round(0.05 / 6, 4))
#
# for axis in [ax21, ax23]:
# axis.make_nice_ax()
#
# ax21.legend(loc='best', bbox_to_anchor=(0.5, 0.7, 0.5, 0.5), ncol=2)
#
# fig2.savefig(save_path_pres + 'roaming_distance.pdf')
# fig2.savefig(save_path + 'roaming_distance.pdf')
#
# plt.show()
#
# # df = pd.DataFrame({'duration': dauer, 'speed': speeds, 'distance': roam_dist})
# embed()
# quit()