import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.colors as mcolors import matplotlib.gridspec as gridspec import math from IPython import embed from scipy import stats import os from IPython import embed from params import * import datetime import itertools import pandas as pd import helper_functions as hf inch = 2.45 save_path = '../../thesis/Figures/Methods/' # color2 = ['#f39c12', '#d35400', '#f8c471', '#dc7633', '#c0392b', '#f1c40f'] # fig, ax = plt.subplots(1, 1, figsize=(16 / inch, 5 / inch)) # fig.subplots_adjust(left=0.1, bottom=0.30, right=0.95, top=0.95) # # ax.plot([0,0.5,1,2], [1,1,1,1], '*', color=color2[0], label='Fish 1', markersize=7) # ax.plot([0,1,1.5,2], [2,2,2,2], '*', color=color2[1], label='Fish 2', markersize=7) # # ax.set_ylim(0.5,2.5) # ax.set_xlim(-0.2,2.7) # ax.set_xticks([0,1,2]) # ax.set_yticks([1,2]) # ax.set_yticklabels([700,720]) # ax.set_xlabel('Time', fontsize=fs) # ax.set_ylabel('Frequency', fontsize=fs) # ax.make_nice_ax() # ax.legend(loc='upper right') # # # fig.savefig(save_path+'till_data_structure.png') # fig.savefig(save_path + 'till_data_structure.pdf') # # plt.show() x1 = [2.5, 5] y1 = [1, 1] x2 = [2.5, 4] y2 = [1.2, 1.2] x3 = [1,3] y3 = [2.5,2.5] x4 = [1,1.5] y4 = [1.7,1.7] # fig1, [ax1,ax2,ax3] = plt.subplots(3, 1, figsize=(16 / inch, 10 / inch)) fig1.subplots_adjust(left=0.1, bottom=0.1, right=0.85, top=0.95) ax2.plot(x1,y1, '-', color=color2[0], label='Fish 1', linewidth=2, markersize=7) ax2.plot(x2,y2, '-', color=color2[1], label='ID 2', linewidth=2, markersize=7) ax2.plot(x3,y3, '-', color=color2[4], label='ID 3', linewidth=2, markersize=7) ax2.plot(x4,y4, '-', color='gray', label='ID 4', linewidth=2, markersize=7) ax1.plot(x1,y1, '-', color=color2[0], linewidth=2, markersize=7) ax1.plot(x2,y2, '-', color=color2[1], linewidth=2, markersize=7) ax1.plot(x3,y3, '-', color=color2[4], linewidth=2, markersize=7) ax1.plot(x4,y4, '-', color='gray', linewidth=2, markersize=7) ax3.plot(x1,y1, '-', color=color2[0], linewidth=2, markersize=7) ax3.plot(x2,y2, '-', color=color2[1], linewidth=2, markersize=7) ax3.plot(x3,y3, '-', color='gray', linewidth=2, markersize=7) ax3.plot([2.5, 4], y1, 'o', color=color2[0], linewidth=2, markersize=7) ax3.plot(x2,y2, 'o', color=color2[1], linewidth=2, markersize=7) ax3.plot([2.5, 3], y3, 'o', color='gray', linewidth=2, markersize=7) ax1.vlines(2.2, ymin=0, ymax=5.5, color='k', linestyle='dashed') ax1.vlines(5.3, ymin=0, ymax=5.5, color='k', linestyle='dashed') ax1.plot([2.2,2.5], [0.8,0.8],'k', linestyle='dotted') ax1.plot([5.0,5.3], [0.8,0.8],'k', linestyle='dotted') ax2.axvspan(2.2, 2.8, color=color2[0], alpha=0.1) ax2.axvspan(2.2, 2.8, color=color2[1], alpha=0.1) ax2.axvspan(2.2, 2.8, color=color2[4], alpha=0.1) ax2.axvspan(3.7, 4.3, color=color2[1], alpha=0.1) ax2.axvspan(2.7, 3.3, color=color2[4], alpha=0.1) ax3.hlines(0.6, xmin=0, xmax=5.5, color='k', linestyle='dashed') ax3.hlines(1.4, xmin=0, xmax=5.5, color='k', linestyle='dashed') # ax3.vlines(3.7, ymin=0.8, ymax=1.2, color='k') # ax3.vlines(4.3, ymin=0.8, ymax=1.2, color='k') # ax3.hlines(0.8, ymin=2.3, ymax=2.7, color='k') # ax3.hlines(3.3, ymin=2.3, ymax=2.7, color='k') # ax3.plot([2.2,2.8], [1.2,1.2],'k') # ax3.plot([3.7,4.3], [1.2,1.2],'k') # ax3.plot([2.7,3.3], [2.7,2.7],'k') # ax3.plot([2.2,2.8], [0.8,0.8],'k') # ax3.plot([3.7,4.3], [0.8,0.8],'k') # ax3.plot([2.7,3.3], [2.3,2.3],'k') for idx, ax in enumerate([ax1,ax2,ax3]): ax.text(-0.09, 1, chr(ord('A') + idx), transform=ax.transAxes, fontsize='large') ax.set_ylim(0,3.5) ax.set_xlim(0.5,5.5) ax.set_yticks([]) ax.set_xticks([]) # ax.set_xticklabels([]) # ax.set_yticklabels([]) ax.set_xlabel('Time', fontsize=fs) ax.set_ylabel('EODf', fontsize=fs) ax.make_nice_ax() ax = plt.gca() ax2.legend(loc='center right', bbox_to_anchor=(1.2, 0.5)) # fig1.savefig(save_path + 'connect_ID.png') fig1.savefig(save_path + 'connect_ID.pdf') plt.show() exit() # temperatur t = [] for index, filename_idx in enumerate([1, 4, 6]): filename = sorted(os.listdir('../../../data/'))[filename_idx] temp = pd.read_csv('../../../data/' + filename + '/temperatures.csv', sep=';') t.append(np.array(temp.values.tolist())[:,1]) print(np.mean(np.hstack(t))) print(np.min(np.hstack(t))) print(np.max(np.hstack(t)))