import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.gridspec as gridspec from IPython import embed import helper_functions as hf from params import * import os import datetime if __name__ == '__main__': ################################################################################################################### # parameter and variables # plot params inch = 2.45 save_path = '../../thesis/Figures/Results/' kernel_size = 100 ################################################################################################################### # load all the data of one day # for filename_idx in [1, 4, 6]: for filename_idx in [1]: filename = sorted(os.listdir('../data/'))[filename_idx] all_max_ch_means = np.load('../data/' + filename + '/all_max_ch.npy', allow_pickle=True) all_xticks = np.load('../data/' + filename + '/all_xtickses.npy', allow_pickle=True) all_ipp = np.load('../data/' + filename + '/all_ipp.npy', allow_pickle=True) power_means = np.load('../data/' + filename + '/power_means.npy', allow_pickle=True) freq = np.load('../data/' + filename + '/fish_freq_q10.npy', allow_pickle=True) ############################################################################################################### # get fish # for fish_number in range(len(power_means)): for fish_number in [14]: if power_means[fish_number] >= -90.0: ipp = all_ipp[fish_number] x_tickses = all_xticks[fish_number] max_ch_mean = all_max_ch_means[fish_number] # smoothing of max channel mean kernel = np.ones(kernel_size) / kernel_size smooth_mcm = np.convolve(max_ch_mean, kernel, 'valid') try: smooth_x = x_tickses[int(np.ceil(kernel_size/2)):-int(np.floor(kernel_size/2))] except: embed() quit() ##################################################################################################### # plot traces fig1, ax1 = plt.subplots(1, 1, figsize=(13 / inch, 8 / inch)) fig1.subplots_adjust(left=0.12, bottom=0.15, right=0.99, top=0.99) ax1.imshow(ipp[::20].T[::-1], vmin=-100, vmax=-50, aspect='auto', interpolation='gaussian', extent=[x_tickses[0], x_tickses[-1], -0.5, 15.5]) ax1.plot(smooth_x[::20], smooth_mcm[::20], '.', color=color2[4]) # ax1.set_title('freq: %.1f, power: %.1f' %(freq[:,2][fish_number], power_means[fish_number]), fontsize=fs + 2) # ax1.set_title('freq: %.1f, Nr: %.1f' %(freq[:,2][fish_number], fish_number), fontsize=fs + 2) ax1.set_xticks(smooth_x[::350]) ax1.beautimechannelaxis() ax1.timeaxis() # fig1.autofmt_xdate() fig1.savefig(save_path + 'trajectory_'+str(fish_number)+'.pdf') # fig1.savefig('../../../goettingen2021_poster/pictures/trajectory_'+ str(fish_number)+'.pdf') print(fish_number, freq[fish_number,2]) plt.show() embed()