import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.gridspec as gridspec from IPython import embed import helper_functions as hf from params import * import os if __name__ == '__main__': ################################################################################################################### # parameter and variables kernel_size = 100 kernel = np.ones(kernel_size) / kernel_size fig1 = plt.figure(constrained_layout=True, figsize=[15 / inch, 15 / inch]) gs = gridspec.GridSpec(ncols=2, nrows=3, figure=fig1, hspace=0.05, wspace=0.05, width_ratios=[1, 1], height_ratios=[1, 1, 1], left=0.1, bottom=0.15, right=0.95, top=0.98) c = 0 ax_counter = 0 ################################################################################################################### # load all the data of one day for filename_idx in [0, 1, 2, 3]: filename = sorted(os.listdir('../data/'))[filename_idx] all_max_ch_means = np.load('../data/' + filename + '/all_max_ch.npy', allow_pickle=True) all_xticks = np.load('../data/' + filename + '/all_xtickses.npy', allow_pickle=True) all_ipp = np.load('../data/' + filename + '/all_ipp.npy', allow_pickle=True) power_means = np.load('../data/' + filename + '/power_means.npy', allow_pickle=True) freq = np.load('../data/' + filename + '/fish_freq_q10.npy', allow_pickle=True) names = np.load('../data/' + filename + '/fish_species.npy', allow_pickle=True) ############################################################################################################### # get fish print(filename) for fish_number in range(len(power_means)): if names[fish_number] == 'Eigenmannia' and power_means[fish_number] >= -90.0: ipp = all_ipp[fish_number] x_tickses = all_xticks[fish_number] max_ch_mean = all_max_ch_means[fish_number] # smoothing of max channel mean smooth_mcm = np.convolve(max_ch_mean, kernel, 'valid') try: smooth_x = x_tickses[int(np.ceil(kernel_size / 2)):-int(np.floor(kernel_size / 2))] except: embed() quit() ##################################################################################################### # plot traces ax1 = fig1.add_subplot(gs[c]) ax1.imshow(ipp[::20].T[::-1], vmin=-100, vmax=-50, aspect='auto', interpolation='gaussian', extent=[x_tickses[0], x_tickses[-1], -0.5, 15.5]) ax1.plot(smooth_x[::20], smooth_mcm[::20], '.', color=color2[4]) ax1.make_nice_ax() ax1.axhline(7.5, xmin=0, xmax=15, color='white', lw=4) ax1.set_yticks([0, 1, 2, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15]) ax1.set_yticklabels(['1', '', '3', '', '5', '', '7', '', 'g', '', '10', '', '12', '', '14', '', '16'], fontsize=9) print(ax_counter) ax1.text(-0.17, 1, chr(ord('A') + ax_counter), transform=ax1.transAxes, fontsize='large') ax_counter += 1 ax1.invert_yaxis() ax1.xaxis_date() date_format = mdates.DateFormatter('%H:%M') ax1.xaxis.set_major_formatter(date_format) if c in [3, 4]: ax1.set_xlabel('Time', fontsize=11) if c in [1, 2]: ax1.set_xticks(ax1.get_xticks()[::2]) if c in [0, 2, 4]: ax1.set_ylabel('Electrode', fontsize=11) c += 1 ################################################################################################################### # save plot fig1.savefig(save_path + 'eigen_trajectories.pdf') plt.show()