Upload files to ''
This commit is contained in:
parent
acf36a4d58
commit
d0d2690f96
125
plot_material_eod.py
Normal file
125
plot_material_eod.py
Normal file
@ -0,0 +1,125 @@
|
||||
import sys
|
||||
import os
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
import matplotlib.pyplot as plt
|
||||
from thunderfish.dataloader import open_data
|
||||
from thunderfish.eodanalysis import eod_waveform
|
||||
from IPython import embed
|
||||
import matplotlib.gridspec as gridspec
|
||||
from params import *
|
||||
|
||||
|
||||
def unfilter(data, samplerate, cutoff):
|
||||
"""
|
||||
Apply inverse high-pass filter on data.
|
||||
|
||||
Assumes high-pass filter \\[ \\tau \\dot y = -y + \\tau \\dot x \\] has
|
||||
been applied on the original data \\(x\\), where \\(\tau=(2\\pi
|
||||
f_{cutoff})^{-1}\\) is the time constant of the filter. To recover \\(x\\)
|
||||
the ODE \\[ \\tau \\dot x = y + \\tau \\dot y \\] is applied on the
|
||||
filtered data \\(y\\).
|
||||
|
||||
Parameters:
|
||||
-----------
|
||||
data: ndarray
|
||||
High-pass filtered original data.
|
||||
samplerate: float
|
||||
Sampling rate of `data` in Hertz.
|
||||
cutoff: float
|
||||
Cutoff frequency \\(f_{cutoff}\\) of the high-pass filter in Hertz.
|
||||
|
||||
Returns:
|
||||
--------
|
||||
data: ndarray
|
||||
Recovered original data.
|
||||
"""
|
||||
tau = 0.5 / np.pi / cutoff
|
||||
fac = tau * samplerate
|
||||
data -= np.mean(data)
|
||||
d0 = data[0]
|
||||
x = d0
|
||||
for k in range(len(data)):
|
||||
d1 = data[k]
|
||||
x += (d1 - d0) + d0 / fac
|
||||
data[k] = x
|
||||
d0 = d1
|
||||
return data
|
||||
|
||||
|
||||
def calc_mean_eod(t0, f, data, dt=10, unfilter=0):
|
||||
channel_list = np.arange(data.channels)
|
||||
samplerate = data.samplerate
|
||||
|
||||
start_i = t0 * samplerate
|
||||
end_i = t0 * samplerate + dt * samplerate + 1
|
||||
t = np.arange(0, dt, 1 / f)
|
||||
|
||||
mean_EODs = []
|
||||
for c in channel_list:
|
||||
mean_eod, eod_times = eod_waveform(data[start_i:end_i, c], samplerate, t, unfilter_cutoff=unfilter)
|
||||
mean_EODs.append(mean_eod)
|
||||
|
||||
max_size = list(map(lambda x: np.max(x.T[1]) - np.min(x.T[1]), mean_EODs))
|
||||
EOD = mean_EODs[np.argmax(max_size)]
|
||||
|
||||
return EOD, samplerate
|
||||
|
||||
|
||||
def main(folder, filename):
|
||||
# folder = path_to_files
|
||||
data = open_data(os.path.join(folder, 'traces-grid1.raw'), -1, 60.0, 10.0)
|
||||
|
||||
power_means = np.load('../data/' + filename + '/power_means.npy', allow_pickle=True)
|
||||
all_q10 = np.load('../data/' + filename + '/fish_freq_q10.npy', allow_pickle=True)
|
||||
all_t = np.load('../data/' + filename + '/eod_times_new_new.npy', allow_pickle=True)
|
||||
all_f = np.load('../data/' + filename + '/eod_freq_new_new.npy', allow_pickle=True)
|
||||
|
||||
plot_pannel = [16, 0]
|
||||
cutoff_value = [200, 0]
|
||||
y_ticks = [[-0.001, 0, 0.001, 0.0015], [-0.002, 0, 0.002]]
|
||||
|
||||
##################################################################################################################
|
||||
# figure
|
||||
fig = plt.figure(constrained_layout=True, figsize=[15 / inch, 6 / inch])
|
||||
gs = gridspec.GridSpec(ncols=2, nrows=1, figure=fig, hspace=0.05, wspace=0.0,
|
||||
left=0.1, bottom=0.15, right=0.95, top=0.98)
|
||||
|
||||
ax2 = fig.add_subplot(gs[0, 1])
|
||||
ax1 = fig.add_subplot(gs[0, 0], sharey=ax2)
|
||||
|
||||
for fn_idx, fish_number, ax in zip([0, 1], [15, 22], [ax1, ax2]):
|
||||
print(all_q10[fish_number, 2], fish_number)
|
||||
|
||||
t = all_t[fish_number][plot_pannel[fn_idx]]
|
||||
f = all_f[fish_number][plot_pannel[fn_idx]]
|
||||
EOD, samplingrate = calc_mean_eod(t, f, data, unfilter=cutoff_value[fn_idx])
|
||||
|
||||
##############################################################################################################
|
||||
# plot
|
||||
ax.plot(EOD.T[0], EOD.T[1], color=color_efm[fn_idx], lw=2)
|
||||
ax.fill_between(EOD.T[0], EOD.T[1] + EOD.T[2], EOD.T[1] - EOD.T[2],
|
||||
color=color_efm[fn_idx], alpha=0.7)
|
||||
ax.make_nice_ax()
|
||||
|
||||
ax.text(-0.12, 0.95, chr(ord('A') + fn_idx), transform=ax.transAxes, fontsize='large')
|
||||
ax.text(0.8, 0.95, str(np.round(all_q10[fish_number, 2], 1))+' Hz', transform=ax.transAxes, fontsize=10)
|
||||
|
||||
ax.set_xlabel('Time')
|
||||
ax.set_yticks([0])
|
||||
ax.set_xticks([])
|
||||
# fig.suptitle(all_q10[fish_number, 2])
|
||||
|
||||
ax1.set_ylabel('Amplitude')
|
||||
fig.savefig(save_path + 'eod_waves.pdf')
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
for index, filename_idx in enumerate([2]):
|
||||
filename = sorted(os.listdir('../../../data/mount_data/sanmartin/softgrid_1x16/'))[filename_idx]
|
||||
folder = '../../../data/mount_data/sanmartin/softgrid_1x16/' + filename
|
||||
print('new file: ' + filename)
|
||||
main(folder, filename)
|
72
plot_pancake.py
Normal file
72
plot_pancake.py
Normal file
@ -0,0 +1,72 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.dates as mdates
|
||||
import matplotlib.gridspec as gridspec
|
||||
|
||||
from IPython import embed
|
||||
import helper_functions as hf
|
||||
from params import *
|
||||
import os
|
||||
import datetime
|
||||
|
||||
if __name__ == '__main__':
|
||||
###################################################################################################################
|
||||
# parameter and variables
|
||||
# plot params
|
||||
inch = 2.45
|
||||
save_path = '../../thesis/Figures/Results/'
|
||||
kernel_size = 100
|
||||
|
||||
###################################################################################################################
|
||||
# load all the data of one day
|
||||
# for filename_idx in [1, 4, 6]:
|
||||
for filename_idx in [1]:
|
||||
filename = sorted(os.listdir('../data/'))[filename_idx]
|
||||
|
||||
all_max_ch_means = np.load('../data/' + filename + '/all_max_ch.npy', allow_pickle=True)
|
||||
all_xticks = np.load('../data/' + filename + '/all_xtickses.npy', allow_pickle=True)
|
||||
all_ipp = np.load('../data/' + filename + '/all_ipp.npy', allow_pickle=True)
|
||||
power_means = np.load('../data/' + filename + '/power_means.npy', allow_pickle=True)
|
||||
freq = np.load('../data/' + filename + '/fish_freq_q10.npy', allow_pickle=True)
|
||||
###############################################################################################################
|
||||
# get fish
|
||||
# for fish_number in range(len(power_means)):
|
||||
for fish_number in [14]:
|
||||
if power_means[fish_number] >= -90.0:
|
||||
ipp = all_ipp[fish_number]
|
||||
x_tickses = all_xticks[fish_number]
|
||||
max_ch_mean = all_max_ch_means[fish_number]
|
||||
|
||||
# smoothing of max channel mean
|
||||
kernel = np.ones(kernel_size) / kernel_size
|
||||
smooth_mcm = np.convolve(max_ch_mean, kernel, 'valid')
|
||||
|
||||
try:
|
||||
smooth_x = x_tickses[int(np.ceil(kernel_size/2)):-int(np.floor(kernel_size/2))]
|
||||
except:
|
||||
embed()
|
||||
quit()
|
||||
#####################################################################################################
|
||||
# plot traces
|
||||
fig1, ax1 = plt.subplots(1, 1, figsize=(13 / inch, 8 / inch))
|
||||
fig1.subplots_adjust(left=0.12, bottom=0.15, right=0.99, top=0.99)
|
||||
|
||||
ax1.imshow(ipp[::20].T[::-1], vmin=-100, vmax=-50, aspect='auto', interpolation='gaussian',
|
||||
extent=[x_tickses[0], x_tickses[-1], -0.5, 15.5])
|
||||
|
||||
ax1.plot(smooth_x[::20], smooth_mcm[::20], '.', color=color2[4])
|
||||
|
||||
# ax1.set_title('freq: %.1f, power: %.1f' %(freq[:,2][fish_number], power_means[fish_number]), fontsize=fs + 2)
|
||||
# ax1.set_title('freq: %.1f, Nr: %.1f' %(freq[:,2][fish_number], fish_number), fontsize=fs + 2)
|
||||
ax1.set_xticks(smooth_x[::350])
|
||||
ax1.beautimechannelaxis()
|
||||
ax1.timeaxis()
|
||||
# fig1.autofmt_xdate()
|
||||
|
||||
fig1.savefig(save_path + 'trajectory_'+str(fish_number)+'.pdf')
|
||||
# fig1.savefig('../../../goettingen2021_poster/pictures/trajectory_'+ str(fish_number)+'.pdf')
|
||||
print(fish_number, freq[fish_number,2])
|
||||
plt.show()
|
||||
embed()
|
||||
|
||||
|
170
plot_pie.py
Normal file
170
plot_pie.py
Normal file
@ -0,0 +1,170 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.dates as mdates
|
||||
import matplotlib.colors as mcolors
|
||||
import matplotlib.gridspec as gridspec
|
||||
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
|
||||
from IPython import embed
|
||||
from scipy import stats, optimize
|
||||
import pandas as pd
|
||||
import math
|
||||
import os
|
||||
from IPython import embed
|
||||
|
||||
from eventdetection import threshold_crossings, merge_events
|
||||
import helper_functions as hf
|
||||
from params import *
|
||||
from statisitic_functions import significance_bar, cohen_d
|
||||
import itertools
|
||||
|
||||
|
||||
def get_recording_number_in_time_bins(time_bins):
|
||||
"""
|
||||
Calculates the number of the recordings in the time bins
|
||||
|
||||
:param time_bins: numpy array with borders of the time bins
|
||||
:return: time_bins_recording: numpy array with the number of recordings to that specific time bin
|
||||
"""
|
||||
# variables
|
||||
time_bins_recordings = np.zeros(len(time_bins) - 1)
|
||||
|
||||
# load data
|
||||
for index, filename_idx in enumerate([0, 1, 2, 3]):
|
||||
filename = sorted(os.listdir('../data/'))[filename_idx]
|
||||
time_points = np.load('../data/' + filename + '/all_hms.npy', allow_pickle=True)
|
||||
|
||||
# in which bins is this recording, fill time_bins_recordings
|
||||
unique_time_points = np.unique(np.hstack(time_points))
|
||||
for idx, tb in enumerate(time_bins[:-1]):
|
||||
if np.any((unique_time_points >= tb) & (unique_time_points <= time_bins[idx + 1])):
|
||||
time_bins_recordings[idx] += 1
|
||||
|
||||
return time_bins_recordings
|
||||
|
||||
|
||||
def func(x, a, tau, c):
|
||||
return a * np.exp(-x / tau) + c
|
||||
|
||||
|
||||
def calc_movement(cbf, i):
|
||||
movement = cbf[0, :, i] + cbf[1, :, i]
|
||||
movement[np.isnan(movement)] = 0
|
||||
re_mov = cbf[0, :, i] - cbf[1, :, i]
|
||||
re_mov[np.isnan(re_mov)] = 0
|
||||
|
||||
return movement, re_mov
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
###################################################################################################################
|
||||
# parameter and variables
|
||||
# plot params
|
||||
inch = 2.45
|
||||
|
||||
c = 0
|
||||
cat_v1 = [0, 0, 750, 0]
|
||||
cat_v2 = [750, 750, 1000, 1000]
|
||||
cat_n = ['Eigenmannia', 'Apteronotus', 'Apteronotus']
|
||||
|
||||
###################################################################################################################
|
||||
# load data
|
||||
###################################################################################################################
|
||||
# load all the data of one day
|
||||
cbf2 = np.load('../data/cbf15.npy', allow_pickle=True)
|
||||
stl = np.load('../data/stl.npy', allow_pickle=True)
|
||||
freq = np.load('../data/f.npy', allow_pickle=True)
|
||||
names = np.load('../data/n.npy', allow_pickle=True)
|
||||
speed_average = np.load('../data/speed.npy', allow_pickle=True)
|
||||
|
||||
###################################################################################################################
|
||||
# pie chart
|
||||
###################################################################################################################
|
||||
|
||||
label = ['Transit', 'Stationary',
|
||||
'$\it{Eigenmannia\,sp.}$', '$\it{A.\,macrostomus}\,\u2640$', '$\it{A.\,macrostomus}\,\u2642$']
|
||||
size = 0.3
|
||||
|
||||
true = freq[(names != 'unknown') & (stl)]
|
||||
false = freq[(names != 'unknown') & (stl == False)]
|
||||
|
||||
true_per = len(true)
|
||||
false_per = len(false)
|
||||
|
||||
fracs = [true_per, false_per]
|
||||
|
||||
fracs2 = []
|
||||
fracs3 = []
|
||||
|
||||
for p in range(3):
|
||||
true = freq[(names == cat_n[p]) & (freq >= cat_v1[p]) & (freq < cat_v2[p]) & (stl)]
|
||||
false = freq[(names == cat_n[p]) & (freq >= cat_v1[p]) & (freq < cat_v2[p]) & (stl == False)]
|
||||
|
||||
fracs2.append(len(true))
|
||||
fracs3.append(len(false))
|
||||
|
||||
###################################################################################################################
|
||||
# figure 2
|
||||
# fig2, ax2 = plt.subplots(figsize=[9 / inch, 7.8 / inch], subplot_kw=dict(aspect="equal"))
|
||||
#
|
||||
# vals = np.array([fracs2, fracs3])
|
||||
#
|
||||
# ax2.pie(vals.sum(axis=0), colors=['#2e4053', '#ab1717', '#004d8d'], labels=label[2:],
|
||||
# startangle=90, radius=0.7, wedgeprops=dict(width=size, edgecolor='w', linewidth=3),
|
||||
# labeldistance=1.6, textprops=dict(ha='center'))
|
||||
#
|
||||
# wedges = ax2.pie(vals.flatten('F'), colors=['#425364', '#818c97', '#b32e2e', '#cc7373', '#195e98', '#6694ba'],
|
||||
# startangle=90, radius=0.7+size, wedgeprops=dict(width=size, edgecolor='w', alpha=0.82))
|
||||
#
|
||||
# ax2.pie(vals.sum(axis=0), colors=['#2e4053', '#ab1717', '#004d8d'],
|
||||
# startangle=90, radius=0.7+size, wedgeprops=dict(width=size+size, edgecolor='w', linewidth=3, fill=False))
|
||||
#
|
||||
# ax2.legend(wedges[0][:2], label[:2],
|
||||
# loc="center left",
|
||||
# bbox_to_anchor=(0.64, -0.46, 0.5, 1))
|
||||
#
|
||||
# centre_circle = plt.Circle((0, 0), 0.2, color='black', fc='white', linewidth=0)
|
||||
# fig2.gca().add_artist(centre_circle)
|
||||
#
|
||||
# plt.axis('equal')
|
||||
# plt.tight_layout()
|
||||
# fig2.savefig(save_path + 'pie.pdf')
|
||||
# # fig2.savefig('../../../goettingen2021_poster/pictures/pie.pdf')
|
||||
#
|
||||
# plt.show()
|
||||
#
|
||||
# embed()
|
||||
# quit()
|
||||
###################################################################################################################
|
||||
# figure 2
|
||||
fig2, ax2 = plt.subplots(figsize=[9 / inch, 7.8 / inch], subplot_kw=dict(aspect="equal"))
|
||||
|
||||
vals = np.array([fracs2, fracs3])
|
||||
|
||||
ax2.pie(vals.sum(axis=1), colors=['#1b2631', '#5d6d7e'], labels=label[:2],
|
||||
startangle=180, radius=0.7, wedgeprops=dict(width=size, edgecolor='w', linewidth=3),
|
||||
labeldistance=1.9, textprops=dict(ha='center'))
|
||||
|
||||
wedges = ax2.pie(vals.flatten(), colors=['#3B4A5A', '#b32e2e', '#195e98',
|
||||
'#818c97', '#cc7373', '#6694ba'],
|
||||
startangle=180, radius=0.7 + size, wedgeprops=dict(width=size, edgecolor='w', alpha=0.82))
|
||||
|
||||
ax2.pie(vals.sum(axis=1), colors=color_diffdays[:2],
|
||||
startangle=180, radius=0.7 + size,
|
||||
wedgeprops=dict(width=size + size, edgecolor='w', linewidth=3, fill=False))
|
||||
|
||||
ax2.legend(wedges[0][:3], label[2:],
|
||||
loc="center left",
|
||||
bbox_to_anchor=(0.5, -0.35, 0.5, 0.5))
|
||||
|
||||
centre_circle = plt.Circle((0, 0), 0.2, color='black', fc='white', linewidth=0)
|
||||
fig2.gca().add_artist(centre_circle)
|
||||
|
||||
plt.axis('equal')
|
||||
plt.tight_layout()
|
||||
fig2.savefig(save_path + 'pie.pdf')
|
||||
# fig2.savefig('../../../goettingen2021_poster/pictures/pie.pdf')
|
||||
|
||||
plt.show()
|
||||
embed()
|
||||
|
||||
|
58
plot_power_mean.py
Normal file
58
plot_power_mean.py
Normal file
@ -0,0 +1,58 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.dates as mdates
|
||||
import matplotlib.gridspec as gridspec
|
||||
|
||||
from IPython import embed
|
||||
import helper_functions as hf
|
||||
from params import *
|
||||
import os
|
||||
import datetime
|
||||
|
||||
if __name__ == '__main__':
|
||||
###################################################################################################################
|
||||
# parameter and variables
|
||||
# plot params
|
||||
inch = 2.45
|
||||
all_power_means = []
|
||||
###################################################################################################################
|
||||
# load all the data of one day
|
||||
for filename_idx in [1, 4, 6]:
|
||||
filename = sorted(os.listdir('../../../data/'))[filename_idx]
|
||||
|
||||
power_means = np.load('../data/' + filename + '/power_means.npy', allow_pickle=True)
|
||||
all_power_means.extend(power_means)
|
||||
|
||||
###########################################################################################################
|
||||
# plot power_mean histogram
|
||||
fig0= plt.figure(figsize=[16 / inch, 12 / inch])
|
||||
spec = gridspec.GridSpec(ncols=1, nrows=1, figure=fig0, hspace=0.5, wspace=0.5)
|
||||
ax0 = fig0.add_subplot(spec[0, 0])
|
||||
|
||||
n, bin_edges = np.histogram(power_means, bins=20)
|
||||
# n3 = n3 / np.sum(n3) / (bin_edges3[1] - bin_edges3[0])
|
||||
|
||||
ax0.bar(bin_edges[:-1] + (bin_edges[1] - bin_edges[0]) / 2, n, width=0.9 * (bin_edges[1] - bin_edges[0]))
|
||||
|
||||
ax0.set_xlabel('Power', fontsize=fs)
|
||||
ax0.set_ylabel('n', fontsize=fs)
|
||||
ax0.make_nice_ax()
|
||||
|
||||
###########################################################################################################
|
||||
# plot power_mean histogram
|
||||
fig1 = plt.figure(figsize=[16 / inch, 12 / inch])
|
||||
spec = gridspec.GridSpec(ncols=1, nrows=1, figure=fig1, hspace=0.5, wspace=0.5)
|
||||
ax1 = fig1.add_subplot(spec[0, 0])
|
||||
|
||||
n, bin_edges = np.histogram(all_power_means, bins=20)
|
||||
# n3 = n3 / np.sum(n3) / (bin_edges3[1] - bin_edges3[0])
|
||||
|
||||
ax1.bar(bin_edges[:-1] + (bin_edges[1] - bin_edges[0]) / 2, n, width=0.9 * (bin_edges[1] - bin_edges[0]))
|
||||
|
||||
ax1.set_xlabel('Power', fontsize=fs)
|
||||
ax1.set_ylabel('n', fontsize=fs)
|
||||
ax1.make_nice_ax()
|
||||
|
||||
plt.show()
|
||||
|
||||
|
512
plot_roaming_events.py
Normal file
512
plot_roaming_events.py
Normal file
@ -0,0 +1,512 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.dates as mdates
|
||||
import matplotlib.colors as mcolors
|
||||
import matplotlib.gridspec as gridspec
|
||||
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
|
||||
from IPython import embed
|
||||
from scipy import stats, optimize
|
||||
import pandas as pd
|
||||
import math
|
||||
import os
|
||||
from IPython import embed
|
||||
|
||||
from eventdetection import threshold_crossings, merge_events
|
||||
import helper_functions as hf
|
||||
from params import *
|
||||
from statisitic_functions import significance_bar, cohen_d
|
||||
import itertools
|
||||
|
||||
|
||||
def get_recording_number_in_time_bins(time_bins):
|
||||
"""
|
||||
Calculates the number of the recordings in the time bins
|
||||
|
||||
:param time_bins: numpy array with borders of the time bins
|
||||
:return: time_bins_recording: numpy array with the number of recordings to that specific time bin
|
||||
"""
|
||||
# variables
|
||||
time_bins_recordings = np.zeros(len(time_bins) - 1)
|
||||
|
||||
# load data
|
||||
for index, filename_idx in enumerate([0, 1, 2, 3]):
|
||||
filename = sorted(os.listdir('../data/'))[filename_idx]
|
||||
time_points = np.load('../data/' + filename + '/all_hms.npy', allow_pickle=True)
|
||||
|
||||
# in which bins is this recording, fill time_bins_recordings
|
||||
unique_time_points = np.unique(np.hstack(time_points))
|
||||
for idx, tb in enumerate(time_bins[:-1]):
|
||||
if np.any((unique_time_points >= tb) & (unique_time_points <= time_bins[idx + 1])):
|
||||
time_bins_recordings[idx] += 1
|
||||
|
||||
return time_bins_recordings
|
||||
|
||||
|
||||
def func(x, a, tau, c):
|
||||
return a * np.exp(-x / tau) + c
|
||||
|
||||
|
||||
def calc_movement(cbf, i):
|
||||
movement = cbf[0, :, i] + cbf[1, :, i]
|
||||
movement[np.isnan(movement)] = 0
|
||||
re_mov = cbf[0, :, i] - cbf[1, :, i]
|
||||
re_mov[np.isnan(re_mov)] = 0
|
||||
|
||||
return movement, re_mov
|
||||
|
||||
def gauss(t, shift, sigma, size, norm = False):
|
||||
if not hasattr(shift, '__len__'):
|
||||
g = np.exp(-((t - shift) / sigma) ** 2 / 2) * size
|
||||
if norm:
|
||||
g = g / (np.sum(g) * (t[1] - t[0]))
|
||||
return g
|
||||
else:
|
||||
t = np.array([t, ] * len(shift))
|
||||
res = np.exp(-((t.transpose() - shift).transpose() / sigma) ** 2 / 2) * size
|
||||
return res
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
###################################################################################################################
|
||||
# parameter and variables
|
||||
# plot params
|
||||
inch = 2.45
|
||||
|
||||
c = 0
|
||||
cat_v1 = [0, 0, 750, 0]
|
||||
cat_v2 = [750, 750, 1000, 1000]
|
||||
cat_n = ['Eigenmannia', 'Apteronotus', 'Apteronotus']
|
||||
|
||||
# time
|
||||
# time_bins 5 min
|
||||
time_factor = 60 * 60
|
||||
time_bins = np.arange(0, 24 * time_factor + 1, bin_len)
|
||||
|
||||
# percent roaming
|
||||
re = []
|
||||
roaming_events = []
|
||||
roaming_threshold = 2.1
|
||||
roaming_merge = 20 # in minutes
|
||||
roaming_exclusion = 0.25
|
||||
|
||||
iai = []
|
||||
dauer = []
|
||||
wann = []
|
||||
max_move = []
|
||||
distances = []
|
||||
percent = []
|
||||
speeds = []
|
||||
speed_transit = []
|
||||
max_move_boxes = [[], [], [], []]
|
||||
fish_names = []
|
||||
roam_dist = []
|
||||
roam_start = []
|
||||
conv_arrays = []
|
||||
|
||||
time_edges = np.array([4.5, 6.5, 16.5, 18.5]) * time_factor
|
||||
day = time_bins[:-1][(time_bins[:-1] >= time_edges[1]) & (time_bins[:-1] <= time_edges[2])]
|
||||
dusk = time_bins[:-1][(time_bins[:-1] >= time_edges[2]) & (time_bins[:-1] <= time_edges[3])]
|
||||
night = time_bins[:-1][(time_bins[:-1] <= time_edges[0]) | (time_bins[:-1] >= time_edges[3])]
|
||||
dawn = time_bins[:-1][(time_bins[:-1] >= time_edges[0]) & (time_bins[:-1] <= time_edges[1])]
|
||||
|
||||
###################################################################################################################
|
||||
# load data
|
||||
###################################################################################################################
|
||||
# load all the data of one day
|
||||
cbf2 = np.load('../data/cbf15.npy', allow_pickle=True)
|
||||
stl = np.load('../data/stl.npy', allow_pickle=True)
|
||||
freq = np.load('../data/f.npy', allow_pickle=True)
|
||||
names = np.load('../data/n.npy', allow_pickle=True)
|
||||
speed_average = np.load('../data/speed.npy', allow_pickle=True)
|
||||
trial_dur = np.load('../data/trial_dur.npy', allow_pickle=True)
|
||||
trajectories = np.load('../data/trajectories.npy', allow_pickle=True)
|
||||
trajec_x = np.load('../data/trajec_x.npy', allow_pickle=True)
|
||||
|
||||
###############################################################################################################
|
||||
# variables
|
||||
for index, filename_idx in enumerate([0]):
|
||||
filename = sorted(os.listdir('../data/'))[filename_idx]
|
||||
all_Ctime_v = np.load('../data/' + filename + '/all_Ctime_v.npy', allow_pickle=True)
|
||||
sampling_rate = 1 / np.diff(all_Ctime_v[0])[0] # in sec
|
||||
|
||||
cbf_counter = 0
|
||||
###################################################################################################################
|
||||
# analysis
|
||||
for i in range(len(trajectories)):
|
||||
if names[i] == 'unknown':
|
||||
continue
|
||||
|
||||
movement, re_mov = calc_movement(cbf2, cbf_counter)
|
||||
cbf_counter += 1
|
||||
|
||||
up_times, down_times = threshold_crossings(movement, roaming_threshold)
|
||||
u, d = merge_events(up_times, down_times, 4 * roaming_merge)
|
||||
roam_dur = np.diff(np.array([u, d]), axis=0)[0]
|
||||
ausschlag = []
|
||||
distance = []
|
||||
for a_idx in range(len(u)):
|
||||
ausschlag.append(np.nansum(movement[u[a_idx]:u[a_idx] + roam_dur[a_idx] + 1]))
|
||||
distance.append(np.max(re_mov[u[a_idx]:u[a_idx] + roam_dur[a_idx] + 1]))
|
||||
ausschlag = np.array(ausschlag)
|
||||
distance = np.array(distance)
|
||||
|
||||
speed = np.array(ausschlag / (roam_dur / 4))
|
||||
|
||||
# roaming events append only for the roaming fish
|
||||
if not stl[i]:
|
||||
if np.any(movement > roaming_threshold):
|
||||
c += 1
|
||||
re.append(np.array([up_times, down_times]))
|
||||
roaming_events.append(np.array([u * 3, d * 3])) # * 3 because than in 5 s intervals
|
||||
iai.extend(np.diff(sorted(np.hstack([u, d]))))
|
||||
|
||||
# distance
|
||||
for dist_i in range(len(u)):
|
||||
try:
|
||||
roam_traj = trajectories[i][
|
||||
(trajec_x[i] >= u[dist_i] * 15) & (trajec_x[i] < d[dist_i] * 15 + 15)]
|
||||
|
||||
di = np.max(roam_traj) - np.min(roam_traj)
|
||||
roam_dist.append(di)
|
||||
roam_start.append(roam_traj[0])
|
||||
except:
|
||||
plt.plot(trajec_x[i], trajectories[i])
|
||||
plt.plot(np.arange(0, len(movement)) * 5 * 3, movement)
|
||||
plt.plot(u * 5 * 3, np.ones_like(u), 'o')
|
||||
plt.plot(d * 5 * 3 + 15, np.ones_like(d), 'o')
|
||||
embed()
|
||||
quit()
|
||||
|
||||
# append
|
||||
dauer.extend(roam_dur / 4)
|
||||
wann.extend(u * 3) # * 3 because than in 5 s intervals
|
||||
max_move.extend(ausschlag)
|
||||
distances.append(distance)
|
||||
speeds.extend(speed)
|
||||
|
||||
# percent
|
||||
trial_dur = np.diff([np.where(~np.isnan(cbf2[2, :, cbf_counter - 1]))[0][0],
|
||||
np.where(~np.isnan(cbf2[2, :, cbf_counter - 1]))[0][-1]])[0]
|
||||
if names[i] == 'Eigenmannia':
|
||||
print(np.round(trial_dur / 4, 2), np.round(np.sum(roam_dur) / 4, 2),
|
||||
np.round(np.sum(roam_dur) / trial_dur * 100, 2))
|
||||
|
||||
percent.append(
|
||||
np.array([trial_dur / 4, np.sum(roam_dur) / 4, (np.sum(roam_dur) / 4) / trial_dur * 100]))
|
||||
else:
|
||||
speed_transit.append(speed_average[i])
|
||||
|
||||
print(c)
|
||||
# embed()
|
||||
# quit()
|
||||
###############################################################################################################
|
||||
# correction
|
||||
wann = np.hstack(np.array(wann))
|
||||
dauer = np.hstack(np.array(dauer))
|
||||
max_move = np.hstack(np.array(max_move))
|
||||
speeds = np.hstack(np.array(speeds))
|
||||
roam_dist = np.array(roam_dist)
|
||||
roam_start = np.array(roam_start)
|
||||
|
||||
# all roaming intervals less than 30 seconds excluded
|
||||
wann = wann[dauer > roaming_exclusion]
|
||||
max_move = max_move[dauer > roaming_exclusion]
|
||||
speeds = speeds[dauer > roaming_exclusion]
|
||||
roam_dist = roam_dist[dauer > roaming_exclusion]
|
||||
roam_start = roam_start[dauer > roaming_exclusion]
|
||||
dauer = dauer[dauer > roaming_exclusion]
|
||||
print('median dauer: ', np.median(dauer), ' 25, 75: ', np.percentile(dauer, [25, 75]))
|
||||
###############################################################################################################
|
||||
# statistic
|
||||
n, bin_edges = np.histogram(iai, bins=np.arange(0, np.max(iai) + 1, 1))
|
||||
b, a, r, p, std = stats.linregress(dauer, max_move)
|
||||
|
||||
###############################################################################################################
|
||||
# roll time axis
|
||||
start = []
|
||||
stop = []
|
||||
for j in range(len(roaming_events)):
|
||||
start.extend(roaming_events[j][0])
|
||||
stop.extend(roaming_events[j][1])
|
||||
|
||||
N_rec_time_bins = get_recording_number_in_time_bins(time_bins[::int((60 / bin_len) * 60)])
|
||||
|
||||
# rolled time axis for nicer plot midnight in the middle start noon
|
||||
N_start, bin_edges = np.histogram(np.array(start) * 5, bins=time_bins[::int((60 / bin_len) * 60)])
|
||||
N_stop, bin_edges2 = np.histogram(np.array(stop) * 5, bins=time_bins[::int((60 / bin_len) * 60)])
|
||||
rolled_start = np.roll(N_start / N_rec_time_bins, int(len(N_start) / 2))
|
||||
rolled_stop = np.roll(N_stop / N_rec_time_bins, int(len(N_stop) / 2))
|
||||
rolled_bins = (bin_edges[:-1] / time_factor) + 0.5
|
||||
|
||||
###############################################################################################################
|
||||
# figure 1: max_channel_changes per time zone and per duration of the roaming event
|
||||
fig = plt.figure(constrained_layout=True, figsize=[15 / inch, 17 / inch])
|
||||
gs = gridspec.GridSpec(ncols=6, nrows=4, figure=fig, hspace=0.01, wspace=0.01,
|
||||
height_ratios=[1, 1, 1, 1], width_ratios=[1, 1, 1, 1, 1, 1], left=0.1, bottom=0.15, right=0.95,
|
||||
top=0.95)
|
||||
|
||||
ax0 = fig.add_subplot(gs[0, :])
|
||||
ax1 = fig.add_subplot(gs[1, :3])
|
||||
ax2 = fig.add_subplot(gs[1, 3:], sharex=ax1)
|
||||
ax3 = fig.add_subplot(gs[2, :2], sharey=ax2)
|
||||
ax4 = fig.add_subplot(gs[2, 2:4], sharey=ax2)
|
||||
ax5 = fig.add_subplot(gs[2, 4:])
|
||||
ax6 = fig.add_subplot(gs[3, :])
|
||||
|
||||
# axins = inset_axes(ax1, width='30%', height='60%')
|
||||
|
||||
# bar plot
|
||||
ax0.bar(rolled_bins, rolled_start, color=color2[4])
|
||||
print('bar plot')
|
||||
print('day: mean ', np.round(np.mean([rolled_start[:6], rolled_start[18:]]), 2),
|
||||
' std: ', np.round(np.std([rolled_start[:6], rolled_start[18:]]), 2))
|
||||
|
||||
print('night: mean ', np.round(np.mean(rolled_start[6:18]), 2),
|
||||
' std: ', np.round(np.std(rolled_start[6:18]), 2))
|
||||
|
||||
ax0.plot([16.5, 6.5], [20, 20], color=color_diffdays[0], lw=7)
|
||||
ax0.plot([16.5, 18.5], [20, 20], color=color_diffdays[3], lw=7)
|
||||
ax0.plot([4.5, 6.5], [20, 20], color=color_diffdays[3], lw=7)
|
||||
|
||||
###############################################################################################################
|
||||
# curve_fit: tau, std, n
|
||||
curvefit_stat = []
|
||||
|
||||
xdata = np.linspace(0.0, 10., 500)
|
||||
y_speeds = []
|
||||
for plot_zone, color_zone, day_zone, pos_zone in \
|
||||
zip([day, dusk, night, dawn], [0, 1, 2, 3], ['day', 'dusk', 'night', 'dawn'], [1, 2, 3, 4]):
|
||||
# boxplot ax1
|
||||
props_e = dict(linewidth=2, color=color_dadunida[color_zone])
|
||||
bp = ax1.boxplot(dauer[np.in1d(wann * 5, plot_zone)], positions=[pos_zone], widths=0.7,
|
||||
showfliers=False, vert=False,
|
||||
boxprops=props_e, medianprops=props_e, capprops=props_e, whiskerprops=props_e)
|
||||
|
||||
x_n = [item.get_xdata() for item in bp['whiskers']][1][1]
|
||||
n = len(dauer[np.in1d(wann * 5, plot_zone)])
|
||||
ax1.text(x_n + 2, pos_zone, str(n), ha='left', va='center')
|
||||
print('dauer: ', day_zone, np.median(dauer[np.in1d(wann * 5, plot_zone)]),
|
||||
' 25, 75: ', np.percentile(dauer[np.in1d(wann * 5, plot_zone)], [25, 75]))
|
||||
|
||||
# curve fit
|
||||
x_dauer = dauer[dauer <= 10][np.in1d(wann[dauer <= 10] * 5, plot_zone)]
|
||||
y_speed = speeds[dauer <= 10][np.in1d(wann[dauer <= 10] * 5, plot_zone)]
|
||||
y_speeds.append(y_speed)
|
||||
|
||||
popt, pcov = optimize.curve_fit(func, x_dauer, y_speed)
|
||||
perr = np.sqrt(np.diag(pcov))
|
||||
print(day_zone, popt, 'perr', perr[1])
|
||||
curvefit_stat.append(np.array([popt[1], perr[1], n]))
|
||||
|
||||
# plot dauer vs speed
|
||||
x_dauer = dauer[dauer <= 100][np.in1d(wann[dauer <= 100] * 5, plot_zone)]
|
||||
y_speed = speeds[dauer <= 100][np.in1d(wann[dauer <= 100] * 5, plot_zone)]
|
||||
ax2.plot(x_dauer, y_speed, 'o', alpha=0.3, color=color_dadunida[color_zone])
|
||||
|
||||
ax3.plot(x_dauer, y_speed, 'o', alpha=0.3, color=color_dadunida[color_zone])
|
||||
|
||||
# plot curve fit
|
||||
ax4.plot(xdata, func(xdata, *popt), '-', color=color_dadunida[color_zone], label=day_zone)
|
||||
ax4.set_ylim(ax2.get_ylim())
|
||||
|
||||
# distance
|
||||
pdf_x_dist = np.arange(0, 15, 0.1)
|
||||
conv_array = np.zeros(len(pdf_x_dist))
|
||||
|
||||
for e in roam_dist[np.in1d(wann * 5, plot_zone)]:
|
||||
conv_array += gauss(pdf_x_dist, e, 1, 0.2, norm=True)
|
||||
|
||||
conv_array = conv_array / np.sum(conv_array) / 0.1
|
||||
conv_arrays.append(conv_array)
|
||||
ax6.plot(pdf_x_dist, conv_array, color=color_dadunida[color_zone], label=day_zone)
|
||||
ax6.plot([pdf_x_dist[np.cumsum(conv_array) < 5][-1], pdf_x_dist[np.cumsum(conv_array) < 5][-1]],
|
||||
[-1.0, conv_array[np.cumsum(conv_array) < 5][-1]], color=color_dadunida[color_zone])
|
||||
# print(day_zone, '50', pdf_x_dist[np.cumsum(conv_array) < 5][-1],
|
||||
# '25', pdf_x_dist[np.cumsum(conv_array) < 2.5][-1], '75', pdf_x_dist[np.cumsum(conv_array) < 7.5][-1])
|
||||
|
||||
|
||||
curvefit_stat = np.array(curvefit_stat)
|
||||
# plot std of tau
|
||||
ax5.bar([0, 1, 2, 3], curvefit_stat[:, 0], yerr=curvefit_stat[:, 1], color=color2[4])
|
||||
|
||||
###############################################################################################################
|
||||
# statistic
|
||||
day_group = [day, dusk, night, dawn]
|
||||
for subset in itertools.combinations([0, 1, 2, 3], 2):
|
||||
mean1, std1, n1 = curvefit_stat[subset[0]]
|
||||
mean2, std2, n2 = curvefit_stat[subset[1]]
|
||||
t, p = stats.ttest_ind_from_stats(mean1, std1, n1, mean2, std2, n2)
|
||||
d = cohen_d(y_speeds[subset[0]], y_speeds[subset[1]])
|
||||
print(['day', 'dusk', 'night', 'dawn'][subset[0]], ['day', 'dusk', 'night', 'dawn'][subset[1]], 't: ',
|
||||
np.round(t, 2), 'p: ', np.round(p, 4), 'd: ', d)
|
||||
|
||||
print(stats.mannwhitneyu(dauer[dauer <= 100][np.in1d(wann[dauer <= 100] * 5, day_group[subset[0]])],
|
||||
dauer[dauer <= 100][np.in1d(wann[dauer <= 100] * 5, day_group[subset[1]])]))
|
||||
|
||||
print(np.round(stats.ks_2samp(np.cumsum(conv_arrays[subset[0]]), np.cumsum(conv_arrays[subset[1]])), 3))
|
||||
|
||||
if subset[0] == 0 and subset[1] == 2:
|
||||
significance_bar(ax5, p, None, subset[0], subset[1], 3.)
|
||||
|
||||
###############################################################################################################
|
||||
# labels
|
||||
ax0.set_ylabel('# Roaming Events', fontsize=fs)
|
||||
ax0.set_xticks([0, 6, 12, 18, 24])
|
||||
ax0.set_xticklabels(['12:00', '18:00', '00:00', '06:00', '12:00'])
|
||||
ax0.set_xlabel('Time', fontsize=fs)
|
||||
|
||||
ax1.set_yticks([1, 2, 3, 4])
|
||||
ax1.set_yticklabels(['day', 'dusk', 'night', 'dawn'])
|
||||
ax1.set_xlabel('Duration [min]', fontsize=fs)
|
||||
ax1.invert_yaxis()
|
||||
|
||||
ax2.set_xlabel('Duration [min]', fontsize=fs)
|
||||
ax2.set_ylabel('Speed [m/min]', fontsize=fs)
|
||||
ax2.set_ylim([0, 27])
|
||||
|
||||
ax3.set_ylabel('Speed [m/min]', fontsize=fs)
|
||||
ax3.set_xlabel('Duration [min]', fontsize=fs)
|
||||
ax3.set_xlim([0, 10])
|
||||
|
||||
ax4.set_xlabel('Duration [min]', fontsize=fs)
|
||||
ax4.set_xlim([0, 10])
|
||||
|
||||
ax5.set_xticks([0, 1, 2, 3])
|
||||
ax5.set_xticklabels(['day', 'dusk', 'night', 'dawn'], rotation=45)
|
||||
ax5.set_ylabel(r'$\tau$')
|
||||
|
||||
ax6.set_xlabel('Distance [m]')
|
||||
ax6.set_ylabel('PDF')
|
||||
ax6.set_xlim([0, 15])
|
||||
ax6.set_ylim([-0.01, 0.3])
|
||||
|
||||
tagx = [-0.05, -0.07, -0.07, -0.17, -0.17, -0.17, -0.05]
|
||||
for idx, ax in enumerate([ax0, ax1, ax2, ax3, ax4, ax5, ax6]):
|
||||
ax.make_nice_ax()
|
||||
ax.text(tagx[idx], 1.05, chr(ord('A') + idx), transform=ax.transAxes, fontsize='large')
|
||||
|
||||
# fig.savefig(save_path + 'roaming_events.pdf')
|
||||
# fig.savefig(save_path_pres + 'roaming_events.pdf')
|
||||
|
||||
plt.show()
|
||||
|
||||
# df = pd.DataFrame({'duration': dauer, 'speed': speeds, 'distance': roam_dist})
|
||||
###############################################################################################################
|
||||
# figure supplements
|
||||
fig = plt.figure(constrained_layout=True, figsize=[15 / inch, 12 / inch])
|
||||
gs = gridspec.GridSpec(ncols=2, nrows=2, figure=fig, hspace=0.01, wspace=0.01,
|
||||
height_ratios=[1, 1], width_ratios=[1, 1], left=0.1, bottom=0.15, right=0.95,
|
||||
top=0.95)
|
||||
|
||||
ax0 = fig.add_subplot(gs[0, 0])
|
||||
ax1 = fig.add_subplot(gs[0, 1])
|
||||
ax2 = fig.add_subplot(gs[1, 0])
|
||||
ax3 = fig.add_subplot(gs[1, 1])
|
||||
|
||||
for plot_zone, color_zone, day_zone, pos_zone, ax in \
|
||||
zip([day, dusk, night, dawn], [0, 1, 2, 3], ['day', 'dusk', 'night', 'dawn'], [1, 2, 3, 4], [ax0, ax1, ax2, ax3]):
|
||||
|
||||
x_dauer = dauer[dauer <= 10][np.in1d(wann[dauer <= 10] * 5, plot_zone)]
|
||||
y_speed = speeds[dauer <= 10][np.in1d(wann[dauer <= 10] * 5, plot_zone)]
|
||||
|
||||
popt, pcov = optimize.curve_fit(func, x_dauer, y_speed)
|
||||
|
||||
# plot dauer vs speed
|
||||
ax.plot(xdata, func(xdata, *popt), '-', color=color_dadunida[color_zone], label=day_zone)
|
||||
ax.plot(x_dauer, y_speed, 'o', alpha=0.3, color=color_dadunida[color_zone])
|
||||
print(len(x_dauer))
|
||||
ax.set_ylabel('Speed [m/min]', fontsize=fs)
|
||||
ax.set_xlabel('Duration [min]', fontsize=fs)
|
||||
ax.make_nice_ax()
|
||||
ax.text(-0.218, 0.9, chr(ord('A') + color_zone), transform=ax.transAxes, fontsize='large')
|
||||
ax.text(0.8, 0.9, day_zone, transform=ax.transAxes, fontsize='large')
|
||||
ax.set_ylim([0, 30])
|
||||
# fig.savefig(save_path + 'supplements_roaming.pdf')
|
||||
|
||||
embed()
|
||||
quit()
|
||||
|
||||
|
||||
|
||||
|
||||
###############################################################################################################
|
||||
# figure 1: max_channel_changes per time zone and per duration of the roaming event
|
||||
fig = plt.figure(constrained_layout=True, figsize=[15 / inch, 15 / inch])
|
||||
gs = gridspec.GridSpec(ncols=2, nrows=3, figure=fig, hspace=0.01, wspace=0.01,
|
||||
height_ratios=[1, 1, 1], width_ratios=[1, 1], left=0.1, bottom=0.15, right=0.95,
|
||||
top=0.95)
|
||||
|
||||
ax0 = fig.add_subplot(gs[0, :])
|
||||
ax1 = fig.add_subplot(gs[1, 0])
|
||||
ax2 = fig.add_subplot(gs[1, 1], sharex=ax1)
|
||||
ax6 = fig.add_subplot(gs[2, :])
|
||||
|
||||
# bar plot
|
||||
ax0.bar(rolled_bins, rolled_start, color=color2[4])
|
||||
|
||||
ax0.plot([16.5, 6.5], [20, 20], color=color_diffdays[0], lw=7)
|
||||
ax0.plot([16.5, 18.5], [20, 20], color=color_diffdays[3], lw=7)
|
||||
ax0.plot([4.5, 6.5], [20, 20], color=color_diffdays[3], lw=7)
|
||||
|
||||
###############################################################################################################
|
||||
# curve_fit: tau, std, n
|
||||
for plot_zone, color_zone, day_zone, pos_zone in \
|
||||
zip([day, dusk, night, dawn], [0, 1, 2, 3], ['day', 'dusk', 'night', 'dawn'], [1, 2, 3, 4]):
|
||||
# boxplot ax1
|
||||
props_e = dict(linewidth=2, color=color_dadunida[color_zone])
|
||||
bp = ax1.boxplot(dauer[np.in1d(wann * 5, plot_zone)], positions=[pos_zone], widths=0.7,
|
||||
showfliers=False, vert=False,
|
||||
boxprops=props_e, medianprops=props_e, capprops=props_e, whiskerprops=props_e)
|
||||
|
||||
x_n = [item.get_xdata() for item in bp['whiskers']][1][1]
|
||||
n = len(dauer[np.in1d(wann * 5, plot_zone)])
|
||||
ax1.text(x_n + 2, pos_zone, str(n), ha='left', va='center')
|
||||
|
||||
# plot dauer vs speed
|
||||
x_dauer = dauer[dauer <= 100][np.in1d(wann[dauer <= 100] * 5, plot_zone)]
|
||||
y_speed = speeds[dauer <= 100][np.in1d(wann[dauer <= 100] * 5, plot_zone)]
|
||||
ax2.plot(x_dauer, y_speed, 'o', alpha=0.3, color=color_dadunida[color_zone])
|
||||
|
||||
pdf_x_dist = np.arange(0, 15, 0.1)
|
||||
conv_array = np.zeros(len(pdf_x_dist))
|
||||
|
||||
for e in roam_dist[np.in1d(wann * 5, plot_zone)]:
|
||||
conv_array += gauss(pdf_x_dist, e, 1, 0.2, norm=True)
|
||||
|
||||
conv_array = conv_array / np.sum(conv_array) / 0.1
|
||||
conv_arrays.append(conv_array)
|
||||
print(day_zone, 'percentil 25,50,75:', np.round(np.percentile(conv_array, [25,50,75]), 4))
|
||||
|
||||
ax6.plot(pdf_x_dist, conv_array, color=color_dadunida[color_zone], label=day_zone)
|
||||
###############################################################################################################
|
||||
# labels
|
||||
ax0.set_ylabel('# Roaming Events', fontsize=fs)
|
||||
ax0.set_xticks([0, 6, 12, 18, 24])
|
||||
ax0.set_xticklabels(['12:00', '18:00', '00:00', '06:00', '12:00'])
|
||||
ax0.set_xlabel('Time', fontsize=fs)
|
||||
|
||||
ax1.set_yticks([1, 2, 3, 4])
|
||||
ax1.set_yticklabels(['day', 'dusk', 'night', 'dawn'])
|
||||
ax1.set_xlabel('Duration [min]', fontsize=fs)
|
||||
ax1.invert_yaxis()
|
||||
|
||||
ax2.set_xlabel('Duration [min]', fontsize=fs)
|
||||
ax2.set_ylabel('Speed [m/min]', fontsize=fs)
|
||||
ax2.set_ylim([0, 27])
|
||||
|
||||
ax6.set_xlabel('Distance [m]')
|
||||
ax6.set_ylabel('PDF')
|
||||
# ax6.set_xscale('symlog')
|
||||
# ax6.set_xlim([0, 15])
|
||||
|
||||
tagx = [-0.05, -0.1, -0.1, -0.05]
|
||||
for idx, ax in enumerate([ax0, ax1, ax2, ax6]):
|
||||
ax.make_nice_ax()
|
||||
ax.text(tagx[idx], 1.05, chr(ord('A') + idx), transform=ax.transAxes, fontsize='large')
|
||||
|
||||
fig.savefig('../../../goettingen2021_poster/pictures/roaming_events.pdf')
|
||||
|
||||
plt.show()
|
||||
|
||||
embed()
|
||||
quit()
|
Loading…
Reference in New Issue
Block a user