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Figure 1. Neural adaptation. 
(A) In a single neuron, adapting responses are 
caused by intrinsic ionic currents that self-in-
hibit the neuron depending on its activity (in-
dicated by the inhibitory feedback loop). The 
response — the fi ring rate (blue) of a spiking 
neuron (raster) or the membrane voltage of a 
non-spiking neuron — to a step stimulus (green) 
is highest right after the onset of the stimulus 
(f0) and then decays down to a lower steady-
state value, f. This decline is caused by the 
slowly increasing adaptation level (red) driven 
by the enhanced activity of the neuron. The 
time course of the adaptation process is gov-
erned by the adaptation time constant a. Note 
that after switching off the stimulus, spiking is 
initially inhibited because of the enhanced level 
of adaptation at the end of the stimulus. Dur-
ing the absent or strongly reduced activity the 
neuron recovers from adaptation and returns 
to its baseline activity. Neurons with stronger 
adaptation display more phasic responses 
(purple). (B) Adaptation to a pulse train (green). 
Within each pulse neural activity (blue) adapts. 
This adaptation accumulates over successive 
pulses (indicated by the cyan line) if the neuron 
does not completely recover from adaptation 
between the pulses. 
The term ‘neural adaptation’ refers to 
the common phenomenon of decaying 
neuronal activities in response to 
repeated or prolonged stimulation. 
Many different roles of adaptation 
in neural computations have been 
discussed. On a single-cell level 
adaptation introduces a high-pass 
fi lter operation as a basic element 
for predictive coding. Interactions 
of adaptation processes with 
nonlinearities are key to many more 
computations including generation 
of invariances, stimulus selectivity, 
denoising, and sparsening. Neural 
adaptation is observed all the way 
along neuronal pathways from the 
sensory periphery to the motor 
output and adaptation usually gets 
stronger at higher levels. Non-
adapting neurons or neurons that 
increase their sensitivity are rare 
exceptions. What computations 
arise by repeated adaptation 
mechanisms along a processing 
pathway? After giving some 
background on neural adaptation, 
underlying mechanisms, dynamics, 
and resulting fi lter properties, I will 
discuss computational properties of 
four examples of serial and parallel 
adaptation processes, demonstrating 
that adaptation acts together with 
other mechanisms, in particular 
threshold nonlinearities, to eventually 
compute meaningful perceptions. 
Python code and further details of 
the simulations illustrating this primer 
are available at https://github.com/
janscience/adaptationprimer.

Neural adaptation is a ubiquitous 
phenomenon that can be observed 
in many neurons in the periphery 
as well as in the central nervous 
system, in vertebrates as well as in 
invertebrates. The response of an 
adapting neuron, measured as a 
fi ring rate, a membrane voltage, or a 
calcium signal, declines in response to 
a prolonged or repeated presentation 
of a stimulus (Figure 1). The stimulus 
can be a sensory stimulus, an injected 
current, a light-activated construct 
like channelrhodopsin, or any other 
R110 Current Biology 31, R101–R119, Febru
condition the experimenter can apply 
or evoke in a repeated manner. In this 
broad defi nition, neural adaptation 
is a phenomenological description 
of a common property of neural 
responses with no implication of a 
specifi c mechanism or functional role. 
Behavioral adaptations, in contrast, 
are adaptations in the function of a 
whole organism. Neural adaptations at 
one stage of neural processing usually 
are not directly related to the fi nal 
output.

Any neuron sensitive to the applied 
stimulus responds with some initial 
or onset response to a simple step 
stimulus, for example a playback 
of a pure tone of constant intensity 
or the defl ection of a whisker by a 
fi xed amplitude (Figure 1A). A non-
adapting neuron, a tonically spiking 
neuron, would keep fi ring with this 
rate. The adapting neuron, however, 
decreases its response activity down 
to some steady-state value. In a 
phasic neuron, spiking activity is even 
completely abolished. Most neurons 
show phasic-tonic responses: they 
lower their fi ring rate in response 
to constant stimulation, but keep 
responding to the stimulus. Many 
neurons traditionally classifi ed as 
tonically spiking neurons do in fact 
mildly adapt their fi ring rate as in the 
example shown in Figure 1A. The 
transition from tonic over phasic-tonic 
to phasic response types is a gradual 
one, refl ecting a gradual increase 
in the strength of the underlying 
adaptation process. The stronger the 
adaptation, the lower the steady-state 
response.

Adaptation mechanisms
The reduction of the response of 
a neuron to a constant stimulus 
indicates inhibitory mechanisms 
operate as the underlying adaptation 
processes that counteract the 
stimulus. On the single neuron 
level, these are various voltage- or 
calcium-gated ionic currents that 
are directly or indirectly activated by 
high membrane voltages, in particular 
during action potentials. For example, 
voltage-gated calcium channels open 
during each action potential and 
calcium fl ows into the cell. Calcium-
activated potassium currents are 
activated that act subtractively on the 
input current and therefore inhibit the 
ary 8, 2021 © 2020 Elsevier Inc.

https://github.com/janscience/adaptationprimer
https://github.com/janscience/adaptationprimer
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Figure 2. High-pass fi lter properties of adaptation. 
(A) Subtractive adaptation shifts (horizontal arrow) the neuron’s non-adapted response function, 
f0(I), by the current adaptation level A to higher stimulus intensities I. This shifted response func-
tion f0(I−A), which does not change its gain, governs the transmission of stimulus components 
that change on faster time scales than the adaptation dynamics. In the absence of a stimulus, 
the fi ring rate response (ii) and the adaptation level (iii) are zero (black dot 1). Immediately after 
switching on a fi xed stimulus (black dot 2), the fi ring rate response is given by the non-adapted 
response function, f0(I), and the adaptation level is still close to zero. Driven by the increased fi ring 
rate of the neuron, the adaptation level increases approximately exponentially (iii). This shifts the 
response function to the right (horizontal arrow) and as a consequence the fi ring rate response 
decreases (vertical arrow and ii). The adaptation process reaches a steady-state once the shifted 
response curve intersects the steady-state response curve f(I) at the current stimulus intensity 
(black dot 3). The steady-state response curve governs the transmission of stimulus components 
slower than the adaptation dynamics. The stronger the adaptation mechanism, the lower the 
steady-state response curve and the smaller its gain. Note that the deviations from an exponential 
decay of the fi ring rate in (ii) result from the non-linear shape of the response curves in (i). (B) By 
shifting the response function to the current mean stimulus, subtractive adaptation implements a 
high-pass fi lter. The stronger the adaptation mechanism (, arrow), the more attenuated are low-
frequency components of the stimulus by the reduced gain of the steady-state response curve. 
The cutoff frequency of the adaptation high-pass fi lter (dashed line) is set by the inverse adapta-
tion time constant. Independent of the adaptation mechanism, responses to higher frequency 
components are attenuated by the low-pass fi lter caused by the membrane time constant or the 
fi ring rate.
generation of action potentials. Note 
that an increase in spiking threshold 
associated with adaptation is an 
epiphenomenon of such adaptation 
currents, but not a primary cause 
of adaptation (Benda et al., 2010). 
These output-driven mechanisms all 
self-inhibit the neuron. Input-driven 
adaptation mechanisms, on the other 
hand, already inhibit the input before 
it is translated into changes in the 
membrane potential or in neuronal 
fi ring. Short-term depression of 
the input synapses or all sorts of 
adaptation mechanisms in sensory 
transducer cascades are examples of 
input-driven adaptation. 

On the network level, combinations 
of excitatory connections between 
neurons with inhibitory ones form a 
rich substrate for neuronal adaptation. 
While the excitatory connections 
convey the stimulus, the inhibitory 
connections counteract the excitatory 
inputs on slower timescales. Lateral 
and presynaptic inhibition are basic 
network motifs contributing to neural 
adaptation. In this primer, I highlight a 
few network motifs that illustrate how 
adaptation contributes to different 
kinds of computations and how the 
role of adaptation depends on the 
computational context.

Dynamics
At its core, neural adaptation is a 
dynamic process. In particular, it is 
an interplay between a fast process, 
the response of a neuron to some 
excitatory input, and slower, inhibitory 
adaptation processes. On which time 
scale the adaptation processes evolve 
and how they relate to the timescales 
characterizing the excitatory input 
is decisive for the functional role of 
adaptation.

To a fi rst approximation, the decay 
of the fi ring rate in response to a 
constant stimulus is exponential and 
can be described by an adaptation 
time constant. Neural adaptation 
phenomena differ widely in adaptation 
time scales. In auditory systems, 
for example, rapid adaptation is 
associated with time scales in the 
millisecond range, whereas in visual 
systems, ‘rapid’ adaptation typically 
evolves on time scales of many 
hundred milliseconds up to seconds. 
Using longer stimuli reveals that neural 
adaptation usually involves additional 
processes with longer adaptation 
time constants in the range of 
seconds or even minutes that further 
reduce the response. Often, the time 
course of adaptation in response to 
constant stimulation resembles that 
of a power law, possibly composed 
of many exponential processes with 
distinct time constants. In contrast 
to exponential adaptation, power-law 
adaptation is not bound to a specifi c 
time scale in the stimulus and plays 
an important role in generating speed-
invariant responses (Clarke et al., 
2015).
Current Biol
Filter properties
Neural adaptation, a decay of the 
response to a constant stimulus, is a 
fi ngerprint of a high-pass fi lter (Benda 
and Hennig, 2008). Low-frequency 
stimulus components are suppressed 
by the adaptation dynamics. The 
decaying response of an adapting 
neuron to a step stimulus illustrates 
this (Figure 2A). Let us assume that 
the neuron initially is not adapted 
and that in the absence of a stimulus 
the neuron is not fi ring. Switching 
on a stimulus in a step-like manner 
is a quick, high-frequency change 
ogy 31, R101–R119, February 8, 2021 R111
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Figure 3. Adaptation to the mean and the variance. 
(A) Two-stage adaptation with a threshold nonlinearity in-between. The fi rst neuron (X) subtrac-
tively adapts the response to the mean stimulus amplitude by shifting its response curve ap-
propriately to higher stimulus values. The second neuron (Y) after the nonlinear transformation 
adapts the response to the variance of the stimulus in a divisive manner. In contrast to neuron 
X, this neuron does not shift its response curve, it scales it down. (B) First, the mean stimulus 
amplitude µ is stepped up, and then the stimulus variance 2 is increased as indicated by the 
gray shading of the horizontal bars. (C) The response of neuron Y to the fast components of the 
stimulus is largely independent of these changes in stimulus mean and variance, except right after 
the transitions (arrows).
in stimulus intensity. The adaptation 
process is too slow to react to this 
sudden change and thus the neuron 
responds strongly with a high fi ring 
rate (Figure 2Aii) as characterized by 
its unadapted input–response curve 
f0(I) (or ‘f–I curve’ fi ring rate versus 
input, Figure 2Ai). After the step the 
stimulus stays on a constant level. 
Driven by the activity of the neuron 
the adaptation level A increases 
exponentially to a higher level (Figure 
2Aiii). In the example illustrated, the 
adaptation level acts subtractively on 
the stimulus and thus shifts the f–I 
curve to the right: f0(I–A). The further 
the f–I curve moves to the right, the 
more the response of the neuron is 
reduced until the adaptation level 
reaches its steady-state value. The 
corresponding fi ring rate is given by 
the steady-state f–I curve, f(I), which 
describes the fully adapted responses 
for each stimulus value.

High-frequency stimulus 
components that change on time 
scales faster than the adaptation time 
constant are transmitted with a high 
gain given basically by the slope of 
the unadapted f–I curve (Figure 2B). 
Low-frequency or constant stimulus 
components that change on time 
scales slower than the adaptation 
time constant are transmitted with a 
R112 Current Biology 31, R101–R119, Febr
reduced gain given by the slope of 
the steady-state f–I curve. They result 
in only small changes in the output 
fi ring rate of the neuron. The larger 
the adaptation strength the lower this 
gain, the stronger the high-pass fi lter 
induced by the adaptation process. 
Note that even faster stimulus 
components are also low-pass fi ltered 
by other processes like the membrane 
time constant or the fi nite fi ring rates 
of a neuron.

Adaptation to stimulus mean and 
variance
Natural stimuli are not just switched 
on and off, as in many experiments, 
but they usually change gradually 
in time. Sound or light intensity 
as transduced by hair cells or 
photoreceptors in natural scenes, 
for example, are not constant but 
continuously fl uctuate on various time 
scales and within some distribution 
of intensity levels. During the day, 
mean light intensities are much 
higher than during dusk or dawn, 
and several adaptation processes 
in the eye adapt the visual system 
to these changes. On a faster time 
scale, similar changes in mean light 
intensity happen when stepping from 
an open meadow into the woods. In 
addition to changes in mean stimulus 
uary 8, 2021
level, higher-order statistics, like 
variance or temporal correlations, 
also change when roaming through 
an environment. Many neurons 
continuously and gradually adapt 
their responses to such dynamical 
changes in stimulus statistics 
(Fairhall et al., 2001). Adaptation to 
both the mean and the variance of 
a stimulus can be explained by a 
two-stage adaptation process with 
a threshold nonlinearity in-between 
(Figure 3A) — both in insect auditory 
systems (Clemens I., 2018) and 
visual systems (Kastner and Baccus, 
2014). The fi rst adaptation process 
adapts the response to the slowly 
changing mean input by fi ltering 
out low-frequency components. 
By cutting off negative values of 
the remaining zero-mean signal, 
the threshold nonlinearity converts 
changing variances of the input in 
changing mean values. The fi nal 
adaptation stage then again adapts 
to this mean value, this time not by 
shifting the response curve, but by 
scaling it along the input axis. This 
is known as ‘divisive adaptation’ — 
the dynamic range of the neuron is 
adapted to the input variance. As a 
result, the response of the neuron is 
independent of both the mean and 
the variance of the input signal (Figure 
3B,C).

This example nicely illustrates how, 
even in a simple feed-forward circuit, 
neural adaptation is not just enhanced 
as we go from one stage to the next. 
Rather, nonlinear transformations 
process the signal and subsequent 
adaptation then works on the resulting 
transformed signal. This way the 
different adaptation stages then add 
different computations to the overall 
pipeline. Nonlinear processes can be 
found everywhere in neural systems. 
Both synaptic transmission and 
action potential generation implement 
threshold nonlinearities and voltage-
gated ionic currents in dendritic trees, 
for example, might transform the input 
in nonlinear ways, too.

Adaptation to the mean and 
variance of a sensory stimulus are 
a simple form of predictive coding. 
For example, mean light intensities 
usually change slowly such that 
they can be well predicted. This is 
what the adaptation level encodes: 
it is the low-pass fi ltered input and 
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Figure 4. Stimulus-specifi c adaptation. 
(A) A standard stimulus (blue) is presented repeatedly, whereas a deviant stimulus is presented 
at longer intervals only. The stimuli differ in some feature, for example in their sound frequency in 
case of auditory stimuli. The response of a sensory neuron to the fi rst standard stimulus is strong 
but then adapts to subsequent presentations of the standard stimulus. However, the response 
of the rarely presented deviant stimulus is still large; it is not affected by the adaptation to the 
standard stimulus (arrows). (B) This stimulus-specifi c adaptation can be explained by two input 
neurons, X and Y, that differ in their tuning properties (bell shapes in C and D) and thus specifi cally 
adapt to their preferred stimulus. The output neuron sums up the responses of both input neu-
rons. (C) Initially, the output of the two input neurons and of the output neuron is strong (upwards 
arrows) for both stimuli, because the input neurons are not adapted yet and thus their tuning 
curves have full amplitude (bell shapes). (D) After presenting the standard stimulus for some time, 
the input neuron tuned to this stimulus feature adapts (downward arrow) and the output response 
decreases. The neuron tuned to the deviant stimulus is not adapted and still conveys a strong 
response.
thus follows the slow changes of the 
sensory stimulus only (Figure 2Aiii). 
The adaptation level is subtracted 
from the input and in this way the 
response of an adapting neuron 
encodes the fast changes that cannot
be predicted. The resulting high-
pass fi lter (Figure 2B) attenuates 
the response to slow, predictable 
changes in the stimulus. See Weber 
et al. (2019) for an in-depth review on 
adaptation and its relation to coding 
principles.

Stimulus-specifi c adaptation
Let us now turn to circuits with 
adaptation processes in parallel 
branches. Stimulus-specifi c 
adaptation is a common phenomenon
that has been extensively studied in 
auditory systems of both mammals 
and insects (Whitmire and Stanley, 
2016). When recording the response 
of a single neuron in the auditory 
cortex, for example, while repeatedly 
stimulating with an acoustic stimulus,
the neuron responds with a high fi ring
rate to the fi rst presentation of this 
stimulus; the response then adapts 
during subsequent presentations of 
this ‘standard’ stimulus (Figure 4A). 
The response to interspersed ‘deviant
stimuli, however, is still large — it is 
not adapted. For this to work, the 
deviant stimulus must differ from the 
standard stimulus in some feature, 
for example in its sound frequency. 
The non-adapted response to the 
deviant stimulus would be impossible
if adaptation took place close to 
spike generation in the recorded 
neuron, because the spike generator 
would adapt to all stimuli exciting the 
neuron in the same way. For stimulus-
specifi c adaptation, the adaptation 
process must take place in distinct 
pathways that separately process 
and specifi cally adapt the different 
stimuli. This can be input neurons 
to the recorded neuron (Figure 4B), 
which in turn might inherit some of 
the adaptation from more peripheral 
neurons, or distinct branches of 
the dendritic tree of the recorded 
neuron. The input pathways need 
to differ in their tuning curves to the 
stimulus feature of interest and the 
standard stimulus should not excite 
the pathway processing the deviant 
stimulus (Figure 4C,D). Only then 
can the system specifi cally adapt to 
the standard stimulus and not to the 
deviant.

Stimulus-specifi c adaptation shifts 
the overall tuning of the output neuron 
away from the stimulus feature of the 
standard stimulus (Figure 4D). This 
property could explain perceptual 
biases and a number of aftereffects 
in optical illusions, like for example 
the waterfall illusion (Whitmire and 
Stanley, 2016), where neurons tuned 
to downward movements are adapted 
when fi xating a waterfall for a while. 
Current Bio
When looking away from the waterfall 
the whole scenery seems to move 
upwards. Because the responses of 
downward-neurons are reduced, they 
cannot balance out the unadapted 
responses of neurons tuned to upward 
movements and the perception is thus 
biased to an overall upward movement.

While the circuitry for stimulus-
specifi c adaptation shown in 
Figure 4B conveys the basic principle, 
it certainly is an oversimplifi cation. 
First of all, often more than just two 
logy 31, R101–R119, February 8, 2021 R113
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Figure 5. Resolving ambiguities. 
An auditory system receives an acoustic stimulus on the left (L) and the right (R) ear. Depending 
on the direction of the sound source, the input to the contralateral ear is attenuated relative to the 
one to the ipsilateral ear (legend in C). (A) The input neurons adapt their responses by shifting the 
response curves to the prevailing sound intensity. (B) A pattern encoder (+) sums up the activity 
of both input neurons. Its response is mostly independent of sound direction (all three responses 
align) after an initial adaptation process. (C) Subtraction of the two inputs by a sound-direction 
encoder (−) reveals directional information (responses are ordered according to sound direction/
attenuation of sound on contralateral ear). This response is, however, quite noisy (arrows) after the 
initial adaptation subsided. (D) Additional intrinsic adaptation in this neuron removes these non-
informative responses but keeps the most informative initial response. By means of this additional 
intrinsic adaptation process a robust code for sound direction is ensured.
pathways converge onto the output 
neuron. The mammalian auditory 
system, for example, has more than 
two frequency channels. In this 
way, the output neuron maintains 
sensitivity to rare and thus interesting 
sounds, but reduces its response 
to ongoing background sounds 
of whatever frequency. Also, as 
already mentioned above, all sorts of 
adaptation processes along the input 
pathways contribute to stimulus-
specifi c adaptation. In particular, 
specifi city of the input pathways 
could be enhanced by lateral 
inhibition between the input channels.

Resolving ambiguities
As we have discussed in the 
context of Figure 2, adaptation 
R114 Current Biology 31, R101–R119, Febru
primarily suppresses low-frequency 
components of the input. This is a 
desired operation to make the output 
invariant with respect to some slowly 
changing stimulus features. On the 
other hand, removing low-frequency 
components makes the response 
ambiguous. The absolute value of 
the input can no longer be uniquely 
inferred from the neural response. 
For example, a 100 Hz fi ring rate of 
an auditory neuron could have been 
evoked by a soft 30 dB SPL (sound 
pressure level) sound in a quiet room, 
or by a 80 dB SPL sound on a 50 dB 
SPL loud background. If the absolute 
sound intensity is of no behavioral 
relevance, then adapting the input 
early on in the auditory pathway 
is a viable option. But when both 
ary 8, 2021
the absolute and the relative sound 
intensity are relevant, then peripheral 
adaptation would be detrimental for 
encoding absolute sound intensity.

Such a confl ict has been studied in 
the auditory system of grasshoppers 
(Figure 5, Hildebrandt et al., 2015) 
and very similar constraints might be 
at work in the mammalian auditory 
system as well. Grasshoppers are 
both interested in encoding the 
temporal pattern of a perceived 
grasshopper song for assessing 
species, sex, and fi tness of the singer,
as well as in localizing the song. 
Sound localization in grasshoppers 
is entirely based on inter-aural level 
differences, because inter-aural time 
differences are simply too small. In 
order to compute inter-aural level 
differences, central neurons would 
need to subtract absolute sound 
levels from both ears. Ideally, auditory 
receptors should not adapt to sound 
intensity in order to convey absolute 
sound intensities. On the other hand, 
processing the temporal pattern 
benefi ts from adapting the dynamic 
range of each ear to the different 
mean sound intensities. A central 
pattern encoder would then simply 
add up the inputs from both sides. 
In fact, even the peripheral auditory 
neurons adapt (Figure 5A), favoring 
pattern encoding by a central neuron 
that adds up the inputs from both 
ears (Figure 5B).

What about sound localization? 
Is this still possible, even though 
absolute sound intensity is already 
adapted away in the periphery? 
Simply subtracting the information 
from the two ears indeed results in 
ambiguous responses (arrows in 
Figure 5C); directional information 
is heavily deteriorated. Right after 
the onset of the stimulus, however, 
the responses from the two ears are 
not yet adapted and indeed convey 
information about absolute sound 
intensity and thus sound direction. 
Adding intrinsic adaptation to the 
sound-direction encoder, with the 
adaptation time constant matched 
to the one of the periphery, restricts 
its response to episodes when 
the periphery is not adapted and 
thus conveys information about 
absolute sound intensity (Figure 5D). 
Otherwise the intrinsic adaptation 
silences the neuron and this way 
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Figure 6. Generation of a sparse code. 
A low-dimensional input (neurons X and Y) is expanded into a high-dimensional and sparse fea-
ture code in a network of neurons with intrinsic adaptation and reciprocal inhibitory connections. 
(A) Without inhibition and adaptation, the population response (raster) to the stimulus (white back-
ground) is neither spatially nor temporally sparse. All neurons are fi ring throughout the stimulus 
presentation. (B) Intrinsic adaptation generates temporal sparseness by emphasizing the stimulus 
onset. (C) Reciprocal lateral inhibition ensures spatial sparseness by inhibiting the spontaneous 
activity of the non-stimulated neurons. (D) By means of both mechanisms a sparse code is cre-
ated. A specifi c stimulus is encoded by only a few neurons with only a few spikes.
ensures that only informative inputs 
excite the neuron.

With noiseless neurons and with 
linear response curves that extend 
over the whole relevant range of 
sound intensities, coding of both 
sound pattern and sound direction 
would be no problem at all, no matter 
whether the input neurons adapt or 
not. The need for the input neurons to 
adapt arises because of their limited 
dynamic range. This limited dynamic 
range and additional neuronal noise 
makes it diffi cult to retrieve directional 
information from the input neurons 
when simply subtracting their activity. 
In that sense nonlinearities — the 
nonlinear, saturating response curves 
of the input neurons — limit the 
capabilities of the system. A smart 
utilization of adaptation at different 
stages of the pathway makes up 
for the limitations imposed by such 
nonlinearities.

Generating sparse codes
A main goal of sensory systems is to 
transform the dense and continuous 
representation of sensory information 
in the periphery to a code that is 
better accessible for higher order 
processing and generating behaviors. 
One common strategy is to make 
the representation more sparse, 
such that only a few neurons are 
activated by very specifi c stimulus 
features. The orientation tuning of 
neurons in V1 of the visual systems, 
the coding of song features in the 
HVC nucleus of song birds, and the 
encoding of odors by Kenyon cells 
in insects are prominent examples 
of sparse representations. While the 
effi cient coding hypothesis faithfully 
predicts such sparse codes in many 
different neural systems, the neuronal 
mechanisms that lead to a sparse 
code are less well understood.

Betkiewicz et al. (2020) have shown 
that both cell intrinsic adaptation 
and lateral inhibition contribute to 
the formation of a sparse code for 
odors in Kenyon cells of the insect 
mushroom body. Each Kenyon cell 
receives input from a subset of the 
olfactory glomeruli via projection 
neurons (neurons X and Y in Figure 6). 
This input leads to a dense code 
because many Kenyon cells respond 
tonically to the presented odor 
(Figure 6A). Intrinsic adaptation 
currents in the Kenyon cells make 
this response temporally sparse. The 
response is strongest at the stimulus 
onset (Figure 6B). Lateral inhibition on 
its own makes the response spatially 
sparse. The baseline response of non-
excited neurons is suppressed (Figure 
6C). Both intrinsic adaptation and 
lateral inhibition lead to a temporally 
and spatially sparse representation 
of the odor that is encoded by a 
brief period of spiking activity of 
a few neurons (Figure 6D). This 
demonstrates how several adaptation 
mechanisms together contribute to 
implementing effi cient codes.
Current Biolo
Summary
The four examples that I have 
discussed of the functional role of 
neural adaptation emphasize that 
adaptation should be viewed in its 
computational context and not as a 
specifi c computational function. The 
many adaptation mechanisms provide 
various forms of slow inhibition that 
together with nonlinearities provide 
a rich toolkit for neural systems to 
perform computations — not only 
in sensory systems. Observing 
neural adaptation on every level of a 
processing hierarchy does not imply 
that the input is high-pass fi ltered 
gy 31, R101–R119, February 8, 2021 R115
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 Snaps of a tiny 
amphipod push 
the boundary of 
ultrafast, repeatable 
movement
 S.J. Longo1,3,*, W. Ray1, G.M. Farley1,4, 
J. Harrison1,4, J. Jorge1,4, T. Kaji2,5, 
A.R. Palmer2,*, and S.N. Patek1,6,*

            Surprisingly, the fastest motions are not 
produced by large animals or robots. 
Rather, small organisms or structures, 
including cnidarian stinging cells, 
fungal shooting spores, and mandible 
strikes of ants, termites, and spiders, 
hold the world acceleration records1–5. 
These diverse systems share common 
features: they rapidly convert potential 
energy — stored in deformed material or 
fl uid — into kinetic energy when a latch is 
released4–6. However, the fastest of these 
are not repeatable, because mechanical 
components are broken or ejected5,6. 
Furthermore, some of these systems 
must overcome the added challenge of 
moving in water, where high density and 
viscosity constrain acceleration at small 
sizes. Here we report the kinematics 
of repeatable, ultrafast snaps by tiny 
marine amphipods (Dulichiella cf. 
appendiculata). Males use their enlarged 
major claw, which can exceed 30% of 
body mass, to snap a 1 mm-long dactyl 
with a diameter equivalent to a human 
hair (184 µm). The claw snaps closed 
extremely rapidly, averaging 93 µs, 17 
m s-1, and 2.4 x 105 m s-2. These snaps 
are among the smallest and fastest of 
any documented repeatable movement, 
and are suffi ciently fast to operate 
in the inertial hydrodynamic regime 
(Reynolds number (Re) >10,000). They 
generate audible pops and rapid water 
jets, which occasionally yield cavitation, 
and may be used for defense. These 
amphipod snaps push the boundaries 
of acceleration and size for repeatable 
movements, particularly in water, and 
exemplify how new biomechanical 
insights can arise from unassuming 
animals.

Correspondence environments. In many, the fi rst two 
thoracic limbs are claw-like structures, 
or gnathopods (Figure 1A), which exhibit 
diverse forms for feeding, grooming, 
aggression, and mating7. Many 
second gnathopods are also sexually 
dimorphic: enlarged in males and 
likely used for male–male competition, 
mate acquisition, and copulation7. 
Among amphipod genera with sexually 
dimorphic claws, Dulichiella stand out: 
males possess a single, massively 
enlarged second gnathopod that can 
exceed 30% of total body mass, and 
can snap closed so quickly as to defy 
visualization8,9.

To characterize the kinematics 
of ultrafast snaps, we collected 
male amphipods of Dulichiella cf. 
appendiculata by hand from algae on 
fl oating docks at the Duke Marine Lab 
(Beaufort, NC, USA). Live males were 
attached to a custom fi lming apparatus 
to precisely position their strikes during 
high-speed imaging (300,000 frames 
per second, 256x128 pixels, 2.33 
µs shutter). We digitized landmarks 
on 60 strikes from 16 individuals to 
quantify kinematics (see Supplemental 
Information). In preparation for 
snapping, males fi rst cock the dactyl 
open at approximately 70° (Figure 
1C). The dactyl then swings rapidly 
closed, causing the entire claw to recoil 
violently. The quickest snaps occurred in 
less than 50 µs (Table S1), which is 104 
times shorter than an average eye-blink.

Amphipod snaps rival the speeds 
and accelerations of the smallest and 
fastest systems known (Figure 1B)5,6. 
Average linear acceleration of amphipod 
snaps (2.4 x 105 m s-2) is similar to 
the maximum linear acceleration 
of smashing mantis shrimp strikes. 
Systems that are lighter and exhibit 
higher accelerations than amphipods 
are not repeatable (that is, they can 
only fi re once), including cnidarian 
stinging cells and fungal ballistospores. 
Mandible strikes by some ants and 
termites are repeatable, faster, and 
accelerate similar mass as amphipods 
(Figure 1B), but their mandibles 
move through air rather than water. 
Nematode jumps are repeatable 
and launch a lighter mass, yet their 
accelerations are orders of magnitude 
over and over again. Rather, the 
interplay with threshold nonlinearities 
transforms the code such that on 
every stage neural adaptation might 
play a different functional role. In 
particular, subsequent adaptation 
does also not imply that information 
about absolute stimulus levels 
is entirely lost. As we have seen, 
absolute levels can be preserved and 
enhanced in epochs right after the 
onset of a stimulus. Neural adaptation 
is one of many components used for 
neural computations to extract and 
detect behaviorally relevant aspects 
of the sensory environment in order 
to generate meaningful behaviors. 
Adaptation time scales are adapted 
to the stimulus statistics and matched 
to other adaptation mechanisms in 
the circuit. Understanding the roles of 
adaptation along a pathway is a key 
component of understanding how and 
why the neural code is transformed 
along the pathway.
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A  mphipods (Peracarida) are small-
bodied crustaceans that include familiar 
‘beach hoppers’ or ‘scuds’ and are 
widespread in salt- and fresh-water 

slower. Therefore, amphipod strikes 
exhibit an exceptional combination of 
features — one of the smallest, fastest, 
and repeatable mechanical systems yet 
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