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Primer
Neural adaptation

Jan Benda

The term ‘neural adaptation’ refers to
the common phenomenon of decaying
neuronal activities in response to
repeated or prolonged stimulation.
Many different roles of adaptation
in neural computations have been
discussed. On a single-cell level
adaptation introduces a high-pass
filter operation as a basic element
for predictive coding. Interactions
of adaptation processes with
nonlinearities are key to many more
computations including generation
of invariances, stimulus selectivity,
denoising, and sparsening. Neural
adaptation is observed all the way
along neuronal pathways from the
sensory periphery to the motor
output and adaptation usually gets
stronger at higher levels. Non-
adapting neurons or neurons that
increase their sensitivity are rare
exceptions. What computations
arise by repeated adaptation
mechanisms along a processing
pathway? After giving some
background on neural adaptation,
underlying mechanisms, dynamics,
and resulting filter properties, | will
discuss computational properties of
four examples of serial and parallel
adaptation processes, demonstrating
that adaptation acts together with
other mechanisms, in particular
threshold nonlinearities, to eventually
compute meaningful perceptions.
Python code and further details of
the simulations illustrating this primer
are available at https://github.com/
janscience/adaptationprimer.

Neural adaptation is a ubiquitous
phenomenon that can be observed
in many neurons in the periphery
as well as in the central nervous
system, in vertebrates as well as in
invertebrates. The response of an
adapting neuron, measured as a
firing rate, a membrane voltage, or a
calcium signal, declines in response to
a prolonged or repeated presentation
of a stimulus (Figure 1). The stimulus
can be a sensory stimulus, an injected
current, a light-activated construct
like channelrhodopsin, or any other

condition the experimenter can apply
or evoke in a repeated manner. In this
broad definition, neural adaptation
is a phenomenological description
of a common property of neural
responses with no implication of a
specific mechanism or functional role.
Behavioral adaptations, in contrast,
are adaptations in the function of a
whole organism. Neural adaptations at
one stage of neural processing usually
are not directly related to the final
output.

Any neuron sensitive to the applied
stimulus responds with some initial
or onset response to a simple step
stimulus, for example a playback
of a pure tone of constant intensity
or the deflection of a whisker by a
fixed amplitude (Figure 1A). A non-
adapting neuron, a tonically spiking
neuron, would keep firing with this
rate. The adapting neuron, however,
decreases its response activity down
to some steady-state value. In a
phasic neuron, spiking activity is even
completely abolished. Most neurons
show phasic-tonic responses: they
lower their firing rate in response
to constant stimulation, but keep
responding to the stimulus. Many
neurons traditionally classified as
tonically spiking neurons do in fact
mildly adapt their firing rate as in the
example shown in Figure 1A. The
transition from tonic over phasic-tonic
to phasic response types is a gradual
one, reflecting a gradual increase
in the strength of the underlying
adaptation process. The stronger the
adaptation, the lower the steady-state
response.

Adaptation mechanisms

The reduction of the response of

a neuron to a constant stimulus
indicates inhibitory mechanisms
operate as the underlying adaptation
processes that counteract the
stimulus. On the single neuron

level, these are various voltage- or
calcium-gated ionic currents that

are directly or indirectly activated by
high membrane voltages, in particular
during action potentials. For example,
voltage-gated calcium channels open
during each action potential and
calcium flows into the cell. Calcium-
activated potassium currents are
activated that act subtractively on the
input current and therefore inhibit the
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Figure 1. Neural adaptation.

(A) In a single neuron, adapting responses are
caused by intrinsic ionic currents that self-in-
hibit the neuron depending on its activity (in-
dicated by the inhibitory feedback loop). The
response — the firing rate (blue) of a spiking
neuron (raster) or the membrane voltage of a
non-spiking neuron — to a step stimulus (green)
is highest right after the onset of the stimulus
(fo) and then decays down to a lower steady-
state value, foo. This decline is caused by the
slowly increasing adaptation level (red) driven
by the enhanced activity of the neuron. The
time course of the adaptation process is gov-
erned by the adaptation time constant 7. Note
that after switching off the stimulus, spiking is
initially inhibited because of the enhanced level
of adaptation at the end of the stimulus. Dur-
ing the absent or strongly reduced activity the
neuron recovers from adaptation and returns
to its baseline activity. Neurons with stronger
adaptation display more phasic responses
(purple). (B) Adaptation to a pulse train (green).
Within each pulse neural activity (blue) adapts.
This adaptation accumulates over successive
pulses (indicated by the cyan line) if the neuron
does not completely recover from adaptation
between the pulses.
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generation of action potentials. Note
that an increase in spiking threshold
associated with adaptation is an
epiphenomenon of such adaptation
currents, but not a primary cause

of adaptation (Benda et al., 2010).
These output-driven mechanisms all
self-inhibit the neuron. Input-driven
adaptation mechanisms, on the other
hand, already inhibit the input before
it is translated into changes in the
membrane potential or in neuronal
firing. Short-term depression of

the input synapses or all sorts of
adaptation mechanisms in sensory
transducer cascades are examples of
input-driven adaptation.

On the network level, combinations
of excitatory connections between
neurons with inhibitory ones form a
rich substrate for neuronal adaptation.
While the excitatory connections
convey the stimulus, the inhibitory
connections counteract the excitatory
inputs on slower timescales. Lateral
and presynaptic inhibition are basic
network motifs contributing to neural
adaptation. In this primer, | highlight a
few network motifs that illustrate how
adaptation contributes to different
kinds of computations and how the
role of adaptation depends on the
computational context.

Dynamics

At its core, neural adaptation is a
dynamic process. In particular, it is

an interplay between a fast process,
the response of a neuron to some
excitatory input, and slower, inhibitory
adaptation processes. On which time
scale the adaptation processes evolve
and how they relate to the timescales
characterizing the excitatory input

is decisive for the functional role of
adaptation.

To a first approximation, the decay
of the firing rate in response to a
constant stimulus is exponential and
can be described by an adaptation
time constant. Neural adaptation
phenomena differ widely in adaptation
time scales. In auditory systems,
for example, rapid adaptation is
associated with time scales in the
millisecond range, whereas in visual
systems, ‘rapid’ adaptation typically
evolves on time scales of many
hundred milliseconds up to seconds.
Using longer stimuli reveals that neural
adaptation usually involves additional
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Figure 2. High-pass filter properties of adaptation.

(A) Subtractive adaptation shifts (horizontal arrow) the neuron’s non-adapted response function,
fol), by the current adaptation level A to higher stimulus intensities /. This shifted response func-
tion fy(I-A), which does not change its gain, governs the transmission of stimulus components
that change on faster time scales than the adaptation dynamics. In the absence of a stimulus,
the firing rate response (ii) and the adaptation level (jii) are zero (black dot 1). Immediately after
switching on a fixed stimulus (black dot 2), the firing rate response is given by the non-adapted
response function, fy(/), and the adaptation level is still close to zero. Driven by the increased firing
rate of the neuron, the adaptation level increases approximately exponentially (iii). This shifts the
response function to the right (horizontal arrow) and as a consequence the firing rate response
decreases (vertical arrow and ii). The adaptation process reaches a steady-state once the shifted
response curve intersects the steady-state response curve f_ (/) at the current stimulus intensity
(black dot 3). The steady-state response curve governs the transmission of stimulus components
slower than the adaptation dynamics. The stronger the adaptation mechanism, the lower the
steady-state response curve and the smaller its gain. Note that the deviations from an exponential
decay of the firing rate in (i) result from the non-linear shape of the response curves in (j). (B) By
shifting the response function to the current mean stimulus, subtractive adaptation implements a
high-pass filter. The stronger the adaptation mechanism (a., arrow), the more attenuated are low-
frequency components of the stimulus by the reduced gain of the steady-state response curve.
The cutoff frequency of the adaptation high-pass filter (dashed line) is set by the inverse adapta-
tion time constant. Independent of the adaptation mechanism, responses to higher frequency
components are attenuated by the low-pass filter caused by the membrane time constant or the
firing rate.

processes with longer adaptation
time constants in the range of
seconds or even minutes that further
reduce the response. Often, the time
course of adaptation in response to
constant stimulation resembles that
of a power law, possibly composed
of many exponential processes with
distinct time constants. In contrast
to exponential adaptation, power-law
adaptation is not bound to a specific
time scale in the stimulus and plays
an important role in generating speed-
invariant responses (Clarke et al.,
2015).
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Filter properties

Neural adaptation, a decay of the
response to a constant stimulus, is a
fingerprint of a high-pass filter (Benda
and Hennig, 2008). Low-frequency
stimulus components are suppressed
by the adaptation dynamics. The
decaying response of an adapting
neuron to a step stimulus illustrates
this (Figure 2A). Let us assume that
the neuron initially is not adapted
and that in the absence of a stimulus
the neuron is not firing. Switching

on a stimulus in a step-like manner

is a quick, high-frequency change
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Figure 3. Adaptation to the mean and the variance.

(A) Two-stage adaptation with a threshold nonlinearity in-between. The first neuron (X) subtrac-
tively adapts the response to the mean stimulus amplitude by shifting its response curve ap-
propriately to higher stimulus values. The second neuron (Y) after the nonlinear transformation
adapts the response to the variance of the stimulus in a divisive manner. In contrast to neuron
X, this neuron does not shift its response curve, it scales it down. (B) First, the mean stimulus
amplitude p is stepped up, and then the stimulus variance o? is increased as indicated by the
gray shading of the horizontal bars. (C) The response of neuron Y to the fast components of the
stimulus is largely independent of these changes in stimulus mean and variance, except right after
the transitions (arrows).

in stimulus intensity. The adaptation
process is too slow to react to this
sudden change and thus the neuron
responds strongly with a high firing
rate (Figure 2A) as characterized by
its unadapted input-response curve
fo(l) (or ‘=l curve’ firing rate versus
input, Figure 2A). After the step the
stimulus stays on a constant level.
Driven by the activity of the neuron
the adaptation level A increases
exponentially to a higher level (Figure
2A,). In the example illustrated, the
adaptation level acts subtractively on
the stimulus and thus shifts the ~/
curve to the right: fy(/-A). The further
the -/ curve moves to the right, the
more the response of the neuron is
reduced until the adaptation level
reaches its steady-state value. The
corresponding firing rate is given by
the steady-state -/ curve, fy(/), which
describes the fully adapted responses
for each stimulus value.
High-frequency stimulus
components that change on time
scales faster than the adaptation time
constant are transmitted with a high
gain given basically by the slope of
the unadapted -/ curve (Figure 2B).
Low-frequency or constant stimulus
components that change on time
scales slower than the adaptation
time constant are transmitted with a

reduced gain given by the slope of
the steady-state /~/ curve. They result
in only small changes in the output
firing rate of the neuron. The larger
the adaptation strength the lower this
gain, the stronger the high-pass filter
induced by the adaptation process.
Note that even faster stimulus
components are also low-pass filtered
by other processes like the membrane
time constant or the finite firing rates
of a neuron.

Adaptation to stimulus mean and
variance

Natural stimuli are not just switched
on and off, as in many experiments,
but they usually change gradually

in time. Sound or light intensity

as transduced by hair cells or
photoreceptors in natural scenes,
for example, are not constant but
continuously fluctuate on various time
scales and within some distribution
of intensity levels. During the day,
mean light intensities are much
higher than during dusk or dawn,
and several adaptation processes

in the eye adapt the visual system

to these changes. On a faster time
scale, similar changes in mean light
intensity happen when stepping from
an open meadow into the woods. In
addition to changes in mean stimulus
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level, higher-order statistics, like
variance or temporal correlations,
also change when roaming through
an environment. Many neurons
continuously and gradually adapt
their responses to such dynamical
changes in stimulus statistics
(Fairhall et al., 2001). Adaptation to
both the mean and the variance of
a stimulus can be explained by a
two-stage adaptation process with
a threshold nonlinearity in-between
(Figure 3A) — both in insect auditory
systems (Clemens I., 2018) and
visual systems (Kastner and Baccus,
2014). The first adaptation process
adapts the response to the slowly
changing mean input by filtering
out low-frequency components.

By cutting off negative values of
the remaining zero-mean signal,

the threshold nonlinearity converts
changing variances of the input in
changing mean values. The final
adaptation stage then again adapts
to this mean value, this time not by
shifting the response curve, but by
scaling it along the input axis. This
is known as ‘divisive adaptation’ —
the dynamic range of the neuron is
adapted to the input variance. As a
result, the response of the neuron is
independent of both the mean and
the variance of the input signal (Figure
3B,0).

This example nicely illustrates how,
even in a simple feed-forward circuit,
neural adaptation is not just enhanced
as we go from one stage to the next.
Rather, nonlinear transformations
process the signal and subsequent
adaptation then works on the resulting
transformed signal. This way the
different adaptation stages then add
different computations to the overall
pipeline. Nonlinear processes can be
found everywhere in neural systems.
Both synaptic transmission and
action potential generation implement
threshold nonlinearities and voltage-
gated ionic currents in dendritic trees,
for example, might transform the input
in nonlinear ways, too.

Adaptation to the mean and
variance of a sensory stimulus are
a simple form of predictive coding.
For example, mean light intensities
usually change slowly such that
they can be well predicted. This is
what the adaptation level encodes:
it is the low-pass filtered input and
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thus follows the slow changes of the
sensory stimulus only (Figure 2A,).
The adaptation level is subtracted
from the input and in this way the
response of an adapting neuron
encodes the fast changes that cannot
be predicted. The resulting high-
pass filter (Figure 2B) attenuates

the response to slow, predictable
changes in the stimulus. See Weber
et al. (2019) for an in-depth review on
adaptation and its relation to coding
principles.

Stimulus-specific adaptation

Let us now turn to circuits with
adaptation processes in parallel
branches. Stimulus-specific
adaptation is a common phenomenon
that has been extensively studied in
auditory systems of both mammals
and insects (Whitmire and Stanley,
2016). When recording the response
of a single neuron in the auditory
cortex, for example, while repeatedly
stimulating with an acoustic stimulus,
the neuron responds with a high firing
rate to the first presentation of this
stimulus; the response then adapts
during subsequent presentations of
this ‘standard’ stimulus (Figure 4A).
The response to interspersed ‘deviant’
stimuli, however, is still large — it is
not adapted. For this to work, the
deviant stimulus must differ from the
standard stimulus in some feature,
for example in its sound frequency.
The non-adapted response to the
deviant stimulus would be impossible
if adaptation took place close to
spike generation in the recorded
neuron, because the spike generator
would adapt to all stimuli exciting the
neuron in the same way. For stimulus-
specific adaptation, the adaptation
process must take place in distinct
pathways that separately process
and specifically adapt the different
stimuli. This can be input neurons

to the recorded neuron (Figure 4B),
which in turn might inherit some of
the adaptation from more peripheral
neurons, or distinct branches of

the dendritic tree of the recorded
neuron. The input pathways need

to differ in their tuning curves to the
stimulus feature of interest and the
standard stimulus should not excite
the pathway processing the deviant
stimulus (Figure 4C,D). Only then

can the system specifically adapt to
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Figure 4. Stimulus-specific adaptation.

(A) A standard stimulus (blue) is presented repeatedly, whereas a deviant stimulus is presented
at longer intervals only. The stimuli differ in some feature, for example in their sound frequency in
case of auditory stimuli. The response of a sensory neuron to the first standard stimulus is strong
but then adapts to subsequent presentations of the standard stimulus. However, the response
of the rarely presented deviant stimulus is still large; it is not affected by the adaptation to the
standard stimulus (arrows). (B) This stimulus-specific adaptation can be explained by two input
neurons, X and Y, that differ in their tuning properties (bell shapes in C and D) and thus specifically
adapt to their preferred stimulus. The output neuron sums up the responses of both input neu-
rons. (C) Initially, the output of the two input neurons and of the output neuron is strong (upwards
arrows) for both stimuli, because the input neurons are not adapted yet and thus their tuning
curves have full amplitude (bell shapes). (D) After presenting the standard stimulus for some time,
the input neuron tuned to this stimulus feature adapts (downward arrow) and the output response
decreases. The neuron tuned to the deviant stimulus is not adapted and still conveys a strong
response.

the standard stimulus and not to the
deviant.

Stimulus-specific adaptation shifts
the overall tuning of the output neuron
away from the stimulus feature of the
standard stimulus (Figure 4D). This
property could explain perceptual
biases and a number of aftereffects
in optical illusions, like for example
the waterfall illusion (Whitmire and
Stanley, 2016), where neurons tuned
to downward movements are adapted
when fixating a waterfall for a while.

Current Biology 37, R101-R119, February 8, 2021

When looking away from the waterfall
the whole scenery seems to move
upwards. Because the responses of
downward-neurons are reduced, they
cannot balance out the unadapted
responses of neurons tuned to upward
movements and the perception is thus
biased to an overall upward movement.
While the circuitry for stimulus-
specific adaptation shown in
Figure 4B conveys the basic principle,
it certainly is an oversimplification.
First of all, often more than just two
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Figure 5. Resolving ambiguities.

An auditory system receives an acoustic stimulus on the left (L) and the right (R) ear. Depending
on the direction of the sound source, the input to the contralateral ear is attenuated relative to the
one to the ipsilateral ear (legend in C). (A) The input neurons adapt their responses by shifting the
response curves to the prevailing sound intensity. (B) A pattern encoder (+) sums up the activity
of both input neurons. Its response is mostly independent of sound direction (all three responses
align) after an initial adaptation process. (C) Subtraction of the two inputs by a sound-direction
encoder (-) reveals directional information (responses are ordered according to sound direction/
attenuation of sound on contralateral ear). This response is, however, quite noisy (arrows) after the
initial adaptation subsided. (D) Additional intrinsic adaptation in this neuron removes these non-
informative responses but keeps the most informative initial response. By means of this additional
intrinsic adaptation process a robust code for sound direction is ensured.

pathways converge onto the output
neuron. The mammalian auditory
system, for example, has more than
two frequency channels. In this

way, the output neuron maintains
sensitivity to rare and thus interesting
sounds, but reduces its response

to ongoing background sounds

of whatever frequency. Also, as
already mentioned above, all sorts of
adaptation processes along the input
pathways contribute to stimulus-
specific adaptation. In particular,
specificity of the input pathways
could be enhanced by lateral
inhibition between the input channels.

primarily suppresses low-frequency
components of the input. This is a
desired operation to make the output
invariant with respect to some slowly
changing stimulus features. On the
other hand, removing low-frequency
components makes the response
ambiguous. The absolute value of
the input can no longer be uniquely
inferred from the neural response.
For example, a 100 Hz firing rate of
an auditory neuron could have been
evoked by a soft 30dB SPL (sound
pressure level) sound in a quiet room,
or by a 80dB SPL sound on a 50dB
SPL loud background. If the absolute
sound intensity is of no behavioral
relevance, then adapting the input
early on in the auditory pathway

is a viable option. But when both

Resolving ambiguities
As we have discussed in the
context of Figure 2, adaptation

R114 Current Biology 37, R101-R119, February 8, 2021
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the absolute and the relative sound
intensity are relevant, then peripheral
adaptation would be detrimental for
encoding absolute sound intensity.

Such a conflict has been studied in
the auditory system of grasshoppers
(Figure 5, Hildebrandt et al., 2015)
and very similar constraints might be
at work in the mammalian auditory
system as well. Grasshoppers are
both interested in encoding the
temporal pattern of a perceived
grasshopper song for assessing
species, sex, and fitness of the singer,
as well as in localizing the song.
Sound localization in grasshoppers
is entirely based on inter-aural level
differences, because inter-aural time
differences are simply too small. In
order to compute inter-aural level
differences, central neurons would
need to subtract absolute sound
levels from both ears. Ideally, auditory
receptors should not adapt to sound
intensity in order to convey absolute
sound intensities. On the other hand,
processing the temporal pattern
benefits from adapting the dynamic
range of each ear to the different
mean sound intensities. A central
pattern encoder would then simply
add up the inputs from both sides.
In fact, even the peripheral auditory
neurons adapt (Figure 5A), favoring
pattern encoding by a central neuron
that adds up the inputs from both
ears (Figure 5B).

What about sound localization?
Is this still possible, even though
absolute sound intensity is already
adapted away in the periphery?
Simply subtracting the information
from the two ears indeed results in
ambiguous responses (arrows in
Figure 5C); directional information
is heavily deteriorated. Right after
the onset of the stimulus, however,
the responses from the two ears are
not yet adapted and indeed convey
information about absolute sound
intensity and thus sound direction.
Adding intrinsic adaptation to the
sound-direction encoder, with the
adaptation time constant matched
to the one of the periphery, restricts
its response to episodes when
the periphery is not adapted and
thus conveys information about
absolute sound intensity (Figure 5D).
Otherwise the intrinsic adaptation
silences the neuron and this way
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ensures that only informative inputs
excite the neuron.

With noiseless neurons and with
linear response curves that extend
over the whole relevant range of
sound intensities, coding of both
sound pattern and sound direction
would be no problem at all, no matter
whether the input neurons adapt or
not. The need for the input neurons to
adapt arises because of their limited
dynamic range. This limited dynamic
range and additional neuronal noise
makes it difficult to retrieve directional
information from the input neurons
when simply subtracting their activity.
In that sense nonlinearities — the
nonlinear, saturating response curves
of the input neurons — limit the
capabilities of the system. A smart
utilization of adaptation at different
stages of the pathway makes up
for the limitations imposed by such
nonlinearities.

Generating sparse codes
A main goal of sensory systems is to
transform the dense and continuous
representation of sensory information
in the periphery to a code that is
better accessible for higher order
processing and generating behaviors.
One common strategy is to make
the representation more sparse,
such that only a few neurons are
activated by very specific stimulus
features. The orientation tuning of
neurons in V1 of the visual systems,
the coding of song features in the
HVC nucleus of song birds, and the
encoding of odors by Kenyon cells
in insects are prominent examples
of sparse representations. While the
efficient coding hypothesis faithfully
predicts such sparse codes in many
different neural systems, the neuronal
mechanisms that lead to a sparse
code are less well understood.
Betkiewicz et al. (2020) have shown
that both cell intrinsic adaptation
and lateral inhibition contribute to
the formation of a sparse code for
odors in Kenyon cells of the insect
mushroom body. Each Kenyon cell
receives input from a subset of the
olfactory glomeruli via projection
neurons (neurons X and Y in Figure 6).
This input leads to a dense code
because many Kenyon cells respond
tonically to the presented odor
(Figure 6A). Intrinsic adaptation
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Figure 6. Generation of a sparse code.
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A low-dimensional input (neurons X and Y) is expanded into a high-dimensional and sparse fea-
ture code in a network of neurons with intrinsic adaptation and reciprocal inhibitory connections.
(A) Without inhibition and adaptation, the population response (raster) to the stimulus (white back-
ground) is neither spatially nor temporally sparse. All neurons are firing throughout the stimulus
presentation. (B) Intrinsic adaptation generates temporal sparseness by emphasizing the stimulus
onset. (C) Reciprocal lateral inhibition ensures spatial sparseness by inhibiting the spontaneous
activity of the non-stimulated neurons. (D) By means of both mechanisms a sparse code is cre-
ated. A specific stimulus is encoded by only a few neurons with only a few spikes.

currents in the Kenyon cells make
this response temporally sparse. The
response is strongest at the stimulus
onset (Figure 6B). Lateral inhibition on
its own makes the response spatially
sparse. The baseline response of non-
excited neurons is suppressed (Figure
6C). Both intrinsic adaptation and
lateral inhibition lead to a temporally
and spatially sparse representation

of the odor that is encoded by a

brief period of spiking activity of

a few neurons (Figure 6D). This
demonstrates how several adaptation
mechanisms together contribute to
implementing efficient codes.

Current Biology 37, R101-R119, February 8, 2021

Summary

The four examples that | have
discussed of the functional role of
neural adaptation emphasize that
adaptation should be viewed in its
computational context and not as a
specific computational function. The
many adaptation mechanisms provide
various forms of slow inhibition that
together with nonlinearities provide
a rich toolkit for neural systems to
perform computations — not only

in sensory systems. Observing
neural adaptation on every level of a
processing hierarchy does not imply
that the input is high-pass filtered

R115
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over and over again. Rather, the
interplay with threshold nonlinearities
transforms the code such that on
every stage neural adaptation might
play a different functional role. In
particular, subsequent adaptation
does also not imply that information
about absolute stimulus levels

is entirely lost. As we have seen,
absolute levels can be preserved and
enhanced in epochs right after the
onset of a stimulus. Neural adaptation
is one of many components used for
neural computations to extract and
detect behaviorally relevant aspects
of the sensory environment in order
to generate meaningful behaviors.
Adaptation time scales are adapted
to the stimulus statistics and matched
to other adaptation mechanisms in
the circuit. Understanding the roles of
adaptation along a pathway is a key
component of understanding how and
why the neural code is transformed
along the pathway.
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Snaps of a tiny
amphipod push

the boundary of
ultrafast, repeatable
movement

S.J. Longo'**, W. Ray', G.M. Farley'*,
J. Harrison'#, J. Jorge'4, T. Kaji?®,
A.R. Palmer?*, and S.N. Patek'®*

Surprisingly, the fastest motions are not
produced by large animals or robots.
Rather, small organisms or structures,
including cnidarian stinging cells,

fungal shooting spores, and mandible
strikes of ants, termites, and spiders,
hold the world acceleration records'.
These diverse systems share common
features: they rapidly convert potential
energy — stored in deformed material or
fluid — into kinetic energy when a latch is
released’®. However, the fastest of these
are not repeatable, because mechanical
components are broken or ejected®®.
Furthermore, some of these systems
must overcome the added challenge of
moving in water, where high density and
viscosity constrain acceleration at small
sizes. Here we report the kinematics

of repeatable, ultrafast snaps by tiny
marine amphipods (Dulichiella cf.
appendiculata). Males use their enlarged
major claw, which can exceed 30% of
body mass, to snap a 1 mm-long dactyl
with a diameter equivalent to a human
hair (184 um). The claw snaps closed
extremely rapidly, averaging 93 ps, 17
m s, and 2.4 x 10° m s2. These snaps
are among the smallest and fastest of
any documented repeatable movement,
and are sufficiently fast to operate

in the inertial hydrodynamic regime
(Reynolds number (Re) >10,000). They
generate audible pops and rapid water
jets, which occasionally yield cavitation,
and may be used for defense. These
amphipod snaps push the boundaries
of acceleration and size for repeatable
movements, particularly in water, and
exemplify how new biomechanical
insights can arise from unassuming
animals.

Amphipods (Peracarida) are small-
bodied crustaceans that include familiar
‘beach hoppers’ or ‘scuds’ and are
widespread in salt- and fresh-water
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environments. In many, the first two
thoracic limbs are claw-like structures,
or gnathopods (Figure 1A), which exhibit
diverse forms for feeding, grooming,
aggression, and mating’. Many
second gnathopods are also sexually
dimorphic: enlarged in males and
likely used for male-male competition,
mate acquisition, and copulation’.
Among amphipod genera with sexually
dimorphic claws, Dulichiella stand out:
males possess a single, massively
enlarged second gnathopod that can
exceed 30% of total body mass, and
can snap closed so quickly as to defy
visualization®®.
To characterize the kinematics
of ultrafast snaps, we collected
male amphipods of Dulichiella cf.
appendiculata by hand from algae on
floating docks at the Duke Marine Lab
(Beaufort, NC, USA). Live males were
attached to a custom filming apparatus
to precisely position their strikes during
high-speed imaging (300,000 frames
per second, 256x128 pixels, 2.33
ps shutter). We digitized landmarks
on 60 strikes from 16 individuals to
quantify kinematics (see Supplemental
Information). In preparation for
snapping, males first cock the dactyl
open at approximately 70° (Figure
1C). The dactyl then swings rapidly
closed, causing the entire claw to recoil
violently. The quickest snaps occurred in
less than 50 ps (Table S1), which is 10*
times shorter than an average eye-blink.
Amphipod snaps rival the speeds
and accelerations of the smallest and
fastest systems known (Figure 1B)°°.
Average linear acceleration of amphipod
snaps (2.4 x 10° m s?) is similar to
the maximum linear acceleration
of smashing mantis shrimp strikes.
Systems that are lighter and exhibit
higher accelerations than amphipods
are not repeatable (that is, they can
only fire once), including cnidarian
stinging cells and fungal ballistospores.
Mandible strikes by some ants and
termites are repeatable, faster, and
accelerate similar mass as amphipods
(Figure 1B), but their mandibles
move through air rather than water.
Nematode jumps are repeatable
and launch a lighter mass, yet their
accelerations are orders of magnitude
slower. Therefore, amphipod strikes
exhibit an exceptional combination of
features — one of the smallest, fastest,
and repeatable mechanical systems yet
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