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1 Exploring a grasshopper’s sensory world

Our scientific understanding of sensory processing systems results from the distributed

accumulation of anatomical, physiological and ethological evidence. This process is un-

doubtedly without alternative; however, it leaves us with the challenge of integrating the

available fragments into a coherent whole in order to address issues such as the interaction

between individual system components, the functional limitations of the system overall,

or taxonomic comparisons between systems that process the same sensory modality. Any

unified framework that captures the essential functional aspects of a given sensory sys-

tem thus has the potential to deepen our current understanding and fasciliate systematic

investigations. However, building such a framework is a challenging task. It requires a

wealth of existing knowledge of the system and the signals it operates on, a clearly defined

scope, and careful reduction, abstraction, and formalization of the underlying structures

and mechanisms.

One sensory system about which extensive information has been gathered over the years is

the auditory system of grasshoppers (Acrididae). Grasshoppers rely on their sense of hear-

ing primarily for intraspecific communication, which includes mate attraction and evalua-

tion (D. v. Helversen 1972), sender localization (D. v. Helversen and Rheinlaender 1988),

courtship display (SOURCE), rival deterrence (Greenfield and Minckley 1993), and loss-

of-signal predator alarm (SOURCE). In accordance with this rich behavioral repertoire,

grasshoppers have evolved a variety of sound production mechanisms to generate acoustic

communication signals for different contexts and ranges using their wings, hindlegs, or

mandibles (Otte 1970). Among the most conspicuous acoustic signals of grasshoppers are

the species-specific calling songs, which broadcast the presence of the singing individual

— usually the males of a species — to potential mates within range. These songs are
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usually more characteristic of a species than morphological traits.

This reliance on species-specific acoustic signals for mediating reproduction represents a

strong evolutionary driving force, that resulted in a massive species diversification (Vedenina and Mugue 2011,

Sevastianov et al. 2023).

The characteristic calling songs are produced by stridulation, during which the grasshop-

per pulls the serrated stridulatory file on its hindlegs across a resonating vein on the

forewings (O. v. Helversen and Elsner 1977, D. v. Helversen and O. v. Helversen 1997).

Such elaborate acoustic behaviors co-depend not only on reliable auditory perception

but also on suitable acoustic signals for different contexts and ranges. To this end,

grasshoppers have evolved a variety of sound production mechanisms using their wings,

hindlegs, or mandibles (Otte 1970). The most conspicuous acoustic signals — the char-

acteristic calling songs — are produced by stridulation, during which the grasshop-

per pulls the serrated stridulatory file on its hindlegs across a resonating vein on the

forewings (O. v. Helversen and Elsner 1977, D. v. Helversen and O. v. Helversen 1997). The

reliance on species-specific acoustic communication signals represents a strong evolution-

ary driving force, that resulted in a massive species diversification (Vedenina and Mugue 2011,

Sevastianov et al. 2023).

The most conspicuous acoustic signals — the characteristic calling songs — are pro-

duced by stridulation, during which the grasshopper pulls the serrated stridulatory file

on its hindlegs across a resonating vein on the forewings (O. v. Helversen and Elsner 1977,

D. v. Helversen and O. v. Helversen 1997). Grasshopper songs are species-specific, amplitude-

modulated (AM) broad-band acoustic signals

Among the several thousand recognized grasshopper species (Cigliano et al. 2018), diverse

species-specific sound repertoires and production mechanisms

Strong dependence on acoustic signals for ranged communication

- Diverse species-specific sound repertoires and production mechanisms

- Different contexts/ranges: Stridulatory, mandibular, wings, walking sounds

- Mate attraction/evaluation, rival deterrence, loss-of-signal predator alarm

→ Elaborate acoustic behaviors co-depend on reliable auditory perception

Songs = Amplitude-modulated (AM) broad-band acoustic signals

- Generated by stridulatory movement of hindlegs against forewings

- Shorter time scales: Characteristic temporal waveform pattern

- Longer time scales: High degree of periodicity (pattern repetition)
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- Sound propagation: Signal intensity varies strongly with distance to sender

- Ectothermy: Temporal structure warps with temperature

→ Sensory constraints imposed by properties of the acoustic signal itself

Multi-species, multi-individual communally inhabited environments

- Temporal overlap: Simultaneous singing across individuals/species common

- Frequency overlap: No/hardly any niche speciation into frequency bands

- ”Biotic noise”: Hetero-/conspecifics (”Another one’s songs are my noise”)

- ”Abiotic noise”: Wind, water, vegetation, anthropogenic

- Effects of habitat structure on sound propagation (landscape - soundscape)

→ Sensory constraints imposed by the (acoustic) environment

Cluster of auditory challenges (interlocking constraints → tight coupling):

From continuous acoustic input, generate neuronal representations that...

1)...allow for the separation of relevant (song) events from ambient noise floor

2)...compensate for behaviorally non-informative song variability (invariances)

3)...carry sufficient information to characterize different song patterns, recognize the ones

produced by conspecifics, and make appropriate behavioral decisions based on context

(sender identity, song type, mate/rival quality)

How can the auditory system of grasshoppers meet these challenges?

- What are the minimum functional processing steps required?

- Which known neuronal mechanisms can implement these steps?

- Which and how many stages along the auditory pathway contribute?

→ What are the limitations of the system as a whole?

How can a human observer conceive a grasshopper’s auditory percepts?

- How to investigate the workings of the auditory pathway as a whole?

- How to systematically test effects and interactions of processing parameters?

- How to integrate the available knowledge on anatomy, physiology, ethology?

→ Abstract, simplify, formalize → Functional model framework

Precursor work for model construction (special thanks to authors):

Linear-nonlinear modelling of behavioral responses to artificial songs

- Feature expansion as implemented in our model: Major contribution!

- Bank of linear filters, nonlinearity, temporal integration, feature weighting

→ Clemens and Hennig 2013 (crickets)

→ Clemens and Ronacher 2013 (grasshoppers)

→ Ronacher et al. 2015
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Own advancements/key differences:

1) Used boxcar functions as artificial ”songs” (focus on few key parameters)

→ Now actual, variable songs (as naturalistic as possible)

2) Fitted filters to behavioral data

→ More general, simpler, unfitted formalized Gabor filter bank

2 Developing a functional model of

the grasshopper auditory pathway

The grasshopper auditory system has been studied extensively over the past decades; and

a corresponding number of involved neuron types has been described (Rehbein et al. 1974;

Kalmring 1975; Rehbein 1976; Eichendorf and Kalmring 1980). The functional model we

propose here focuses on the pathway responsible for song recognition and assumes a strict

feed-forward organization of three consecutive neuronal populations: Peripheral auditory

receptor neurons (1st order), local interneurons of the metathoracic ganglion (2nd order),

and ascending neurons (3rd order) projecting towards the supraesophageal ganglion.

Previous authors have reported a marked increase in response heterogenity within the pop-

ulation of ascending neurons compared to receptors and local interneurons, which exhibit

almost identical filter characteristics, respectively (Clemens, Kutzki, et al. 2011). Based

on these findings, the model pathway can be divided into two distinct portions (Fig. 1c+d).

In the preprocessing portion, generated

The preprocessing portion comprises the tympanal membrane, receptors, and local in-

terneurons. The different signal representations

Due to the similar response properties within the involved

1) ”Pre-split portion” of the auditory pathway:

Tympanal membrane → Receptor neurons → Local interneurons

Similar response/filter properties within receptor/interneuron populations (Clemens, Kutzki,

et al. 2011)

→ One population-wide response trace per stage (no ”single-cell resolution”)

2) ”Post-split portion” of the auditory pathway:

Ascending neurons (AN) → Central brain neurons

Diverse response/filter properties within AN population (Clemens, Kutzki, et al. 2011)

- Pathway splitting into several parallel branches
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- Expansion into a decorrelated higher-dimensional sound representation

→ Individual neuron-specific response traces from this stage onwards

Figure 1: The auditory system of grasshoppers.

2.1 Population-driven signal pre-processing

Grasshoppers receive airborne sound waves by a tympanal organ at each side of the tho-

rax (Fig. 1a). The tympanal membrane acts as a mechanical resonance filter: Vibrations

that fall within specific frequency bands are focused on different membrane areas, while

others are attenuated (Michelsen 1971; Windmill et al. 2008; Malkin et al. 2014). This

processing step can be approximated by an initial bandpass filter

xfilt(t) = x(t) ∗ hBP(t), fcut = 5kHz, 30 kHz (1)

5



applied to the acoustic input signal x(t). The auditory receptor neurons connect directly

to the tympanal membrane (Fig. 1a). Besides performing the mechano-electrical trans-

duction, the receptor population is substrate to several known processing steps. First,

the receptors extract the signal envelope (Machens, Prinz, et al. 2001), which likely in-

volves a rectifying nonlinearity (Machens, Stemmler, et al. 2001). This can be modelled

as full-wave rectification followed by lowpass filtering

xenv(t) = |xfilt(t)| ∗ hLP(t), fcut = 500Hz (2)

of the tympanal signal xfilt(t). Furthermore, the receptors exhibit a sigmoidal response

curve over logarithmically compressed intensity levels (Suga 1960; Gollisch et al. 2002).

In the model, logarithmic compression is achieved by conversion to decibel scale

xdB(t) = 10 · log10
xenv(t)

xref

, xref = max[xenv(t)] (3)

relative to the maximum intensity xref of the signal envelope xenv(t). Next, the ax-

ons of the receptor neurons project into the metathoracic ganglion, where they synapse

onto local interneurons (Fig. 1b). Both the local interneurons (Hildebrandt et al. 2009;

Clemens, Weschke, et al. 2010) and, to a lesser extent, the receptors themselves (Fisch et al. 2012)

display spike-frequency adaptation in response to sustained stimulus intensity levels. This

mechanism allows for the robust encoding of faster amplitude modulations against a slowly

changing overall baseline intensity. Functionally, this processing step resembles a highpass

filter

xadapt(t) = xdB(t) ∗ hHP(t), fcut = 10Hz (4)

over the logarithmically scaled envelope xdB(t). The projections of the local interneurons

remain within the metathoracic ganglion and synapse onto a small number of ascending

neurons (Fig. 1b), which marks the transition between the preprocessing stream and the

parallel processing stream of the model pathway.

2.2 Feature extraction by individual neurons

The small population of ascending neurons

Stage-specific processing steps and functional approximations:

Template matching by individual ANs

- Filter base (STA approximations): Set of Gabor kernels
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- Gabor parameters: σi, ϕi, fi → Determines kernel sign and lobe number

ki(t, σi, fi, ϕi) = e
− t2

2σi
2 · sin(2πfi · t + ϕi) (5)

→ Separate convolution with each member of the kernel set

ci(t) = xadapt(t) ∗ ki(t) =

∫ +∞

−∞
xadapt(τ) · ki(t − τ) dτ (6)

Thresholding nonlinearity in ascending neurons (or further downstream)

- Binarization of AN response traces into ”relevant” vs. ”irrelevant”

→ Shifted Heaviside step-function H(ci − Θi) (or steep sigmoid threshold?)

bi(t, Θi) =

 1, ci(t) > Θi

0, ci(t) ≤ Θi

(7)

Temporal averaging by neurons of the central brain

- Finalized set of slowly changing kernel-specific features (one per AN)

- Different species-specific song patterns are characterized by a distinct combination of

feature values → Clusters in high-dimensional feature space

→ Lowpass filter 1 Hz

fi(t) = bi(t) ∗ hLP(t), fcut = 1Hz (8)

3 Two mechanisms driving the emergence of intensity-

invariant song representation

Definition of invariance (general, systemic):

Invariance = Property of a system to maintain a stable output with respect to a set of

relevant input parameters (variation to be represented) but irrespective of one or more

other parameters (variation to be discarded) → Selective input-output decorrelation

Definition of intensity invariance (context of neurons and songs):

Intensity invariance = Time scale-selective sensitivity to certain faster amplitude dynamics

(song waveform, small-scale AM) and simultaneous insensitivity to slower, more sustained

amplitude dynamics (transient baseline, large-scale AM, current overall intensity level)

→ Without time scale selectivity, any fully intensity-invariant output will be a flat line
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3.1 Logarithmic scaling & spike-frequency adaptation

Envelope xenv(t)
dB−→ Logarithmic xdB(t)

hHP(t)−−−→ Adapted xadapt(t)

- Rewrite signal envelope xenv(t) (Eq. 2) as a synthetic mixture:

1) Song signal s(t) (σ2
s = 1) with variable multiplicative scale α ≥ 0

2) Fixed-scale additive noise η(t) (σ2
η = 1)

xenv(t) = α · s(t) + η(t), xenv(t) > 0 ∀ t ∈ R (9)

- Signal-to-noise ratio (SNR): Ratio of variances of synthetic mixture xenv(t) with (α > 0)

and without (α = 0) song signal s(t), assuming s(t) ⊥ η(t)

SNR =
σ2
s+η

σ2
η

=
α2 · σ2

s + σ2
η

σ2
η

= α2 + 1 (10)

Logarithmic component:

- Simplify decibel transformation (Eq. 3) and apply to synthetic xenv(t)

- Isolate scale α and reference xref using logarithm product/quotient laws

xdB(t) = log
α · s(t) + η(t)

xref

= log
α

xref

+ log big[s(t) +
η(t)

α
big]

(11)

→ In log-space, a multiplicative scaling factor becomes additive

→ Allows for the separation of song signal s(t) and its scale α

→ Introduces scaling of noise term η(t) by the inverse of α

→ Normalization by xref applies equally to all terms (no individual effects)

Adaptation component:

- Highpass filter over xdB(t) (Eq. 4) can be approximated as subtraction of the local signal

offset within a suitable time interval THP (0 ≪ THP < 1
fcut

)

xadapt(t) ≈ xdB(t) − log
α

xref

= log big[s(t) +
η(t)

α
big] (12)

Implication for intensity invariance:

- Logarithmic scaling is essential for equalizing different song intensities

→ Intensity information can be manipulated more easily when in form of a signal offset

in log-space than a multiplicative scale in linear space
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- Scale α can only be redistributed, not entirely eliminated from xadapt(t)

→ Turn initial scaling of song s(t) by α into scaling of noise η(t) by 1
α

- Capability to compensate for intensity variations, i.e. selective amplification of output

xadapt(t) relative to input xenv(t), is limited by input SNR (Eq. 10):

α ≫ 1: Attenuation of η(t) term → s(t) dominates xadapt(t)

α ≈ 1 Negligible effect on η(t) term → xadapt(t) = log[s(t) + η(t)]

α ≪ 1: Amplification of η(t) term → η(t) dominates xadapt(t)

→ Ability to equalize between different sufficiently large scales of s(t)

→ Inability to recover s(t) when initially masked by noise floor η(t)

- Logarithmic scaling emphasizes small amplitudes (song onsets, noise floor)

→ Recurring trade-off: Equalizing signal intensity vs preserving initial SNR

3.2 Threshold nonlinearity & temporal averaging

Convolved ci(t)
H(ci −Θi)−−−−−−→ Binary bi(t)

hLP(t)−−−→ Feature fi(t)

Thresholding component:

- Within an observed time interval T , ci(t) follows probability density p(ci, T )

- Within T , ci(t) exceeds threshold value Θi for time T1 (T1 + T0 = T )

- Threshold H(ci − Θi) splits p(ci, T ) around Θi in two complementary parts∫ +∞

Θi

p(ci, T ) dci = 1 −
∫ Θi

−∞
p(ci, T ) dci =

T1

T
(13)

→ Semi-definite integral over right-sided portion of split p(ci, T ) gives ratio of time T1

where ci(t) > Θi to total time T due to normalization of p(ci, T )∫ +∞

−∞
p(ci, T ) dci = 1 (14)

Averaging component:

- Lowpass filter over binary response bi(t) (Eq. 8) can be approximated as temporal aver-

aging over a suitable time interval TLP (TLP > 1
fcut

)

- Within TLP, bi(t) takes a value of 1 (ci(t) > Θi) for time T1 (T1 + T0 = TLP)

fi(t) ≈ 1

TLP

∫ t+TLP

t

bi(τ) dτ =
T1

TLP

(15)

→ Temporal averaging over bi(t) ∈ [0, 1] (Eq. 7) gives ratio of time T1 where ci(t) > Θi to
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total averaging interval TLP

→ Feature fi(t) approximately represents supra-threshold fraction of TLP

Combined result:

- Feature fi(t) can be linked to the distribution of ci(t) using Eqs. 13 & 15

fi(t) ≈
∫ +∞

Θi

p(ci, TLP) dci = P (ci > Θi, TLP) (16)

→ Because the integral over a probability density is a cumulative probability, the value of

feature fi(t) (temporal compression of bi(t)) at every time point t signifies the probability

that convolution output ci(t) exceeds the threshold value Θi during the corresponding

averaging interval TLP

Implication for intensity invariance:

- Convolution output ci(t) quantifies temporal similarity between amplitudes of template

waveform ki(t) and signal xadapt(t) centered at time point t

→ Based on amplitudes on a graded scale

- Feature fi(t) quantifies the probability that amplitudes of ci(t) exceed threshold value

Θi within interval TLP around time point t

→ Based on binned amplitudes corresponding to one of two categorical states → Delib-

erate loss of precise amplitude information

→ Emphasis on temporal structure (ratio of T1 over TLP)

- Thresholding of ci(t) and subsequent temporal averaging of bi(t) to obtain fi(t) consti-

tutes a remapping of an amplitude-encoding quantity into a duty cycle-encoding quantity,

mediated by threshold function H(ci − Θi)

- Different scales of ci(t) can result in similar T1 segments depending on the magnitude of

the derivative of ci(t) in temporal proximity to time points at which ci(t) crosses threshold

value Θi

→ The steeper the slope of ci(t), the less T1 changes with scale variations

→ If T1 is invariant to scale variation in ci(t), then so is fi(t)

- Suggests a relatively simple rule for optimal choice of threshold value Θi:

→ Find amplitude ci that maximizes absolute derivative of ci(t) over time

→ Optimal with respect to intensity invariance of fi(t), not necessarily for other criteria

such as song-noise separation or diversity between features

- Nonlinear operations can be used to detach representations from graded physical stimulus
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(to fasciliate categorical behavioral decision-making?):

1) Capture sufficiently precise amplitude information: xenv(t), xadapt(t)

→ Closely following the AM of the acoustic stimulus

2) Quantify relevant stimulus properties on a graded scale: ci(t)

→ More decorrelated representation, compared to prior stages

3) Nonlinearity: Distinguish between ”relevant vs irrelevant” values: bi(t)

→ Trading a graded scale for two or more categorical states

4) Represent stimulus properties under relevance constraint: fi(t)

→ Graded again but highly decorrelated from the acoustic stimulus

5) Categorical behavioral decision-making requires further nonlinearities

→ Parameters of a behavioral response may be graded (e.g. approach speed), initiation

of one behavior over another is categorical (e.g. approach/stay)

4 Discriminating species-specific song

patterns in feature space

5 Conclusions & outlook
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