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1 Exploring a grasshopper’s sensory world

Our scientific understanding of sensory processing systems results from the distributed
accumulation of anatomical, physiological and ethological evidence. This process is un-
doubtedly without alternative; however, it leaves us with the challenge of integrating the
available fragments into a coherent whole in order to address issues such as the interaction
between individual system components, the functional limitations of the system overall,
or taxonomic comparisons between systems that process the same sensory modality. Any
unified framework that captures the essential functional aspects of a given sensory sys-
tem thus has the potential to deepen our current understanding and fasciliate systematic
investigations. However, building such a framework is a challenging task. It requires a
wealth of existing knowledge of the system and the signals it operates on, a clearly defined
scope, and careful reduction, abstraction, and formalization of the underlying structures

and mechanisms.

One sensory system about which extensive information has been gathered over the years is
the auditory system of grasshoppers (Acrididae). Grasshoppers rely on their sense of hear-
ing primarily for intraspecific communication, which includes mate attraction and evalua-
tion (D. v. Helversen 1972), sender localization (D. v. Helversen and Rheinlaender 1988),
courtship display (SOURCE), rival deterrence (Greenfield and Minckley 1993), and loss-
of-signal predator alarm (SOURCE). In accordance with this rich behavioral repertoire,
grasshoppers have evolved a variety of sound production mechanisms to generate acoustic
communication signals for different contexts and ranges using their wings, hindlegs, or
mandibles (Otte 1970). Among the most conspicuous acoustic signals of grasshoppers are
the species-specific calling songs, which broadcast the presence of the singing individual

— usually the males of a species — to potential mates within range. These songs are



usually more characteristic of a species than morphological traits.

This reliance on species-specific acoustic signals for mediating reproduction represents a
strong evolutionary driving force, that resulted in a massive species diversification (Vedenina and Mugue
Sevastianov et al. 2023).

The characteristic calling songs are produced by stridulation, during which the grasshop-
per pulls the serrated stridulatory file on its hindlegs across a resonating vein on the

forewings (O. v. Helversen and Elsner 1977, D. v. Helversen and O. v. Helversen 1997).

Such elaborate acoustic behaviors co-depend not only on reliable auditory perception
but also on suitable acoustic signals for different contexts and ranges. To this end,
grasshoppers have evolved a variety of sound production mechanisms using their wings,
hindlegs, or mandibles (Otte 1970). The most conspicuous acoustic signals — the char-
acteristic calling songs — are produced by stridulation, during which the grasshop-
per pulls the serrated stridulatory file on its hindlegs across a resonating vein on the
forewings (O. v. Helversen and Elsner 1977, D. v. Helversen and O. v. Helversen 1997). The
reliance on species-specific acoustic communication signals represents a strong evolution-
ary driving force, that resulted in a massive species diversification (Vedenina and Mugue 2011,
Sevastianov et al. 2023).

The most conspicuous acoustic signals — the characteristic calling songs — are pro-
duced by stridulation, during which the grasshopper pulls the serrated stridulatory file
on its hindlegs across a resonating vein on the forewings (O. v. Helversen and Elsner 1977,
D. v. Helversen and O. v. Helversen 1997). Grasshopper songs are species-specific, amplitude-

modulated (AM) broad-band acoustic signals

Among the several thousand recognized grasshopper species (Cigliano et al. 2018), diverse

species-specific sound repertoires and production mechanisms

Strong dependence on acoustic signals for ranged communication

- Diverse species-specific sound repertoires and production mechanisms

- Different contexts/ranges: Stridulatory, mandibular, wings, walking sounds
- Mate attraction/evaluation, rival deterrence, loss-of-signal predator alarm

— Elaborate acoustic behaviors co-depend on reliable auditory perception

Songs = Amplitude-modulated (AM) broad-band acoustic signals
- Generated by stridulatory movement of hindlegs against forewings
- Shorter time scales: Characteristic temporal waveform pattern

- Longer time scales: High degree of periodicity (pattern repetition)



- Sound propagation: Signal intensity varies strongly with distance to sender
- Ectothermy: Temporal structure warps with temperature

— Sensory constraints imposed by properties of the acoustic signal itself

Multi-species, multi-individual communally inhabited environments

- Temporal overlap: Simultaneous singing across individuals/species common
- Frequency overlap: No/hardly any niche speciation into frequency bands

- ”Biotic noise”: Hetero-/conspecifics (” Another one’s songs are my noise”)

- 7 Abiotic noise”: Wind, water, vegetation, anthropogenic

- Effects of habitat structure on sound propagation (landscape - soundscape)

— Sensory constraints imposed by the (acoustic) environment

Cluster of auditory challenges (interlocking constraints — tight coupling):

From continuous acoustic input, generate neuronal representations that...

1)...allow for the separation of relevant (song) events from ambient noise floor
2)...compensate for behaviorally non-informative song variability (invariances)

3)...carry sufficient information to characterize different song patterns, recognize the ones
produced by conspecifics, and make appropriate behavioral decisions based on context

(sender identity, song type, mate/rival quality)

How can the auditory system of grasshoppers meet these challenges?

- What are the minimum functional processing steps required?

- Which known neuronal mechanisms can implement these steps?

- Which and how many stages along the auditory pathway contribute?

— What are the limitations of the system as a whole?

How can a human observer conceive a grasshopper’s auditory percepts?
- How to investigate the workings of the auditory pathway as a whole?
- How to systematically test effects and interactions of processing parameters?
- How to integrate the available knowledge on anatomy, physiology, ethology?

— Abstract, simplify, formalize — Functional model framework
Precursor work for model construction (special thanks to authors):

Linear-nonlinear modelling of behavioral responses to artificial songs

- Feature expansion as implemented in our model: Major contribution!

- Bank of linear filters, nonlinearity, temporal integration, feature weighting
— Clemens and Hennig 2013 (crickets)

— Clemens and Ronacher 2013 (grasshoppers)

— Ronacher et al. 2015



Own advancements/key differences:

1) Used boxcar functions as artificial ”songs” (focus on few key parameters)
— Now actual, variable songs (as naturalistic as possible)

2) Fitted filters to behavioral data

— More general, simpler, unfitted formalized Gabor filter bank

2 Developing a functional model of

the grasshopper auditory pathway

The grasshopper auditory system has been studied extensively over the past decades; and
a corresponding number of involved neuron types has been described (Rehbein et al. 1974;
Kalmring 1975; Rehbein 1976; Eichendorf and Kalmring 1980). The functional model we
propose here focuses on the pathway responsible for song recognition and assumes a strict
feed-forward organization of three consecutive neuronal populations: Peripheral auditory
receptor neurons (1st order), local interneurons of the metathoracic ganglion (2nd order),

and ascending neurons (3rd order) projecting towards the supraesophageal ganglion.

Previous authors have reported a marked increase in response heterogenity within the pop-
ulation of ascending neurons compared to receptors and local interneurons, which exhibit
almost identical filter characteristics, respectively (Clemens, Kutzki, et al. 2011). Based
on these findings, the model pathway can be divided into two distinct portions (Fig. 1lc+d).

In the preprocessing portion, generated

The preprocessing portion comprises the tympanal membrane, receptors, and local in-

terneurons. The different signal representations
Due to the similar response properties within the involved

1) ”Pre-split portion” of the auditory pathway:

Tympanal membrane — Receptor neurons — Local interneurons

Similar response /filter properties within receptor/interneuron populations (Clemens, Kutzki,
et al. 2011)

— One population-wide response trace per stage (no ”single-cell resolution”)

2) " Post-split portion” of the auditory pathway:

Ascending neurons (AN) — Central brain neurons

Diverse response/filter properties within AN population (Clemens, Kutzki, et al. 2011)

- Pathway splitting into several parallel branches
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- Expansion into a decorrelated higher-dimensional sound representation

— Individual neuron-specific response traces from this stage onwards

Figure 1: The auditory system of grasshoppers.

2.1 Population-driven signal pre-processing

Grasshoppers receive airborne sound waves by a tympanal organ at each side of the tho-
rax (Fig.la). The tympanal membrane acts as a mechanical resonance filter: Vibrations
that fall within specific frequency bands are focused on different membrane areas, while
others are attenuated (Michelsen 1971; Windmill et al. 2008; Malkin et al. 2014). This

processing step can be approximated by an initial bandpass filter

xﬁlt(t) = (L‘(t) * hBP(t), fcut = 5kHZ, 30kHz (1)



applied to the acoustic input signal z(¢). The auditory receptor neurons connect directly
to the tympanal membrane (Fig.la). Besides performing the mechano-electrical trans-
duction, the receptor population is substrate to several known processing steps. First,
the receptors extract the signal envelope (Machens, Prinz, et al. 2001), which likely in-
volves a rectifying nonlinearity (Machens, Stemmler, et al. 2001). This can be modelled

as full-wave rectification followed by lowpass filtering

ZL’enV(t) = |l’ﬁ1t<t)’ * th(t), fcut = 500 Hz (2)

of the tympanal signal zg(f). Furthermore, the receptors exhibit a sigmoidal response
curve over logarithmically compressed intensity levels (Suga 1960; Gollisch et al. 2002).
In the model, logarithmic compression is achieved by conversion to decibel scale

ran(t) = 10 - 1ogm%;—v(:), Tyt = MaX[Teny (1)) (3)
relative to the maximum intensity z,f of the signal envelope Zen(t). Next, the ax-
ons of the receptor neurons project into the metathoracic ganglion, where they synapse
onto local interneurons (Fig. 1b). Both the local interneurons (Hildebrandt et al. 2009;
Clemens, Weschke, et al. 2010) and, to a lesser extent, the receptors themselves (Fisch et al. 2012)
display spike-frequency adaptation in response to sustained stimulus intensity levels. This
mechanism allows for the robust encoding of faster amplitude modulations against a slowly
changing overall baseline intensity. Functionally, this processing step resembles a highpass

filter
xadapt(t) - de(t) * hHP<t)7 fcut = 10Hz (4)

over the logarithmically scaled envelope xqg(t). The projections of the local interneurons
remain within the metathoracic ganglion and synapse onto a small number of ascending
neurons (Fig. 1b), which marks the transition between the preprocessing stream and the

parallel processing stream of the model pathway.

2.2 Feature extraction by individual neurons
The small population of ascending neurons
Stage-specific processing steps and functional approximations:

Template matching by individual ANs
- Filter base (STA approximations): Set of Gabor kernels



- Gabor parameters: o;, ¢;, f; — Determines kernel sign and lobe number

+2

ki(t, oi, fi, i) = € & - sin(2nf; - t + o) (5)

— Separate convolution with each member of the kernel set

“+o0o
ci(t) = Tadapt(t) * ki(t) :/ Tadapt (T) « ki(t — 7)dr (6)
Thresholding nonlinearity in ascending neurons (or further downstream)
- Binarization of AN response traces into "relevant” vs. "irrelevant”
— Shifted Heaviside step-function H(¢; — ©;) (or steep sigmoid threshold?)

1, Cl(t) > 61

bi(t, ©;) =
0, «(t) <6,

Temporal averaging by neurons of the central brain

- Finalized set of slowly changing kernel-specific features (one per AN)

- Different species-specific song patterns are characterized by a distinct combination of
feature values — Clusters in high-dimensional feature space

— Lowpass filter 1 Hz

fit) = bit) * hop(t),  fow = 1Hz (8)

3 Two mechanisms driving the emergence of intensity-

invariant song representation

Definition of invariance (general, systemic):
Invariance = Property of a system to maintain a stable output with respect to a set of
relevant input parameters (variation to be represented) but irrespective of one or more

other parameters (variation to be discarded) — Selective input-output decorrelation

Definition of intensity invariance (context of neurons and songs):

Intensity invariance = Time scale-selective sensitivity to certain faster amplitude dynamics
(song waveform, small-scale AM) and simultaneous insensitivity to slower, more sustained
amplitude dynamics (transient baseline, large-scale AM, current overall intensity level)

— Without time scale selectivity, any fully intensity-invariant output will be a flat line



3.1 Logarithmic scaling & spike-frequency adaptation
Envelope Zeny(t) N Logarithmic zq5(t) M Adapted Tagapt(t)

- Rewrite signal envelope Zeny (f) (Eq.2) as a synthetic mixture:
1) Song signal s(t) (02 = 1) with variable multiplicative scale o > 0
2) Fixed-scale additive noise 7(t) (07 = 1)

Teny(t) = a - s(t) + n(t), Teny(t) >0V t €R (9)

- Signal-to-noise ratio (SNR): Ratio of variances of synthetic mixture Zeny (t) with (a > 0)

and without (o = 0) song signal s(t), assuming s(t) L n(t)

o? a? -0+ o2
SNR = =% = 1 =’ +1 (10)
Un 0'77

Logarithmic component:
- Simplify decibel transformation (Eq.3) and apply to synthetic Zeyy (%)

- Isolate scale o and reference x, using logarithm product/quotient laws

a - s(t) + n(t)

Tref (11)

@ + log big[s(t) + %t)big]

zap(t) = log

= log
ref
— In log-space, a multiplicative scaling factor becomes additive
— Allows for the separation of song signal s(t) and its scale «
— Introduces scaling of noise term 7(¢) by the inverse of a

— Normalization by x..¢ applies equally to all terms (no individual effects)

Adaptation component:
- Highpass filter over z45(t) (Eq.4) can be approximated as subtraction of the local signal

offset within a suitable time interval Thp (0 < Thp < ﬁ)

o n(t
Tadapt (t) ~ zap(t) — logx ; = logb;g[s(t) + %big] (12)
Implication for intensity invariance:

- Logarithmic scaling is essential for equalizing different song intensities

— Intensity information can be manipulated more easily when in form of a signal offset

in log-space than a multiplicative scale in linear space



- Scale o can only be redistributed, not entirely eliminated from Z,qapt (%)

— Turn initial scaling of song s(t) by « into scaling of noise 7(t) by +

- Capability to compensate for intensity variations, i.e. selective amplification of output
Tadapt (t) Telative to input Zeny(t), is limited by input SNR (Eq. 10):

a > 1: Attenuation of n(t) term — s(t) dominates Zadapt(t)

a =~ 1 Negligible effect on n(t) term — Zaqapt () = log[s(t) + n(t)]

a < 1: Amplification of n(t) term — n(t) dominates Zagapt(t)

— Ability to equalize between different sufficiently large scales of s(t)

— Inability to recover s(t) when initially masked by noise floor 7n(t)

- Logarithmic scaling emphasizes small amplitudes (song onsets, noise floor)

— Recurring trade-off: Equalizing signal intensity vs preserving initial SNR

3.2 Threshold nonlinearity & temporal averaging
Convolved ¢;(t) Ao =), Binary b;(t) M@, peature fi(t)

Thresholding component:

- Within an observed time interval T', ¢;(t) follows probability density p(c;, T)
- Within T, ¢;(t) exceeds threshold value ©; for time T} (17 + Ty = 1)

- Threshold H(c; — ©;) splits p(c;, T) around ©; in two complementary parts

+oo O; T,
/ ples, T)de; = 1 — / plen T)de; = 21 (13)
0; —0o0 T
— Semi-definite integral over right-sided portion of split p(c;, T') gives ratio of time T}

where ¢;(t) > ©; to total time 7" due to normalization of p(¢;, T')

“+o0o
/ plei, T)de; = 1 (14)
Averaging component:

- Lowpass filter over binary response b;(t) (Eq.8) can be approximated as temporal aver-
aging over a suitable time interval Typ (Tip > +—)

fcut
- Within Tip, b;(t) takes a value of 1 (¢;(t) > ©;) for time T3 (11 + Ty = Trp)

1 ittt T
N o— bi(r)dr = — 15
Tor /. () T (15)

fit)

— Temporal averaging over b;(t) € [0,1] (Eq.7) gives ratio of time T} where ¢;(t) > ©; to



total averaging interval Ty p

— Feature f;(t) approximately represents supra-threshold fraction of Tp

Combined result:
- Feature f;(t) can be linked to the distribution of ¢;(t) using Egs. 13 & 15

+oo

fi(t) =~ / p(ci, Tup) de; = P(c; > ©;, Tip) (16)
O;

— Because the integral over a probability density is a cumulative probability, the value of

feature f;(¢) (temporal compression of b;(t)) at every time point ¢ signifies the probability

that convolution output ¢;(t) exceeds the threshold value ©; during the corresponding

averaging interval T1p

Implication for intensity invariance:
- Convolution output ¢;(t) quantifies temporal similarity between amplitudes of template
waveform k;(t) and signal Zaq.pt(t) centered at time point ¢

— Based on amplitudes on a graded scale

- Feature f;(t) quantifies the probability that amplitudes of ¢;(t) exceed threshold value
©; within interval T1p around time point ¢
— Based on binned amplitudes corresponding to one of two categorical states — Delib-
erate loss of precise amplitude information

— Emphasis on temporal structure (ratio of 7} over Tip)

- Thresholding of ¢;(t) and subsequent temporal averaging of b;(¢) to obtain f;(t) consti-
tutes a remapping of an amplitude-encoding quantity into a duty cycle-encoding quantity,
mediated by threshold function H(¢; — ©;)

- Different scales of ¢;(t) can result in similar 77 segments depending on the magnitude of
the derivative of ¢;(t) in temporal proximity to time points at which ¢;(¢) crosses threshold
value ©;

— The steeper the slope of ¢;(t), the less T; changes with scale variations

— If T} is invariant to scale variation in ¢;(t), then so is f;()

- Suggests a relatively simple rule for optimal choice of threshold value ©;:
— Find amplitude ¢; that maximizes absolute derivative of ¢;(t) over time
— Optimal with respect to intensity invariance of f;(t), not necessarily for other criteria

such as song-noise separation or diversity between features

- Nonlinear operations can be used to detach representations from graded physical stimulus
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(to fasciliate categorical behavioral decision-making?):

1) Capture sufficiently precise amplitude information: Zeny(t), Zadapt (f)
— Closely following the AM of the acoustic stimulus

2) Quantify relevant stimulus properties on a graded scale: ¢;(t)

— More decorrelated representation, compared to prior stages

3) Nonlinearity: Distinguish between "relevant vs irrelevant” values: b;(t)
— Trading a graded scale for two or more categorical states

4) Represent stimulus properties under relevance constraint: f;(t)

— Graded again but highly decorrelated from the acoustic stimulus

5) Categorical behavioral decision-making requires further nonlinearities
— Parameters of a behavioral response may be graded (e.g. approach speed), initiation

of one behavior over another is categorical (e.g. approach/stay)

4 Discriminating species-specific song

patterns in feature space

5 Conclusions & outlook
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