Emergent intensity invariance in a physiologically inspired model of the grasshopper auditory system

Jona Hartling, Jan Benda

1 Exploring a grashopper's sensory world

Strong dependence on acoustic signals for ranged communication

- Diverse species-specific sound repertoires and production mechanisms
- Different contexts/ranges: Stridulatory, mandibular, wings, walking sounds
- Mate attraction/evaluation, rival deterrence, loss-of-signal predator alarm
- \rightarrow Elaborate acoustic behaviors co-depend on reliable auditory perception

Songs = Amplitude-modulated (AM) broad-band acoustic signals

- Generated by stridulatory movement of hindlegs against forewings
- Shorter time scales: Characteristic temporal waveform pattern
- Longer time scales: High degree of periodicity (pattern repetition)
- Sound propagation: Signal intensity varies strongly with distance to sender
- Ectothermy: Temporal structure warps with temperature
- \rightarrow Sensory constraints imposed by properties of the acoustic signal itself

Multi-species, multi-individual communally inhabited environments

- Temporal overlap: Simultaneous singing across individuals/species common
- Frequency overlap: No/hardly any niche speciation into frequency bands
- "Biotic noise": Hetero-/conspecifics ("Another one's songs are my noise")
- "Abiotic noise": Wind, water, vegetation, anthropogenic
- Effects of habitat structure on sound propagation (landscape soundscape)
- → Sensory constraints imposed by the (acoustic) environment

Cluster of auditory challenges (interlocking constraints \rightarrow tight coupling): From continuous acoustic input, generate neuronal representations that... 1)...allow for the separation of relevant (song) events from ambient noise floor

- 2)...compensate for behaviorally non-informative song variability (invariances)
- 3)...carry sufficient information to characterize different song patterns, recognize the ones produced by conspecifics, and make appropriate behavioral decisions based on context (sender identity, song type, mate/rival quality)

How can the auditory system of grasshoppers meet these challenges?

- What are the minimum functional processing steps required?
- Which known neuronal mechanisms can implement these steps?
- Which and how many stages along the auditory pathway contribute?
- \rightarrow What are the limitations of the system as a whole?

How can a human observer conceive a grasshopper's auditory percepts?

- How to investigate the workings of the auditory pathway as a whole?
- How to systematically test effects and interactions of processing parameters?
- How to integrate the available knowledge on anatomy, physiology, ethology?
- \rightarrow Abstract, simplify, formalize \rightarrow Functional model framework

Precursor work for model construction (special thanks to authors):

Linear-nonlinear modelling of behavioral responses to artificial songs

- Feature expansion as implemented in our model: Major contribution!
- Bank of linear filters, nonlinearity, temporal integration, feature weighting
- \rightarrow Clemens and Hennig 2013 (crickets)
- → Clemens and Ronacher 2013 (grasshoppers)
- \rightarrow Ronacher et al. 2015

Own advancements/key differences:

- 1) Used boxcar functions as artificial "songs" (focus on few key parameters)
- \rightarrow Now actual, variable songs (as naturalistic as possible)
- 2) Fitted filters to behavioral data
- → More general, simpler, unfitted formalized Gabor filter bank

2 Developing a functional model of the grasshopper auditory pathway

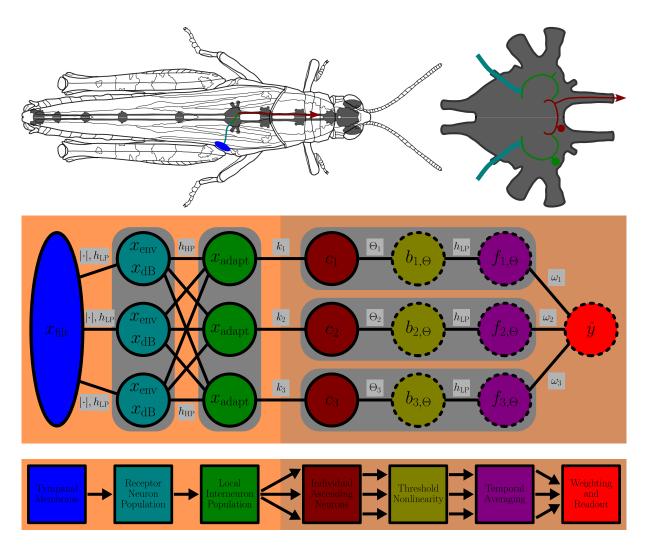


Figure 1: The auditory system of grasshoppers.

2.1 Population-driven signal pre-processing

Grasshoppers receive airborne sound waves by a tympanal organ at each side of the thorax (Fig. 1a). The tympanal membrane acts as a mechanical resonance filter, that focuses vibrations of specific frequencies on different membrane areas while attenuating others (Michelsen 1971; Windmill et al. 2008; Malkin et al. 2014). This processing step can be approximated by an initial bandpass filter

$$x_{\text{filt}}(t) = x(t) * h_{\text{BP}}(t), \qquad f_{\text{cut}} = 5 \text{ kHz}, 30 \text{ kHz}$$
 (1)

applied to the acoustic input signal x(t). The auditory receptor neurons connect directly to the tympanal membrane. Besides performing the mechano-electrical transduction, the receptor population further is substrate to several known processing steps. First, the receptors extract the signal envelope (Machens, Prinz, et al. 2001), which likely involves

a rectifying nonlinearity (Machens, Stemmler, et al. 2001). This can be modelled as full-wave rectification followed by lowpass filtering

$$x_{\text{env}}(t) = |x_{\text{filt}}(t)| * h_{\text{LP}}(t), \qquad f_{\text{cut}} = 500 \,\text{Hz}$$
 (2)

of the tympanal signal $x_{\text{filt}}(t)$. Furthermore, the receptors exhibit a sigmoidal response curve over logarithmically compressed intensity levels (Suga 1960; Gollisch et al. 2002). In the model, logarithmic compression is achieved by conversion to decibel scale

$$x_{\rm dB}(t) = 10 \cdot \log_{10} \frac{x_{\rm env}(t)}{x_{\rm ref}}, \qquad x_{\rm ref} = \max[x_{\rm env}(t)]$$
 (3)

relative to the maximum intensity x_{ref} of the signal envelope $x_{\text{env}}(t)$. The axons of the receptor neurons project into the metathoracic ganglion, where they synapse onto local interneurons (Fig. 1b). Both the local interneurons (Hildebrandt et al. 2009; Clemens, Weschke, et al. 201 and, to a lesser extent, the receptors themselves (Fisch et al. 2012) display spike-frequency adaptation in response to sustained stimulation. This behavior is crucial to render subsequent signal representations invariant to variations in sound intensity.

"Pre-split portion" of the auditory pathway:

Tympanal membrane \rightarrow Receptor neurons \rightarrow Local interneurons

Similar response/filter properties within receptor/interneuron populations (Clemens, Kutzki, et al. 2011)

→ One population-wide response trace per stage (no "single-cell resolution")

Stage-specific processing steps and functional approximations:

Initial: Continuous acoustic input signal x(t)

Filtering of behaviorally relevant frequencies by tympanal membrane

 \rightarrow Bandpass filter 5-30 kHz

Extraction of signal envelope (AM encoding) by receptor population

 \rightarrow Full-wave rectification, then lowpass filter 500 Hz

Logarithmically compressed intensity tuning curve of receptors

 \rightarrow Decibel transformation

Spike-frequency adaptation in receptor and interneuron populations

 \rightarrow Highpass filter 10 Hz

$$x_{\text{adapt}}(t) = x_{\text{dB}}(t) * h_{\text{HP}}(t), \qquad f_{\text{cut}} = 10 \,\text{Hz}$$
 (4)

2.2 Feature extraction by individual neurons

"Post-split portion" of the auditory pathway:

Ascending neurons $(AN) \rightarrow Central brain neurons$

Diverse response/filter properties within AN population (Clemens, Kutzki, et al. 2011)

- Pathway splitting into several parallel branches
- Expansion into a decorrelated higher-dimensional sound representation
- → Individual neuron-specific response traces from this stage onwards

Stage-specific processing steps and functional approximations:

Template matching by individual ANs

- Filter base (STA approximations): Set of Gabor kernels
- Gabor parameters: $\sigma_i, \phi_i, f_i \to \text{Determines kernel sign and lobe number}$

$$k_i(t, \sigma_i, f_i, \phi_i) = e^{-\frac{t^2}{2\sigma_i^2}} \cdot \sin(2\pi f_i \cdot t + \phi_i)$$
 (5)

 \rightarrow Separate convolution with each member of the kernel set

$$c_i(t) = x_{\text{adapt}}(t) * k_i(t) = \int_{-\infty}^{+\infty} x_{\text{adapt}}(\tau) \cdot k_i(t - \tau) d\tau$$
 (6)

Thresholding nonlinearity in ascending neurons (or further downstream)

- Binarization of AN response traces into "relevant" vs. "irrelevant"
- \rightarrow Shifted Heaviside step-function $H(c_i \Theta_i)$ (or steep sigmoid threshold?)

$$b_i(t, \Theta_i) = \begin{cases} 1, & c_i(t) > \Theta_i \\ 0, & c_i(t) \le \Theta_i \end{cases}$$
 (7)

Temporal averaging by neurons of the central brain

- Finalized set of slowly changing kernel-specific features (one per AN)
- Different species-specific song patterns are characterized by a distinct combination of feature values \rightarrow Clusters in high-dimensional feature space

 \rightarrow Lowpass filter 1 Hz

$$f_i(t) = b_i(t) * h_{LP}(t), f_{cut} = 1 \text{ Hz}$$
 (8)

3 Two mechanisms driving the emergence of intensityinvariant song representation

3.1 Logarithmic scaling & spike-frequency adaptation

Envelope $x_{\text{env}}(t) \xrightarrow{\text{dB}} \text{Logarithmic } x_{\text{dB}}(t) \xrightarrow{h_{\text{HP}}(t)} \text{Adapted } x_{\text{adapt}}(t)$

- Rewrite signal envelope $x_{\text{env}}(t)$ (Eq. 2) as a synthetic mixture:
- 1) Song signal s(t) ($\sigma_{\rm s}^2=1$) with variable multiplicative scale $\alpha\geq 0$
- 2) Fixed-scale additive noise $\eta(t)$ $(\sigma_{\eta}^2 = 1)$

$$x_{\text{env}}(t) = \alpha \cdot s(t) + \eta(t), \qquad x_{\text{env}}(t) > 0 \ \forall \ t \in \mathbb{R}$$
 (9)

- Signal-to-noise ratio (SNR): Ratio of variances of synthetic mixture $x_{\rm env}(t)$ with $(\alpha > 0)$ and without $(\alpha = 0)$ song signal s(t), assuming $s(t) \perp \eta(t)$

$$SNR = \frac{\sigma_{s+\eta}^2}{\sigma_{\eta}^2} = \frac{\alpha^2 \cdot \sigma_{s}^2 + \sigma_{\eta}^2}{\sigma_{\eta}^2} = \alpha^2 + 1$$
 (10)

Logarithmic component:

- Simplify decibel transformation (Eq. 3) and apply to synthetic $x_{\rm env}(t)$
- Isolate scale α and reference $x_{\rm ref}$ using logarithm product/quotient laws

$$x_{\text{dB}}(t) = \log \frac{\alpha \cdot s(t) + \eta(t)}{x_{\text{ref}}}$$

$$= \log \frac{\alpha}{x_{\text{ref}}} + \log b_i g[s(t) + \frac{\eta(t)}{\alpha} b_i g]$$
(11)

- \rightarrow In log-space, a multiplicative scaling factor becomes additive
- \rightarrow Allows for the separation of song signal s(t) and its scale α
- \rightarrow Introduces scaling of noise term $\eta(t)$ by the inverse of α
- \rightarrow Normalization by $x_{\rm ref}$ applies equally to all terms (no individual effects)

Adaptation component:

- Highpass filter over $x_{dB}(t)$ (Eq. 4) can be approximated as subtraction of the local signal

offset within a suitable time interval $T_{\rm HP}$ (0 $\ll T_{\rm HP} < \frac{1}{f_{\rm cut}}$)

$$x_{\text{adapt}}(t) \approx x_{\text{dB}}(t) - \log \frac{\alpha}{x_{\text{ref}}} = \log b_i g[s(t) + \frac{\eta(t)}{\alpha} b_i g]$$
 (12)

Implication for intensity invariance:

- Logarithmic scaling is essential for equalizing different song intensities
- \rightarrow Intensity information can be manipulated more easily when in form of a signal offset in log-space than a multiplicative scale in linear space
- Scale α can only be redistributed, not entirely eliminated from $x_{\text{adapt}}(t)$
- \rightarrow Turn initial scaling of song s(t) by α into scaling of noise $\eta(t)$ by $\frac{1}{\alpha}$
- Capability to compensate for intensity variations, i.e. selective amplification of output $x_{\text{adapt}}(t)$ relative to input $x_{\text{env}}(t)$, is limited by input SNR (Eq. 10):
- $\alpha \gg 1$: Attenuation of $\eta(t)$ term $\to s(t)$ dominates $x_{\rm adapt}(t)$
- $\alpha \approx 1$ Negligible effect on $\eta(t)$ term $\to x_{\rm adapt}(t) = \log[s(t) + \eta(t)]$
- $\alpha \ll 1$: Amplification of $\eta(t)$ term $\to \eta(t)$ dominates $x_{\rm adapt}(t)$
- \rightarrow Ability to equalize between different sufficiently large scales of s(t)
- \rightarrow Inability to recover s(t) when initially masked by noise floor $\eta(t)$
- Logarithmic scaling emphasizes small amplitudes (song onsets, noise floor)
- → Recurring trade-off: Equalizing signal intensity vs preserving initial SNR

3.2 Threshold nonlinearity & temporal averaging

Convolved
$$c_i(t) \xrightarrow{H(c_i - \Theta_i)}$$
 Binary $b_i(t) \xrightarrow{h_{LP}(t)}$ Feature $f_i(t)$

Thresholding component:

- Within an observed time interval T, $c_i(t)$ follows probability density $p(c_i, T)$
- Within T, $c_i(t)$ exceeds threshold value Θ_i for time T_1 $(T_1 + T_0 = T)$
- Threshold $H(c_i \Theta_i)$ splits $p(c_i, T)$ around Θ_i in two complementary parts

$$\int_{\Theta_i}^{+\infty} p(c_i, T) \, dc_i = 1 - \int_{-\infty}^{\Theta_i} p(c_i, T) \, dc_i = \frac{T_1}{T}$$
 (13)

 \rightarrow Semi-definite integral over right-sided portion of split $p(c_i, T)$ gives ratio of time T_1 where $c_i(t) > \Theta_i$ to total time T due to normalization of $p(c_i, T)$

$$\int_{-\infty}^{+\infty} p(c_i, T) dc_i = 1 \tag{14}$$

Averaging component:

- Lowpass filter over binary response $b_i(t)$ (Eq. 8) can be approximated as temporal averaging over a suitable time interval $T_{\rm LP}$ ($T_{\rm LP} > \frac{1}{f_{\rm cut}}$)
- Within $T_{\rm LP}, \, b_i(t)$ takes a value of 1 $(c_i(t) > \Theta_i)$ for time $T_1 \, (T_1 + T_0 = T_{\rm LP})$

$$f_i(t) \approx \frac{1}{T_{\rm LP}} \int_t^{t+T_{\rm LP}} b_i(\tau) d\tau = \frac{T_1}{T_{\rm LP}}$$
(15)

- \rightarrow Temporal averaging over $b_i(t) \in [0, 1]$ (Eq. 7) gives ratio of time T_1 where $c_i(t) > \Theta_i$ to total averaging interval T_{LP}
- \rightarrow Feature $f_i(t)$ approximately represents supra-threshold fraction of $T_{\rm LP}$

Combined result:

- Feature $f_i(t)$ can be linked to the distribution of $c_i(t)$ using Eqs. 13 & 15

$$f_i(t) \approx \int_{\Theta_i}^{+\infty} p(c_i, T_{LP}) dc_i = P(c_i > \Theta_i, T_{LP})$$
 (16)

 \rightarrow Because the integral over a probability density is a cumulative probability, the value of feature $f_i(t)$ (temporal compression of $b_i(t)$) at every time point t signifies the probability that convolution output $c_i(t)$ exceeds the threshold value Θ_i during the corresponding averaging interval T_{LP}

Implication for intensity invariance:

- Convolution output $c_i(t)$ quantifies temporal similarity between amplitudes of template waveform $k_i(t)$ and signal $x_{\text{adapt}}(t)$ centered at time point t
- \rightarrow Based on amplitudes on a graded scale
- Feature $f_i(t)$ quantifies the probability that amplitudes of $c_i(t)$ exceed threshold value Θ_i within interval T_{LP} around time point t
- \rightarrow Based on binned amplitudes corresponding to one of two categorical states \rightarrow Deliberate loss of precise amplitude information
- \rightarrow Emphasis on temporal structure (ratio of T_1 over T_{LP})
- Thresholding of $c_i(t)$ and subsequent temporal averaging of $b_i(t)$ to obtain $f_i(t)$ constitutes a remapping of an amplitude-encoding quantity into a duty cycle-encoding quantity, mediated by threshold function $H(c_i \Theta_i)$
- Different scales of $c_i(t)$ can result in similar T_1 segments depending on the magnitude of the derivative of $c_i(t)$ in temporal proximity to time points at which $c_i(t)$ crosses threshold value Θ_i

- \rightarrow The steeper the slope of $c_i(t)$, the less T_1 changes with scale variations
- \rightarrow If T_1 is invariant to scale variation in $c_i(t)$, then so is $f_i(t)$
- Suggests a relatively simple rule for optimal choice of threshold value Θ_i :
- \rightarrow Find amplitude c_i that maximizes absolute derivative of $c_i(t)$ over time
- \rightarrow Optimal with respect to intensity invariance of $f_i(t)$, not necessarily for other criteria such as song-noise separation or diversity between features
- Nonlinear operations can be used to detach representations from graded physical stimulus (to fasciliate categorical behavioral decision-making?):
- 1) Capture sufficiently precise amplitude information: $x_{\text{env}}(t)$, $x_{\text{adapt}}(t)$
- \rightarrow Closely following the AM of the acoustic stimulus
- 2) Quantify relevant stimulus properties on a graded scale: $c_i(t)$
- \rightarrow More decorrelated representation, compared to prior stages
- 3) Nonlinearity: Distinguish between "relevant vs irrelevant" values: $b_i(t)$
- \rightarrow Trading a graded scale for two or more categorical states
- 4) Represent stimulus properties under relevance constraint: $f_i(t)$
- → Graded again but highly decorrelated from the acoustic stimulus
- 5) Categorical behavioral decision-making requires further nonlinearities
- → Parameters of a behavioral response may be graded (e.g. approach speed), initiation of one behavior over another is categorical (e.g. approach/stay)

4 Discriminating species-specific song patterns in feature space

5 Conclusions & outlook