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1 Exploring a grasshopper’s sensory world

Our scientific understanding of sensory processing systems results from the distributed
accumulation of anatomical, physiological and ethological evidence. This process is un-
doubtedly without alternative; however, it leaves us with the challenge of integrating the
available fragments into a coherent whole in order to address issues such as the interaction
between individual system components, the functional limitations of the system overall,
or taxonomic comparisons between systems that process the same sensory modality. Any
unified framework that captures the essential functional aspects of a given sensory sys-
tem thus has the potential to deepen our current understanding and fasciliate systematic
investigations. However, building such a framework is a challenging task. It requires a
wealth of existing knowledge of the system and the signals it operates on, a clearly defined
scope, and careful reduction, abstraction, and formalization of the underlying structures

and mechanisms.

One sensory system about which extensive information has been gathered over the years is

the auditory system of grasshoppers (Acrididae). Grasshoppers rely on their sense of hear-

ing primarily for intraspecific communication, which includes mate attraction (D. v. Helversen 1972)
and evaluation (Stange and Ronacher 2012), sender localization (D. v. Helversen and Rheinlaender 198
courtship display (Elsner 1968), rival deterrence (Greenfield and Minckley 1993), and loss-

of-signal predator alarm (SOURCE). In accordance with this rich behavioral repertoire,

grasshoppers have evolved a variety of sound production mechanisms to generate acoustic
communication signals for different contexts and ranges using their wings, hindlegs, or

mandibles (Otte 1970). Among the most conspicuous acoustic signals of grasshoppers are

their species-specific calling songs, which broadcast the presence of the singing individual

— mostly the males of the species — to potential mates within range. These songs are usu-



ally more characteristic of a species than morphological traits (Tishechkin and Vedenina 2016,
Tarasova et al. 2021), which can vary greatly within species (Rowell 1972, Kéhler et al. 2017).
The reliance on songs to mediate reproduction represents a strong evolutionary driv-
ing force, that resulted in a massive species diversification (Vedenina and Mugue 2011,
Sevastianov et al. 2023), with over 6800 recognized grasshopper species in the Acrididae
family (Cigliano et al. 2024). It is this diversity of species, and the crucial role of acoustic
communication in its emergence, that makes the grasshopper auditory system an intrigu-
ing candidate for attempting to construct a functional model framework. As a necessary
reduction, the model we propose here focuses on the pathway responsible for the recogni-
tion of species-specific calling songs, disregarding other essential auditory functions such as
directional hearing (D. v. Helversen 1984, Ronacher, D. v. Helversen, and Helversen 1986,
D. v. Helversen and Rheinlaender 1988).

To understand the functional challenges faced by the grasshopper auditory system, one
has to understand the properties of the songs it is designed to recognize. Grasshop-
per songs are amplitude-modulated broad-band acoustic signals. Most songs are pro-
duced by stridulation, during which the animal pulls the serrated stridulatory file on
its hindlegs across a resonating vein on the forewings (O. v. Helversen and Elsner 1977,
Stumpner and Helversen 1994, D. v. Helversen and O. v. Helversen 1997). Every tooth
that strikes the vein generates a brief pulse of sound. Multiple pulses make up a syl-
lable; and the alternation of syllables and relatively quiet pauses forms a character-
istic, through noisy, waveform pattern. Song recognition depends on certain tempo-
ral and structural parameters of this pattern, such as the duration of syllables and
pauses (D. v. Helversen 1972), the slope of pulse onsets (D. v. Helversen 1993), and the
accentuation of syllable onsets relative to the preceeding pause (Balakrishnan et al. 2001,
D. v. Helversen, Balakrishnan, and Helversen 2004). The amplitude modulation, or enve-
lope, of the song is sufficient for recognition (D. v. Helversen and O. v. Helversen 1997).
However, the essential recognition cues can vary considerably with external physical fac-
tors, which requires the auditory system to be invariant to such variations in order to
reliably recognize songs under different conditions. For instance, the temporal struc-
ture of grasshopper songs warps with temperature (Skovmand and Boel Pedersen 1983).
The auditory system can compensate for this variability by reading out relative tempo-
ral relationships rather than absolute time intervals (Creutzig, Wohlgemuth, et al. 2009,
Creutzig, Benda, et al. 2010), as those remain relatively constant across different temper-
atures (D. v. Helversen 1972). Another, perhaps even more fundamental external source
of song variability lays in the attenuation of sound intensity with increasing distance to the

sender. Sound attenuation depends on both the frequency content of the signal and the



vegetation of the habitat (Michelsen 1978). For the receiving auditory system, this has
two major implications. First, the amplitude dynamics of the song pattern are steadily
degraded over distance, which limits the effective communication range of grasshoppers
to 1-2m in their typical grassland habitats (Lang 2000). Second, the overall intensity
level of songs at the receiver’s position varies depending on the location of the sender,
which should ideally not affect the recognition of the song pattern. This neccessitates
that the auditory system achieves a certain degree of intensity invariance — a time scale-
selective sensitivity to faster amplitude dynamics and simultaneous insensitivity to slower,
more sustained amplitude dynamics. Intensity invariance in different auditory systems
is often associated with neuronal adaptation (Benda and Hennig 2008, Barbour 2011,
Ozeri-Engelhard et al. 2018, more general: Benda 2021). In the grasshopper auditory
system, a number of neuron types along the processing chain exhibit spike-frequency
adaptation in response to sustained stimulus intensities (Rémer 1976, Gollisch et al. 2002,
Hildebrandt et al. 2009, Clemens, Weschke, et al. 2010) and thus likely contribute to the
emergence of intensity-invariant song representations. This means that intensity invari-
ance is not the result of a single processing step but rather a gradual process, in which dif-
ferent neuronal populations contribute to varying degrees (Clemens, Weschke, et al. 2010)
and by different mechanisms (Hildebrandt et al. 2009). Approximating this process within
a functional model framework thus requires a considerable amount of simplification. In
this work, we demonstrate that even a small number of basic physiologically inspired sig-
nal transformations — specifically, pairs of nonlinear and linear operations — is sufficient

to achieve a meaningful degree of intensity invariance.

Invariance to non-informative song variations is crucial for reliable song recognition; how-
ever, it is not sufficient to this end. In order to recognize a conspecific song as such,
the auditory system also needs to extract sufficiently informative features of the song
pattern and then integrate the gathered information into a final categorical percept. Pre-
vious authors have proposed a functional model framework that describes this process
— feature extraction, evidence accumulation, and categorical decision making — in both
crickets (Clemens and Hennig 2013) and grasshoppers (Clemens and Ronacher 2013, re-
view on both: Ronacher, Hennig, and Clemens 2015). Their framework provides a com-
prehensible and biologically plausible account of the computational mechanisms required
for species-specific song recognition. As such, it has served as the inspiration for the
development of the model pathway we propose here. The existing framework relies on
pulse trains as input signals, which were designed to capture the essential structural prop-
erties of natural song envelopes (Clemens and Ronacher 2013). In the first step, a bank

of parallel linear-nonlinear feature detectors is applied to the input signal. Each feature



detector consists of a convolutional filter and a subsequent sigmoidal nonlinearity. The
outputs of these feature detectors are temporally averaged to obtain a single feature value
per detector, which is then assigned a specific weight. The linear combination of weighted
feature values results in a single preference value, that serves as predictor for the behav-
ioral response of the animal to the presented input signal. Our model pathway adopts the
general structure of the existing framework but modifies it in several key aspects. The con-
volutional filters, which have previously been fitted to behavioral data for each individual
species (Clemens and Hennig 2013), are replaced by a larger, more general set of unfitted
Gabor kernels in order to cover a wide range of possible song features for as many species as
possible. Gabor kernels closely resemble the structure of the filters used in previous mod-
els (Clemens and Hennig 2013, Clemens and Ronacher 2013, Hennig et al. 2014) as well
as the measured spike-triggered averages of higher-order interneurons in the grasshopper
auditory system (Clemens, Kutzki, et al. 2011). The fitted sigmoidal nonlinearities in the
existing framework consistently exhibited very steep slopes (Clemens and Hennig 2013,
Clemens and Ronacher 2013) and are therefore approximated by simpler shifted Heav-
iside step-functions in our model. Another, more substantial modification is that the
outputs of the feature detectors are temporally averaged in a way that does not condense
them into single feature values but retains their time-varying structure. A time-varying
feature representation introduces a certain time constant until the representation stabi-
lizes after the onset of a song. This reflects the continuous nature of acoustic input and
auditory perception, as songs are not received as discrete units but processed continuously
prior to the final categorical decision to initate a behavioral response (SOURCE LOL).
The most notable difference between our model pathway and the existing framework,
however, lays in the addition of a physiologically inspired preprocessing portion, whose
starting point corresponds to the initial reception of airborne sound waves. This allows
the model to operate on unmodified recordings of natural grasshopper songs instead of
condensed pulse train approximations, which widens its scope towards more realistic, eco-
logically relevant scenarios. For instance, we were able to investigate the contribution
of different processing stages to the emergence of intensity-invariant song representations

based on actual field recordings of songs at different distances from the sender.
Precursor work for model construction (special thanks to authors):

Linear-nonlinear modelling of behavioral responses to artificial songs

- Feature expansion as implemented in our model: Major contribution!

- Bank of linear filters, nonlinearity, temporal integration, feature weighting
— Clemens and Hennig 2013 (crickets)

— Clemens and Ronacher 2013 (grasshoppers)



— Ronacher, Hennig, and Clemens 2015

Own advancements/key differences:

1) Used boxcar functions as artificial ”songs” (focus on few key parameters)
— Now actual, variable songs (as naturalistic as possible)

2) Fitted filters to behavioral data

— More general, simpler, unfitted formalized Gabor filter bank

2 Developing a functional model of

the grasshopper auditory pathway

The grasshopper auditory system has been studied extensively over the past decades; and
a corresponding number of involved neuron types has been described (Rehbein et al. 1974;
Kalmring 1975; Rehbein 1976; Eichendorf and Kalmring 1980). The functional model we
propose here focuses on the pathway responsible for song recognition and assumes a strict
feed-forward organization of three consecutive neuronal populations: Peripheral auditory
receptor neurons (1st order), local interneurons of the metathoracic ganglion (2nd order),

and ascending neurons (3rd order) projecting towards the supraesophageal ganglion.

Previous authors have reported a marked increase in response heterogenity within the pop-
ulation of ascending neurons compared to receptors and local interneurons, which exhibit
almost identical filter characteristics, respectively (Clemens, Kutzki, et al. 2011). Based
on these findings, the model pathway can be divided into two distinct portions (Fig. 1lc+d).

In the preprocessing portion, generated

The preprocessing portion comprises the tympanal membrane, receptors, and local in-

terneurons. The different signal representations
Due to the similar response properties within the involved

1) ”Pre-split portion” of the auditory pathway:

Tympanal membrane — Receptor neurons — Local interneurons

Similar response/filter properties within receptor/interneuron populations (Clemens, Kutzki,
et al. 2011)

— One population-wide response trace per stage (no ”single-cell resolution”)

2) " Post-split portion” of the auditory pathway:

Ascending neurons (AN) — Central brain neurons

Diverse response/filter properties within AN population (Clemens, Kutzki, et al. 2011)



- Pathway splitting into several parallel branches

- Expansion into a decorrelated higher-dimensional sound representation

— Individual neuron-specific response traces from this stage onwards

Figure 1: The auditory system of grasshoppers.

2.1 Population-driven signal pre-processing

Grasshoppers receive airborne sound waves by a tympanal organ at each side of the tho-
rax (Fig.la). The tympanal membrane acts as a mechanical resonance filter: Vibrations
that fall within specific frequency bands are focused on different membrane areas, while
others are attenuated (Michelsen 1971; Windmill et al. 2008; Malkin et al. 2014). This

processing step can be approximated by an initial bandpass filter

.’Eﬁlt(t) = x(t) * th(t), fcut = 5kHZ, 30kHz (1)



applied to the acoustic input signal z(¢). The auditory receptor neurons connect directly
to the tympanal membrane (Fig.la). Besides performing the mechano-electrical trans-
duction, the receptor population is substrate to several known processing steps. First,
the receptors extract the signal envelope (Machens, Prinz, et al. 2001), which likely in-
volves a rectifying nonlinearity (Machens, Stemmler, et al. 2001). This can be modelled

as full-wave rectification followed by lowpass filtering

ZL’enV(t) = |l’ﬁ1t<t)’ * th(t), fcut = 500 Hz (2)

of the tympanal signal zg(f). Furthermore, the receptors exhibit a sigmoidal response
curve over logarithmically compressed intensity levels (Suga 1960; Gollisch et al. 2002).
In the model, logarithmic compression is achieved by conversion to decibel scale

ran(t) = 10 - 1ogm%;—v(:), Tyt = MaX[Teny (1)) (3)
relative to the maximum intensity z,f of the signal envelope Zen(t). Next, the ax-
ons of the receptor neurons project into the metathoracic ganglion, where they synapse
onto local interneurons (Fig. 1b). Both the local interneurons (Hildebrandt et al. 2009;
Clemens, Weschke, et al. 2010) and, to a lesser extent, the receptors themselves (Fisch et al. 2012)
display spike-frequency adaptation in response to sustained stimulus intensity levels. This
mechanism allows for the robust encoding of faster amplitude modulations against a slowly
changing overall baseline intensity. Functionally, this processing step resembles a highpass

filter
xadapt(t) - de(t) * hHP<t)7 fcut = 10Hz (4)

over the logarithmically scaled envelope xqg(t). The projections of the local interneurons
remain within the metathoracic ganglion and synapse onto a small number of ascending
neurons (Fig. 1b), which marks the transition between the preprocessing stream and the

parallel processing stream of the model pathway.

2.2 Feature extraction by individual neurons
The small population of ascending neurons
Stage-specific processing steps and functional approximations:

Template matching by individual ANs
- Filter base (STA approximations): Set of Gabor kernels



- Gabor parameters: o;, ¢;, f; — Determines kernel sign and lobe number

+2

ki(t, oi, fi, i) = € & - sin(2nf; - t + o) (5)

— Separate convolution with each member of the kernel set

“+o0o
ci(t) = Tadapt(t) * ki(t) :/ Tadapt (T) « ki(t — 7)dr (6)
Thresholding nonlinearity in ascending neurons (or further downstream)
- Binarization of AN response traces into "relevant” vs. "irrelevant”
— Shifted Heaviside step-function H(¢; — ©;) (or steep sigmoid threshold?)

1, Cl(t) > 61

bi(t, ©;) =
0, «(t) <6,

Temporal averaging by neurons of the central brain

- Finalized set of slowly changing kernel-specific features (one per AN)

- Different species-specific song patterns are characterized by a distinct combination of
feature values — Clusters in high-dimensional feature space

— Lowpass filter 1 Hz

fit) = bit) * hop(t),  fow = 1Hz (8)

3 Two mechanisms driving the emergence of intensity-

invariant song representation

Definition of invariance (general, systemic):
Invariance = Property of a system to maintain a stable output with respect to a set of
relevant input parameters (variation to be represented) but irrespective of one or more

other parameters (variation to be discarded) — Selective input-output decorrelation

Definition of intensity invariance (context of neurons and songs):

Intensity invariance = Time scale-selective sensitivity to certain faster amplitude dynamics
(song waveform, small-scale AM) and simultaneous insensitivity to slower, more sustained
amplitude dynamics (transient baseline, large-scale AM, current overall intensity level)

— Without time scale selectivity, any fully intensity-invariant output will be a flat line



3.1 Logarithmic scaling & spike-frequency adaptation
Envelope Zeny(t) N Logarithmic zq5(t) M Adapted Tagapt(t)

- Rewrite signal envelope Zeny (f) (Eq.2) as a synthetic mixture:
1) Song signal s(t) (02 = 1) with variable multiplicative scale o > 0
2) Fixed-scale additive noise 7(t) (07 = 1)

Teny(t) = a - s(t) + n(t), Teny(t) >0V t €R (9)

- Signal-to-noise ratio (SNR): Ratio of variances of synthetic mixture Zeny (t) with (a > 0)

and without (o = 0) song signal s(t), assuming s(t) L n(t)

o? a? -0+ o2
SNR = =% = 1 =’ +1 (10)
Un 0'77

Logarithmic component:
- Simplify decibel transformation (Eq.3) and apply to synthetic Zeyy (%)

- Isolate scale o and reference x, using logarithm product/quotient laws

a - s(t) + n(t)

Tref (11)

@ + log big[s(t) + %t)big]

zap(t) = log

= log
ref
— In log-space, a multiplicative scaling factor becomes additive
— Allows for the separation of song signal s(t) and its scale «
— Introduces scaling of noise term 7(¢) by the inverse of a

— Normalization by x..¢ applies equally to all terms (no individual effects)

Adaptation component:
- Highpass filter over z45(t) (Eq.4) can be approximated as subtraction of the local signal

offset within a suitable time interval Thp (0 < Thp < ﬁ)

o n(t
Tadapt (t) ~ zap(t) — logx ; = logb;g[s(t) + %big] (12)
Implication for intensity invariance:

- Logarithmic scaling is essential for equalizing different song intensities

— Intensity information can be manipulated more easily when in form of a signal offset

in log-space than a multiplicative scale in linear space



- Scale o can only be redistributed, not entirely eliminated from Z,qapt (%)

— Turn initial scaling of song s(t) by « into scaling of noise 7(t) by +

- Capability to compensate for intensity variations, i.e. selective amplification of output
Tadapt (t) Telative to input Zeny(t), is limited by input SNR (Eq. 10):

a > 1: Attenuation of n(t) term — s(t) dominates Zadapt(t)

a =~ 1 Negligible effect on n(t) term — Zaqapt () = log[s(t) + n(t)]

a < 1: Amplification of n(t) term — n(t) dominates Zagapt(t)

— Ability to equalize between different sufficiently large scales of s(t)

— Inability to recover s(t) when initially masked by noise floor 7n(t)

- Logarithmic scaling emphasizes small amplitudes (song onsets, noise floor)

— Recurring trade-off: Equalizing signal intensity vs preserving initial SNR

3.2 Threshold nonlinearity & temporal averaging
Convolved ¢;(t) Ao =), Binary b;(t) M@, peature fi(t)

Thresholding component:

- Within an observed time interval T', ¢;(t) follows probability density p(c;, T)
- Within T, ¢;(t) exceeds threshold value ©; for time T} (17 + Ty = 1)

- Threshold H(c; — ©;) splits p(c;, T) around ©; in two complementary parts

+oo O; T,
/ ples, T)de; = 1 — / plen T)de; = 21 (13)
0; —0o0 T
— Semi-definite integral over right-sided portion of split p(c;, T') gives ratio of time T}

where ¢;(t) > ©; to total time 7" due to normalization of p(¢;, T')

“+o0o
/ plei, T)de; = 1 (14)
Averaging component:

- Lowpass filter over binary response b;(t) (Eq.8) can be approximated as temporal aver-
aging over a suitable time interval Typ (Tip > +—)

fcut
- Within Tip, b;(t) takes a value of 1 (¢;(t) > ©;) for time T3 (11 + Ty = Trp)

1 ittt T
N o— bi(r)dr = — 15
Tor /. () T (15)

fit)

— Temporal averaging over b;(t) € [0,1] (Eq.7) gives ratio of time T} where ¢;(t) > ©; to

10



total averaging interval Ty p

— Feature f;(t) approximately represents supra-threshold fraction of Tp

Combined result:
- Feature f;(t) can be linked to the distribution of ¢;(t) using Egs. 13 & 15

+oo

fi(t) =~ / p(ci, Tup) de; = P(c; > ©;, Tip) (16)
O;

— Because the integral over a probability density is a cumulative probability, the value of

feature f;(¢) (temporal compression of b;(t)) at every time point ¢ signifies the probability

that convolution output ¢;(t) exceeds the threshold value ©; during the corresponding

averaging interval T1p

Implication for intensity invariance:
- Convolution output ¢;(t) quantifies temporal similarity between amplitudes of template
waveform k;(t) and signal Zaq.pt(t) centered at time point ¢

— Based on amplitudes on a graded scale

- Feature f;(t) quantifies the probability that amplitudes of ¢;(t) exceed threshold value
©; within interval T1p around time point ¢
— Based on binned amplitudes corresponding to one of two categorical states — Delib-
erate loss of precise amplitude information

— Emphasis on temporal structure (ratio of 7} over Tip)

- Thresholding of ¢;(t) and subsequent temporal averaging of b;(¢) to obtain f;(t) consti-
tutes a remapping of an amplitude-encoding quantity into a duty cycle-encoding quantity,
mediated by threshold function H(¢; — ©;)

- Different scales of ¢;(t) can result in similar 77 segments depending on the magnitude of
the derivative of ¢;(t) in temporal proximity to time points at which ¢;(¢) crosses threshold
value ©;

— The steeper the slope of ¢;(t), the less T; changes with scale variations

— If T} is invariant to scale variation in ¢;(t), then so is f;()

- Suggests a relatively simple rule for optimal choice of threshold value ©;:
— Find amplitude ¢; that maximizes absolute derivative of ¢;(t) over time
— Optimal with respect to intensity invariance of f;(t), not necessarily for other criteria

such as song-noise separation or diversity between features

- Nonlinear operations can be used to detach representations from graded physical stimulus
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(to fasciliate categorical behavioral decision-making?):

1) Capture sufficiently precise amplitude information: Zeny(t), Zadapt (f)
— Closely following the AM of the acoustic stimulus

2) Quantify relevant stimulus properties on a graded scale: ¢;(t)

— More decorrelated representation, compared to prior stages

3) Nonlinearity: Distinguish between "relevant vs irrelevant” values: b;(t)
— Trading a graded scale for two or more categorical states

4) Represent stimulus properties under relevance constraint: f;(t)

— Graded again but highly decorrelated from the acoustic stimulus

5) Categorical behavioral decision-making requires further nonlinearities
— Parameters of a behavioral response may be graded (e.g. approach speed), initiation

of one behavior over another is categorical (e.g. approach/stay)

4 Discriminating species-specific song

patterns in feature space

5 Conclusions & outlook
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