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1 Exploring a grasshopper’s sensory world

Our scientific understanding of sensory processing systems results from the distributed

accumulation of anatomical, physiological and ethological evidence. This process is un-

doubtedly without alternative; however, it leaves us with the challenge of integrating the

available fragments into a coherent whole in order to address issues such as the interaction

between individual system components, the functional limitations of the system overall,

or taxonomic comparisons between systems that process the same sensory modality. Any

unified framework that captures the essential functional aspects of a given sensory sys-

tem thus has the potential to deepen our current understanding and fasciliate systematic

investigations. However, building such a framework is a challenging task. It requires a

wealth of existing knowledge of the system and the signals it operates on, a clearly defined

scope, and careful reduction, abstraction, and formalization of the underlying structures

and mechanisms.

One sensory system about which extensive information has been gathered over the years is

the auditory system of grasshoppers (Acrididae). Grasshoppers rely on their sense of hear-

ing primarily for intraspecific communication, which includes mate attraction (D. v. Helversen 1972)

and evaluation (Stange and Ronacher 2012), sender localization (D. v. Helversen and Rheinlaender 1988),

courtship display (Elsner 1968), rival deterrence (Greenfield and Minckley 1993), and loss-

of-signal predator alarm (SOURCE). In accordance with this rich behavioral repertoire,

grasshoppers have evolved a variety of sound production mechanisms to generate acoustic

communication signals for different contexts and ranges using their wings, hindlegs, or

mandibles (Otte 1970). Among the most conspicuous acoustic signals of grasshoppers are

their species-specific calling songs, which broadcast the presence of the singing individual

— mostly the males of the species — to potential mates within range. These songs are usu-
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ally more characteristic of a species than morphological traits (Tishechkin and Vedenina 2016,

Tarasova et al. 2021), which can vary greatly within species (Rowell 1972, Köhler et al. 2017).

The reliance on songs to mediate reproduction represents a strong evolutionary driv-

ing force, that resulted in a massive species diversification (Vedenina and Mugue 2011,

Sevastianov et al. 2023), with over 6800 recognized grasshopper species in the Acrididae

family (Cigliano et al. 2024). It is this diversity of species, and the crucial role of acoustic

communication in its emergence, that makes the grasshopper auditory system an intrigu-

ing candidate for attempting to construct a functional model framework. As a necessary

reduction, the model we propose here focuses on the pathway responsible for the recogni-

tion of species-specific calling songs, disregarding other essential auditory functions such as

directional hearing (D. v. Helversen 1984, Ronacher, D. v. Helversen, and Helversen 1986,

D. v. Helversen and Rheinlaender 1988).

To understand the functional challenges faced by the grasshopper auditory system, one

has to understand the properties of the songs it is designed to recognize. Grasshop-

per songs are amplitude-modulated broad-band acoustic signals. Most songs are pro-

duced by stridulation, during which the animal pulls the serrated stridulatory file on

its hindlegs across a resonating vein on the forewings (O. v. Helversen and Elsner 1977,

Stumpner and Helversen 1994, D. v. Helversen and O. v. Helversen 1997). Every tooth

that strikes the vein generates a brief pulse of sound. Multiple pulses make up a syl-

lable; and the alternation of syllables and relatively quiet pauses forms a character-

istic, through noisy, waveform pattern. Song recognition depends on certain tempo-

ral and structural parameters of this pattern, such as the duration of syllables and

pauses (D. v. Helversen 1972), the slope of pulse onsets (D. v. Helversen 1993), and the

accentuation of syllable onsets relative to the preceeding pause (Balakrishnan et al. 2001,

D. v. Helversen, Balakrishnan, and Helversen 2004). The amplitude modulation, or enve-

lope, of the song is sufficient for recognition (D. v. Helversen and O. v. Helversen 1997).

However, the essential recognition cues can vary considerably with external physical fac-

tors, which requires the auditory system to be invariant to such variations in order to

reliably recognize songs under different conditions. For instance, the temporal struc-

ture of grasshopper songs warps with temperature (Skovmand and Boel Pedersen 1983).

The auditory system can compensate for this variability by reading out relative tempo-

ral relationships rather than absolute time intervals (Creutzig, Wohlgemuth, et al. 2009,

Creutzig, Benda, et al. 2010), as those remain relatively constant across different temper-

atures (D. v. Helversen 1972). Another, perhaps even more fundamental external source

of song variability lays in the attenuation of sound intensity with increasing distance to the

sender. Sound attenuation depends on both the frequency content of the signal and the
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vegetation of the habitat (Michelsen 1978). For the receiving auditory system, this has

two major implications. First, the amplitude dynamics of the song pattern are steadily

degraded over distance, which limits the effective communication range of grasshoppers

to 1 - 2m in their typical grassland habitats (Lang 2000). Second, the overall intensity

level of songs at the receiver’s position varies depending on the location of the sender,

which should ideally not affect the recognition of the song pattern. This neccessitates

that the auditory system achieves a certain degree of intensity invariance — a time scale-

selective sensitivity to faster amplitude dynamics and simultaneous insensitivity to slower,

more sustained amplitude dynamics. Intensity invariance in different auditory systems

is often associated with neuronal adaptation (Benda and Hennig 2008, Barbour 2011,

Ozeri-Engelhard et al. 2018, more general: Benda 2021). In the grasshopper auditory

system, a number of neuron types along the processing chain exhibit spike-frequency

adaptation in response to sustained stimulus intensities (Römer 1976, Gollisch et al. 2002,

Hildebrandt et al. 2009, Clemens, Weschke, et al. 2010) and thus likely contribute to the

emergence of intensity-invariant song representations. This means that intensity invari-

ance is not the result of a single processing step but rather a gradual process, in which dif-

ferent neuronal populations contribute to varying degrees (Clemens, Weschke, et al. 2010)

and by different mechanisms (Hildebrandt et al. 2009). Approximating this process within

a functional model framework thus requires a considerable amount of simplification. In

this work, we demonstrate that even a small number of basic physiologically inspired sig-

nal transformations — specifically, pairs of nonlinear and linear operations — is sufficient

to achieve a meaningful degree of intensity invariance.

Invariance to non-informative song variations is crucial for reliable song recognition; how-

ever, it is not sufficient to this end. In order to recognize a conspecific song as such,

the auditory system also needs to extract sufficiently informative features of the song

pattern and then integrate the gathered information into a final categorical percept. Pre-

vious authors have proposed a functional model framework that describes this process

— feature extraction, evidence accumulation, and categorical decision making — in both

crickets (Clemens and Hennig 2013) and grasshoppers (Clemens and Ronacher 2013, re-

view on both: Ronacher, Hennig, and Clemens 2015). Their framework provides a com-

prehensible and biologically plausible account of the computational mechanisms required

for species-specific song recognition. As such, it has served as the inspiration for the

development of the model pathway we propose here. The existing framework relies on

pulse trains as input signals, which were designed to capture the essential structural prop-

erties of natural song envelopes (Clemens and Ronacher 2013). In the first step, a bank

of parallel linear-nonlinear feature detectors is applied to the input signal. Each feature
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detector consists of a convolutional filter and a subsequent sigmoidal nonlinearity. The

outputs of these feature detectors are temporally averaged to obtain a single feature value

per detector, which is then assigned a specific weight. The linear combination of weighted

feature values results in a single preference value, that serves as predictor for the behav-

ioral response of the animal to the presented input signal. Our model pathway adopts the

general structure of the existing framework but modifies it in several key aspects. The con-

volutional filters, which have previously been fitted to behavioral data for each individual

species (Clemens and Hennig 2013), are replaced by a larger, more general set of unfitted

Gabor kernels in order to cover a wide range of possible song features for as many species as

possible. Gabor kernels closely resemble the structure of the filters used in previous mod-

els (Clemens and Hennig 2013, Clemens and Ronacher 2013, Hennig et al. 2014) as well

as the measured spike-triggered averages of higher-order interneurons in the grasshopper

auditory system (Clemens, Kutzki, et al. 2011). The fitted sigmoidal nonlinearities in the

existing framework consistently exhibited very steep slopes (Clemens and Hennig 2013,

Clemens and Ronacher 2013) and are therefore approximated by simpler shifted Heav-

iside step-functions in our model. Another, more substantial modification is that the

outputs of the feature detectors are temporally averaged in a way that does not condense

them into single feature values but retains their time-varying structure. A time-varying

feature representation introduces a certain time constant until the representation stabi-

lizes after the onset of a song. This reflects the continuous nature of acoustic input and

auditory perception, as songs are not received as discrete units but processed continuously

prior to the final categorical decision to initate a behavioral response (SOURCE LOL).

The most notable difference between our model pathway and the existing framework,

however, lays in the addition of a physiologically inspired preprocessing portion, whose

starting point corresponds to the initial reception of airborne sound waves. This allows

the model to operate on unmodified recordings of natural grasshopper songs instead of

condensed pulse train approximations, which widens its scope towards more realistic, eco-

logically relevant scenarios. For instance, we were able to investigate the contribution

of different processing stages to the emergence of intensity-invariant song representations

based on actual field recordings of songs at different distances from the sender.

Precursor work for model construction (special thanks to authors):

Linear-nonlinear modelling of behavioral responses to artificial songs

- Feature expansion as implemented in our model: Major contribution!

- Bank of linear filters, nonlinearity, temporal integration, feature weighting

→ Clemens and Hennig 2013 (crickets)

→ Clemens and Ronacher 2013 (grasshoppers)
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→ Ronacher, Hennig, and Clemens 2015

Own advancements/key differences:

1) Used boxcar functions as artificial ”songs” (focus on few key parameters)

→ Now actual, variable songs (as naturalistic as possible)

2) Fitted filters to behavioral data

→ More general, simpler, unfitted formalized Gabor filter bank

2 Developing a functional model of

the grasshopper auditory pathway

The grasshopper auditory system has been studied extensively over the past decades; and

a corresponding number of involved neuron types has been described (Rehbein et al. 1974;

Kalmring 1975; Rehbein 1976; Eichendorf and Kalmring 1980). The functional model we

propose here focuses on the pathway responsible for song recognition and assumes a strict

feed-forward organization of three consecutive neuronal populations: Peripheral auditory

receptor neurons (1st order), local interneurons of the metathoracic ganglion (2nd order),

and ascending neurons (3rd order) projecting towards the supraesophageal ganglion.

Previous authors have reported a marked increase in response heterogenity within the pop-

ulation of ascending neurons compared to receptors and local interneurons, which exhibit

almost identical filter characteristics, respectively (Clemens, Kutzki, et al. 2011). Based

on these findings, the model pathway can be divided into two distinct portions (Fig. 1c+d).

In the preprocessing portion, generated

The preprocessing portion comprises the tympanal membrane, receptors, and local in-

terneurons. The different signal representations

Due to the similar response properties within the involved

1) ”Pre-split portion” of the auditory pathway:

Tympanal membrane → Receptor neurons → Local interneurons

Similar response/filter properties within receptor/interneuron populations (Clemens, Kutzki,

et al. 2011)

→ One population-wide response trace per stage (no ”single-cell resolution”)

2) ”Post-split portion” of the auditory pathway:

Ascending neurons (AN) → Central brain neurons

Diverse response/filter properties within AN population (Clemens, Kutzki, et al. 2011)
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- Pathway splitting into several parallel branches

- Expansion into a decorrelated higher-dimensional sound representation

→ Individual neuron-specific response traces from this stage onwards

Figure 1: The auditory system of grasshoppers.

2.1 Population-driven signal pre-processing

Grasshoppers receive airborne sound waves by a tympanal organ at each side of the tho-

rax (Fig. 1a). The tympanal membrane acts as a mechanical resonance filter: Vibrations

that fall within specific frequency bands are focused on different membrane areas, while

others are attenuated (Michelsen 1971; Windmill et al. 2008; Malkin et al. 2014). This

processing step can be approximated by an initial bandpass filter

xfilt(t) = x(t) ∗ hBP(t), fcut = 5kHz, 30 kHz (1)
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applied to the acoustic input signal x(t). The auditory receptor neurons connect directly

to the tympanal membrane (Fig. 1a). Besides performing the mechano-electrical trans-

duction, the receptor population is substrate to several known processing steps. First,

the receptors extract the signal envelope (Machens, Prinz, et al. 2001), which likely in-

volves a rectifying nonlinearity (Machens, Stemmler, et al. 2001). This can be modelled

as full-wave rectification followed by lowpass filtering

xenv(t) = |xfilt(t)| ∗ hLP(t), fcut = 500Hz (2)

of the tympanal signal xfilt(t). Furthermore, the receptors exhibit a sigmoidal response

curve over logarithmically compressed intensity levels (Suga 1960; Gollisch et al. 2002).

In the model, logarithmic compression is achieved by conversion to decibel scale

xdB(t) = 10 · log10
xenv(t)

xref

, xref = max[xenv(t)] (3)

relative to the maximum intensity xref of the signal envelope xenv(t). Next, the ax-

ons of the receptor neurons project into the metathoracic ganglion, where they synapse

onto local interneurons (Fig. 1b). Both the local interneurons (Hildebrandt et al. 2009;

Clemens, Weschke, et al. 2010) and, to a lesser extent, the receptors themselves (Fisch et al. 2012)

display spike-frequency adaptation in response to sustained stimulus intensity levels. This

mechanism allows for the robust encoding of faster amplitude modulations against a slowly

changing overall baseline intensity. Functionally, this processing step resembles a highpass

filter

xadapt(t) = xdB(t) ∗ hHP(t), fcut = 10Hz (4)

over the logarithmically scaled envelope xdB(t). The projections of the local interneurons

remain within the metathoracic ganglion and synapse onto a small number of ascending

neurons (Fig. 1b), which marks the transition between the preprocessing stream and the

parallel processing stream of the model pathway.

2.2 Feature extraction by individual neurons

The small population of ascending neurons

Stage-specific processing steps and functional approximations:

Template matching by individual ANs

- Filter base (STA approximations): Set of Gabor kernels
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- Gabor parameters: σi, ϕi, fi → Determines kernel sign and lobe number

ki(t, σi, fi, ϕi) = e
− t2

2σi
2 · sin(2πfi · t + ϕi) (5)

→ Separate convolution with each member of the kernel set

ci(t) = xadapt(t) ∗ ki(t) =

∫ +∞

−∞
xadapt(τ) · ki(t − τ) dτ (6)

Thresholding nonlinearity in ascending neurons (or further downstream)

- Binarization of AN response traces into ”relevant” vs. ”irrelevant”

→ Shifted Heaviside step-function H(ci − Θi) (or steep sigmoid threshold?)

bi(t, Θi) =

 1, ci(t) > Θi

0, ci(t) ≤ Θi

(7)

Temporal averaging by neurons of the central brain

- Finalized set of slowly changing kernel-specific features (one per AN)

- Different species-specific song patterns are characterized by a distinct combination of

feature values → Clusters in high-dimensional feature space

→ Lowpass filter 1 Hz

fi(t) = bi(t) ∗ hLP(t), fcut = 1Hz (8)

3 Two mechanisms driving the emergence of intensity-

invariant song representation

Definition of invariance (general, systemic):

Invariance = Property of a system to maintain a stable output with respect to a set of

relevant input parameters (variation to be represented) but irrespective of one or more

other parameters (variation to be discarded) → Selective input-output decorrelation

Definition of intensity invariance (context of neurons and songs):

Intensity invariance = Time scale-selective sensitivity to certain faster amplitude dynamics

(song waveform, small-scale AM) and simultaneous insensitivity to slower, more sustained

amplitude dynamics (transient baseline, large-scale AM, current overall intensity level)

→ Without time scale selectivity, any fully intensity-invariant output will be a flat line
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3.1 Logarithmic scaling & spike-frequency adaptation

Envelope xenv(t)
dB−→ Logarithmic xdB(t)

hHP(t)−−−→ Adapted xadapt(t)

- Rewrite signal envelope xenv(t) (Eq. 2) as a synthetic mixture:

1) Song signal s(t) (σ2
s = 1) with variable multiplicative scale α ≥ 0

2) Fixed-scale additive noise η(t) (σ2
η = 1)

xenv(t) = α · s(t) + η(t), xenv(t) > 0 ∀ t ∈ R (9)

- Signal-to-noise ratio (SNR): Ratio of variances of synthetic mixture xenv(t) with (α > 0)

and without (α = 0) song signal s(t), assuming s(t) ⊥ η(t)

SNR =
σ2
s+η

σ2
η

=
α2 · σ2

s + σ2
η

σ2
η

= α2 + 1 (10)

Logarithmic component:

- Simplify decibel transformation (Eq. 3) and apply to synthetic xenv(t)

- Isolate scale α and reference xref using logarithm product/quotient laws

xdB(t) = log
α · s(t) + η(t)

xref

= log
α

xref

+ log big[s(t) +
η(t)

α
big]

(11)

→ In log-space, a multiplicative scaling factor becomes additive

→ Allows for the separation of song signal s(t) and its scale α

→ Introduces scaling of noise term η(t) by the inverse of α

→ Normalization by xref applies equally to all terms (no individual effects)

Adaptation component:

- Highpass filter over xdB(t) (Eq. 4) can be approximated as subtraction of the local signal

offset within a suitable time interval THP (0 ≪ THP < 1
fcut

)

xadapt(t) ≈ xdB(t) − log
α

xref

= log big[s(t) +
η(t)

α
big] (12)

Implication for intensity invariance:

- Logarithmic scaling is essential for equalizing different song intensities

→ Intensity information can be manipulated more easily when in form of a signal offset

in log-space than a multiplicative scale in linear space
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- Scale α can only be redistributed, not entirely eliminated from xadapt(t)

→ Turn initial scaling of song s(t) by α into scaling of noise η(t) by 1
α

- Capability to compensate for intensity variations, i.e. selective amplification of output

xadapt(t) relative to input xenv(t), is limited by input SNR (Eq. 10):

α ≫ 1: Attenuation of η(t) term → s(t) dominates xadapt(t)

α ≈ 1 Negligible effect on η(t) term → xadapt(t) = log[s(t) + η(t)]

α ≪ 1: Amplification of η(t) term → η(t) dominates xadapt(t)

→ Ability to equalize between different sufficiently large scales of s(t)

→ Inability to recover s(t) when initially masked by noise floor η(t)

- Logarithmic scaling emphasizes small amplitudes (song onsets, noise floor)

→ Recurring trade-off: Equalizing signal intensity vs preserving initial SNR

3.2 Threshold nonlinearity & temporal averaging

Convolved ci(t)
H(ci −Θi)−−−−−−→ Binary bi(t)

hLP(t)−−−→ Feature fi(t)

Thresholding component:

- Within an observed time interval T , ci(t) follows probability density p(ci, T )

- Within T , ci(t) exceeds threshold value Θi for time T1 (T1 + T0 = T )

- Threshold H(ci − Θi) splits p(ci, T ) around Θi in two complementary parts∫ +∞

Θi

p(ci, T ) dci = 1 −
∫ Θi

−∞
p(ci, T ) dci =

T1

T
(13)

→ Semi-definite integral over right-sided portion of split p(ci, T ) gives ratio of time T1

where ci(t) > Θi to total time T due to normalization of p(ci, T )∫ +∞

−∞
p(ci, T ) dci = 1 (14)

Averaging component:

- Lowpass filter over binary response bi(t) (Eq. 8) can be approximated as temporal aver-

aging over a suitable time interval TLP (TLP > 1
fcut

)

- Within TLP, bi(t) takes a value of 1 (ci(t) > Θi) for time T1 (T1 + T0 = TLP)

fi(t) ≈ 1

TLP

∫ t+TLP

t

bi(τ) dτ =
T1

TLP

(15)

→ Temporal averaging over bi(t) ∈ [0, 1] (Eq. 7) gives ratio of time T1 where ci(t) > Θi to
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total averaging interval TLP

→ Feature fi(t) approximately represents supra-threshold fraction of TLP

Combined result:

- Feature fi(t) can be linked to the distribution of ci(t) using Eqs. 13 & 15

fi(t) ≈
∫ +∞

Θi

p(ci, TLP) dci = P (ci > Θi, TLP) (16)

→ Because the integral over a probability density is a cumulative probability, the value of

feature fi(t) (temporal compression of bi(t)) at every time point t signifies the probability

that convolution output ci(t) exceeds the threshold value Θi during the corresponding

averaging interval TLP

Implication for intensity invariance:

- Convolution output ci(t) quantifies temporal similarity between amplitudes of template

waveform ki(t) and signal xadapt(t) centered at time point t

→ Based on amplitudes on a graded scale

- Feature fi(t) quantifies the probability that amplitudes of ci(t) exceed threshold value

Θi within interval TLP around time point t

→ Based on binned amplitudes corresponding to one of two categorical states → Delib-

erate loss of precise amplitude information

→ Emphasis on temporal structure (ratio of T1 over TLP)

- Thresholding of ci(t) and subsequent temporal averaging of bi(t) to obtain fi(t) consti-

tutes a remapping of an amplitude-encoding quantity into a duty cycle-encoding quantity,

mediated by threshold function H(ci − Θi)

- Different scales of ci(t) can result in similar T1 segments depending on the magnitude of

the derivative of ci(t) in temporal proximity to time points at which ci(t) crosses threshold

value Θi

→ The steeper the slope of ci(t), the less T1 changes with scale variations

→ If T1 is invariant to scale variation in ci(t), then so is fi(t)

- Suggests a relatively simple rule for optimal choice of threshold value Θi:

→ Find amplitude ci that maximizes absolute derivative of ci(t) over time

→ Optimal with respect to intensity invariance of fi(t), not necessarily for other criteria

such as song-noise separation or diversity between features

- Nonlinear operations can be used to detach representations from graded physical stimulus
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(to fasciliate categorical behavioral decision-making?):

1) Capture sufficiently precise amplitude information: xenv(t), xadapt(t)

→ Closely following the AM of the acoustic stimulus

2) Quantify relevant stimulus properties on a graded scale: ci(t)

→ More decorrelated representation, compared to prior stages

3) Nonlinearity: Distinguish between ”relevant vs irrelevant” values: bi(t)

→ Trading a graded scale for two or more categorical states

4) Represent stimulus properties under relevance constraint: fi(t)

→ Graded again but highly decorrelated from the acoustic stimulus

5) Categorical behavioral decision-making requires further nonlinearities

→ Parameters of a behavioral response may be graded (e.g. approach speed), initiation

of one behavior over another is categorical (e.g. approach/stay)

4 Discriminating species-specific song

patterns in feature space

5 Conclusions & outlook
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