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a  b  s  t  r  a  c  t

The  auditory  system  faithfully  represents  sufficient  details  from  sound  sources  such  that  downstream
cognitive  processes  are  capable  of  acting  upon  this  information  effectively  even  in  the  face  of signal
uncertainty,  degradation  or interference.  This  robust  sound  source  representation  leads  to  an  invariance
in perception  vital  for animals  to  interact  effectively  with  their  environment.  Due  to unique  nonlinearities
in the  cochlea,  sound  representations  early  in the  auditory  system  exhibit  a large  amount  of  variability  as
a function  of stimulus  intensity.  In  other  words,  changes  in stimulus  intensity,  such  as  for  sound  sources  at
differing  distances,  create  a unique  challenge  for the  auditory  system  to  encode  sounds  invariantly  across
erception
ntensity invariance
uditory system
ound processing
uditory cortex
daptation

the intensity  dimension.  This challenge  and  some  strategies  available  to  sensory  systems  to eliminate
intensity  as an encoding  variable  are discussed,  with  a special  emphasis  upon  sound  encoding.

©  2011  Elsevier  Ltd.  All  rights  reserved.
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. Introduction

An important feature of biological sensory systems is their
bility to extract meaningful environmental signals under a wide
ariety of conditions. This ability is necessary for successful prey
cquisition, predator avoidance and mate localization, among other
rucial behavioral tasks. These biological systems perform remark-

pattern recognition is extremely useful for the survival of many
species, including humans.

One stimulus dimension across which sounds are relatively con-
sistently perceived is intensity or sound level. In other words, as the
total power of a target sound is varied over many orders of magni-
tude, listeners are able either to correctly identify it or to process
it correctly relative to other similar sounds (Buus and Florentine,
bly well even in the face of incomplete information, signal
egradation or competing signals. Systems capable of extract-

ng relevant information consistently under extremely variable
nvironmental conditions are termed robust, and robust sensory

∗ Correspondence address: Department of Biomedical Engineering, Washington
niversity, One Brookings Dr., Campus Box 1097, Uncas Whitaker Hall Room 200E,
t.  Louis, MO  63130, USA. Tel.: +1 314 935 7548; fax: +1 314 935 7448.

E-mail address: dbarbour@biomed.wustl.edu

149-7634/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.neubiorev.2011.04.009
1991; Hanna et al., 1986; Viemeister and Bacon, 1988). This type of
intensity invariance typically represents a straightforward achieve-
ment for artificial pattern recognizers because the overall stimulus
pattern (e.g., the spectrotemporal distribution of sound power)
remains relatively constant as overall power is added to the signal
in a linear medium such as air. A simple signal normalization in the
pattern recognizer can therefore enable robust identification of the

signal relative to changes in its intensity. Intrinsic nonlinearities in
biological sensory systems, on the other hand, often mean that even
an operation as simple as adding power to a signal could alter the
neural representation of that signal. These nonlinearities are partic-

dx.doi.org/10.1016/j.neubiorev.2011.04.009
http://www.sciencedirect.com/science/journal/01497634
http://www.elsevier.com/locate/neubiorev
mailto:dbarbour@biomed.wustl.edu
dx.doi.org/10.1016/j.neubiorev.2011.04.009
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Dynamic Range Stitching

Fig. 1. Dynamic range stitching. One strategy to cover a wide overall intensity with
a  sensory system is to stitch individual coding elements together such that their
more limited individual dynamic ranges combine to cover the total range of interest.
This particular collection of 5 sigmoidal input/output functions is capable of collec-
tively and equivalently encoding intensities from near 0 dB up to 100 dB, although
each individual function would only be able to encode a relatively narrow range of
intensities.
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Fig. 2. Probability density function of thresholds measured from 544 neurons in
awake marmoset primary auditory cortex. These measures demonstrate some neu-
ronal coverage over a wide intensity range but a heavy skew toward the lowest
D.L. Barbour / Neuroscience and Bio

larly strong in the auditory periphery, leaving open the question
f how the central auditory system is able to create a consistent
erception of a given sound as it changes in intensity.

Under environmental conditions, differences in sound intensity
re often associated with differences in sound source distances. In
act, overall sound source intensity is one of the key stimulus fea-
ures used to estimate target distance in adult humans (Ashmead
t al., 1990; Litovsky and Clifton, 1992; Mershon and Bowers, 1979;
trybel and Perrott, 1984; Zahorik and Kelly, 2007). Manipula-
ion of sound intensity (and therefore perceived loudness) leads
o systematic errors in distance judgment for virtual sound sources
Mershon et al., 1981). Loudness perception itself has received con-
iderable attention (Glasberg and Moore, 2006; Plack and Carlyon,
995; Zhang and Zeng, 1997), while leaving relatively unexplored
he mechanism of perceptual invariance across intensity in the
uditory system. The goal of this review, therefore, will be to focus
pon some of the potential strategies available to the nervous sys-
em for encoding sensory signals over a wide dynamic range while
till preserving a representation of the signal that can be exploited
or invariant or nearly invariant perception of the corresponding
bject. Strategies that appear to be used by the auditory system
ill be emphasized.

. Dynamic range stitching

No individual coding element (e.g., receptor or neuron) in the
ensory systems of higher animals is capable of encoding the entire
ntensity range to which the organism is sensitive. Perhaps the

ost obvious means of building an invariant representation across
 wide intensity range using discrete elements of much narrower
ntensity ranges is to construct these elements such that their indi-
idual input/output functions combine to collectively span the total
ange of interest. In such a case, one would expect a range of
euronal thresholds such that combining or “stitching” together

ndividual neuronal responses would allow the sensory system to
epresent the full range of intensity normally available to the organ-
sm. To some degree this strategy appears to be used by the auditory
ystem and is depicted graphically in Fig. 1. Threshold measure-
ents made in auditory nerve support the notion that individual

euronal dynamic ranges are dispersed somewhat across the total
ntensity range of hearing (Evans, 1972; Liberman, 1978; Liberman
nd Kiang, 1978; Sachs and Abbas, 1974). Thresholds of auditory
erve fibers have classically been evaluated as absolute spiking rate
easures evoked by stimuli versus spontaneous rates, but similar

rends hold true when statistical properties of rate responses are
aken into account (Geisler et al., 1985; Young and Barta, 1986)
nd are logically extended when temporal information in the spike
rains is considered (Carney, 1994; Colburn et al., 2003).

The strategy of dynamic range stitching can be also seen in neu-
onal responses from primary auditory cortex (A1). Fig. 2 depicts
he distribution of relative tone thresholds measured from over
00 neurons located in awake marmoset monkey A1. The pat-
ern that emerges reflects essentially the same pattern seen in
he auditory nerve, whereby a subset of thresholds is indeed dis-
ributed across a wide intensity range, but the bulk of thresholds
rend toward lower values. Because the average dynamic range of
hese neurons is around 15 dB, the overall machinery of auditory
ncoding appears to be biased largely toward intensities within
0 dB or so of hearing threshold (Watkins and Barbour, 2010b).
his finding is problematic for two reasons. First, for the “stitching”
rocess to be most effective, the neuronal dynamic ranges would

e expected to span more or less uniformly the complete inten-
ity range of hearing, which is not the case here. In fact, prima facie
vidence for the auditory system’s ability to encode loud or moder-
tely loud sounds is surprisingly lacking from these data. The issue

intensities. The relative thresholds plotted are computed by subtracting out absolute
thresholds of hearing at each frequency as determined by the collective neuronal
responses. The curve plotted is the best difference of single exponentials that fits the
actual data. Details of this data set can be found in (Watkins and Barbour, 2010b).
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or both. Adaptive processes could also explain the distribution of
thresholds in Fig. 2: adaptive neurons in silent conditions would
naturally adapt to have their lowest thresholds and highest gains.
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Fig. 3. Ranges of sound amplitude over varying interval durations. The temporal
dynamics of natural sounds yield short-term fluctuations in stimulus amplitude. In
both of these two  examples of 20-min ambient recordings made in two different set-
066 D.L. Barbour / Neuroscience and Bio

f not having sufficient unsaturated coding elements to account
or observed intensity discrimination capabilities for loud sounds
as been explored previously (Florentine et al., 1987; Viemeister,
988a,b). Second, a Bayesian argument could be made for a nonuni-
orm distribution of individual neuronal dynamic ranges, but in
hat case one would expect on efficient coding grounds that these
anges would match at least approximately the environmental
timulus statistics. While the distribution of environmental sound
ntensities to which these animals were exposed is unknown, it
s extremely unlikely to be biased so strongly toward intensities
ear the animal’s hearing threshold. In fact, these laboratory ani-
als are reared and housed in a room with acoustically reflective
alls, implying that intensities to which these animals are regularly

xposed are likely to be substantially greater than the intensities
egularly encountered by marmosets in the wild or reared in quiet
onditions (Liberman, 1978). Given this likelihood, the finding of
o many low-threshold neurons in the laboratory animals is even
ore striking. Therefore, the actual distribution of sound levels that

ppears to be represented in A1 does not match even the most basic
xpectations of actual sound levels that the auditory system would
eed to encode.

One proposal to account for this discrepancy for the stitching
ypothesis involves invoking a unique subpopulation of neurons
ith dynamic ranges more thoroughly spanning the full intensity

ange of hearing (Phillips et al., 1994; Sadagopan and Wang, 2008;
uga, 1992; Suga and Manabe, 1982). The neurons in question have
n expanded overall dynamic range because at intensities greater
han a preferred intensity, their responses systematically diminish,
ence the categorization of their input/output functions as “non-
onotonic” or “intensity-tuned.” The result is an expanded overall

ynamic range relative to monotonic or intensity-untuned neu-
ons. In some cases, the dynamic ranges of nonmonotonic neurons
ave been reported to be more uniformly distributed across the

ull intensity range of hearing than intensity-untuned neurons (e.g.,
ee Sadagopan and Wang, 2008). In data collected from marmoset
onkey A1 in the author’s laboratory, however, this distribution

f thresholds and dynamic ranges of nonmonotonic neurons is still
eavily biased toward lower intensities, implying that sound level
epresentation in even this subgroup of cortical neurons is con-
entrated toward lower intensities (Watkins and Barbour, 2010b).
iven that these animals are likely exposed to more intense sounds
n average than animals in the wild, the finding of so many low-
hreshold neurons in the laboratory animals is even more striking.

The precise distribution of auditory neuronal input/output func-
ions notwithstanding, a particular challenge to inferring auditory
ystem function from these data likely relates to the discrepancy
etween how the data are collected in the laboratory compared
ith the properties of natural acoustic stimuli. In traditional lab-

ratory studies of input/output (i.e., rate-intensity or rate-level)
unctions, an experimental animal is placed into an acoustic isola-
ion chamber that enables very low background sound levels during
he experiment. Additional wideband sounds present in an acoustic
nvironment have been shown in many contexts and throughout
he auditory system to affect neuronal dynamic ranges measured
y tones, usually by shifting dynamic ranges toward higher intensi-
ies and possibly compressing them (Aitkin, 1991; Costalupes et al.,
984; Geisler and Sinex, 1980; Gibson et al., 1985; Phillips, 1985;
hillips and Cynader, 1985; Phillips and Hall, 1986; Ramachandran
t al., 2000; Rees and Palmer, 1988; Sadagopan and Wang, 2008;
oung and Barta, 1986). Furthermore, each probe tone in these
xperiments is typically presented with sufficient silence between
timulus presentations in order to avoid the response of one stimu-

us influencing the response of another. It is widely understood that
he reason for waiting between stimulus presentations and, fur-
hermore, randomizing the order of stimulus presentations is that
he auditory system being probed has memory associated with it.
oral Reviews 35 (2011) 2064–2072

In other words, the recent past affects neuronal responses because
auditory neurons adapt to their recent history, thereby prompting
experimental data collection procedures designed to average out
these effects. Adaptation is another technique that sensory neurons
can use to encode a larger overall dynamic range using individual
coding elements possessing smaller dynamic ranges.

3. Adaptation

While sensory systems are capable of encoding a wide range
of intensities, over relatively short periods of time a much smaller
range of intensities is typically present in the environment. Fig. 3,
for example, depicts the mean amplitude ranges present in time
intervals of different lengths for a jungle and an urban recording.
Naturally, longer intervals contain a wider range of amplitudes on
average than shorter intervals, which would be true for the vast
majority of sounds. Even at relatively long intervals of several sec-
onds, however, no more than 1/4 of the total dynamic range of
the recording apparatus was  occupied by the stimulus. A logical
approach to encoding stimuli over a wide intensity range, there-
fore, is to adapt the narrower dynamic ranges of individual coding
elements in response to recent stimulus statistics at an appropriate
time scale. The effect would be to shift the dynamic ranges of cod-
ing elements to align with the most common recent signal values
encountered. Depending upon the statistics of the sensory stimu-
lus and the rate of adaptation, the coding element dynamic ranges
could be relatively narrow yet still effectively encode sensory stim-
uli over a much greater intensity range. An additional advantage of
this strategy is that it utilizes fixed resources more effectively by
shifting many of them away from sensitivity to events that have
an extremely low probability of either occurring or being detected
tings, the mean amplitude range of recordings as a fraction of the maximum possible
range steadily increases as longer sliding interval durations are used to calculate the
averages. At short intervals under 1 s, less than 10% of the recording apparatus’s total
input range was used on average to make the recording. For intervals of 20 s, this
value was closer to 25%.
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Adaptative coding strategies are commonly used in biological
ensory systems and take numerous forms. Modulating the amount
f signal energy entering the sensory system transduction appara-
us is an approach used by both visual and auditory systems. The
amiliar pupillary light reflex represents a negative feedback cir-
uit that constricts the pupil of the eye in response to bright light
Loewy, 1990). Two acoustic reflexes similar to the pupillary reflex
ampen middle ear vibrations in the face of loud sounds: the tensor
ympani reflex and the stapedial reflex. These reflexes appear to be

uch more dynamic than the pupillary reflex, however, contract-
ng rapidly after the onset of loud sounds and synchronously with
he speaker’s own vocalizations (Sellari-Franceschini et al., 1986;
ilman, 1984). Presumably the adaptive nature of these reflexes is
ell-suited to the temporal dynamics of natural acoustics, which
ight reasonably require faster reaction for acoustic stimulation

han the pupillary reflex requires for light stimulation.
Sensory adaptation also commonly occurs in the receptors

hemselves. Mechanoreceptors of the somatosensory system, for
xample, adapt their responses to recent pressure magnitude,
pparently by alterations in their membrane properties that affect
epolarization (Nakajima and Onodera, 1969). Chemical receptors
or taste and smell desensitize when a ligand activating them is
resent for extended periods of time (Borisy et al., 1993; Song et al.,
008; Wei  et al., 1998). In the visual system, photoreceptors convert

ight energy into a molecular conformational change that signals
he presence of a photon. The photoreceptors become less sensi-
ive upon transducing at a high rate, which occurs at higher light
ntensities and can be regulated by additional chemical processes
Kefalov et al., 2005; Pepperberg, 2003). Sound is converted in the

ammalian ear into neuronal signals through a mechanotransduc-
ion mechanism whereby cochlear fluid vibrations are converted
nto transmembrane ion flows in hair cells of the inner ear through
pecial ion channels sensitive to mechanical forces. The mechanical
roperties of this transduction mechanism, as well as the chemi-
al properties of the hair cells themselves, appear to adapt to recent
timulus history in a way that can affect the gain of this mechanism
Eatock, 2000; Holt and Corey, 2000; Le Goff et al., 2005).

This approach of adjusting signal gain at the initial stages of pro-
essing in order to center the much lower dynamic ranges of coding
lements upon the mean signal intensity is a logical one and also
epresents a standard approach deployed in engineered systems.
he use of automatic gain control (AGC) circuits, of which there are
any types, has automated numerous processes of engineered gain

daptation. For example, photographic film and modern imaging
ensors have dynamic ranges far smaller than the intensity ranges
ound in nature, hence the need to use an aperture to modulate
he total amount of light entering the camera lens and center the
ynamic range of the scene onto the sensor. Photographic camera
pertures previously needed adjustment by hand to avoid overex-
osing or underexposing film. Modern cameras virtually all have
ome kind of light meter coupled to an electronically controlled
perture through an AGC circuit. AGC circuits are also present in
odern telephones, hearing aids, voice recorders, etc., and sim-

lify the process of using such devices by insulating the user from
he need to adjust gain by hand. One potential drawback of this
pproach, however, is that the memory inherent in AGCs introduces

 nonlinearity that can distort some signals excessively.
Downstream adaptation to stimulus statistics can take multiple

orms and can occur across different levels within a sensory system.
aw intensity is largely adapted out early in the visual pathway,
nd higher order adaptations such as to stimulus contrast become
ore prevalent at later processing stages (Baccus and Meister,
002; Brown and Masland, 2001; Chander and Chichilnisky, 2001;
osoya et al., 2005; Kim and Rieke, 2001; Laughlin, 1989; Rieke
nd Rudd, 2009; Shapley and Victor, 1978; Smirnakis et al., 1997;
olomon et al., 2004). This scenario is advantageous for the visual
oral Reviews 35 (2011) 2064–2072 2067

system because images are formed by contrasts between light and
dark areas rather than overall intensity. A pattern recognizer for
a face, for example, would ideally have similar performance in a
dim room as on a bright day so long as sufficient contrast existed
in the image. Early removal of absolute intensity is an evolutionar-
ily adaptive and efficient solution for extending the dynamic range
of individual photoreceptors to create the full range available to
the visual system (Hosoya et al., 2005). This intensity information
is still acquired and transmitted to the brain by an alternate path-
way, which enables perceptual judgments of brightness as well as
proper function of the pupillary light reflex.

A similar argument can be made for somatosensation, where
changes in absolute pressure might occur with some low frequency
but not represent the most relevant sensory information. Sitting,
wearing clothes or holding an item are all actions that will create
substantial pressures on the mechanoreceptors in the skin. While
some information about absolute pressure detected by the skin
would be important to represent (e.g., to be able to pick up an
egg without crushing it), the most relevant ongoing information
to represent is likely to be fluctuations in pressure at relatively
short time scales (e.g., to determine if a recently touched surface
is smooth or rough). This is equivalent to saying that the AC sig-
nal is likely to carry more useful information than the DC signal
or that low-probability (novel) stimuli may  have more behavioral
relevance than signals that have been present for some time.

Adaptation in response to recent stimulus history also occurs in
the auditory system and can be detected in auditory nerve fibers
(Relkin and Doucet, 1991; Rhode and Smith, 1985; Wen  et al.,
2009) in addition to more centrally located neurons (Dean et al.,
2005, 2008; Kvale and Schreiner, 2004; Watkins and Barbour, 2008,
2010a). Like adaptation in other sensory systems, auditory adapta-
tion appears to be present within the transduction mechanism itself
(Goutman and Glowatzki, 2007), as well as downstream (Bartlett
and Wang, 2005; Nelson et al., 2009; Ulanovsky et al., 2004; Xu
et al., 2007). This adaptation results in neuronal input/output func-
tions being modified to align their regions of maximum slope
more closely with the most probable stimuli, thereby maximizing
discriminability for the most probable stimuli as well as over-
all information transmission (Brenner et al., 2000; Dean et al.,
2005, 2008; Kvale and Schreiner, 2004). This is equivalent to say-
ing that the distribution shown in Fig. 2 becomes less leftward
skewed (i.e., the mean threshold increases) as the average sound
intensity increases. Important exceptions to this rule have been
reported for some response types, however, that preserve sensitiv-
ity to lower probability stimuli of presumably significant behavioral
relevance (Watkins and Barbour, 2008, 2010a).  This sensitivity
preservation could be particularly useful under conditions of mul-
tiple concurrent dynamic sounds, particularly if each sound has a
different mean intensity. Consider, for example, how the two  stim-
uli depicted in Fig. 3 would best be encoded by elements of narrow
dynamic ranges if they were present simultaneously.

Unique psychophysical phenomena can be used to infer adap-
tive physiological mechanisms (Wolfson and Graham, 2007, 2009)
and, conversely, physiological evidence for adaptive phenomena
can be used to predict the existence of particular psychophysical
phenomena (Zeng et al., 1991). In the latter case, neurophys-
iological experimental results indicated that high-spontaneous
rate (low-threshold) auditory nerve fibers recover from adapta-
tion induced by a loud preceding sound an order of magnitude
faster than low-spontaneous rate (high-threshold) fibers (Relkin
and Doucet, 1991). This kind of experimental protocol is termed
forward-masking to signify that the output of interest is the thresh-

old shift or “masking” induced forward in time by a preceding
stimulus. Very shortly following a loud sound, then, psychophysical
hearing thresholds are masked because all the neuronal thresholds
have been shifted upward (Fig. 4A and B). Waiting a bit longer,
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wide intensity range with their collective dynamic ranges. (B) After a loud preced-
ing  stimulus (100 ms,  900–1000 Hz noise at 90 dB SPL), both groups adapt toward
higher intensities. (C) Because the low-threshold neurons recover from the effects
of  the loud tone more quickly than the high-threshold neurons, for a short time the
auditory system is relatively “deafened” to intermediate intensities, as probed by
tones (25 ms,  1000 Hz) of different intensities presented within 400 ms following
t
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dapted from Zeng et al. (1991).

owever, (up to 400 ms  in these experiments) creates in intriguing
ituation where the most sensitive neurons have almost completely
ecovered their initial thresholds while the least sensitive neu-
ons have not yet begun to recover (Fig. 4C). The result is about

 20 dB “coding gap” where almost all of the auditory neurons are
ither saturated or nonresponsive. A straightforward prediction of
his neurophysiological finding is that psychophysical thresholds

ould be expected to be elevated at this intermediate intensity

ange for the time scales in question. Thresholds for greater or
esser intensities than the gap location would be lower, thereby
reating a nonmonotonic threshold curve as a function of inten-
oral Reviews 35 (2011) 2064–2072

sity. When intensity discrimination thresholds were measured in
human listeners shortly after an intense masking stimulus, this
hypothesis was  borne out robustly (Zeng et al., 1991). Given that
intensity-tuned neurons all the way  to auditory cortex appear to
be the primary inheritors of high-spontaneous rate/low-threshold
auditory nerve fiber activity (Watkins and Barbour, 2010b), these
central neurons might be expected to have distinct adaptive prop-
erties, as well. This prediction has been shown to be correct, leading
to the surprising finding that intensity-tuned neurons adapt in such
a way not to maximize encoding of overall stimulus statistics, but
to maximize encoding of the particular case of soft sounds pre-
ceded by loud sounds, much as in the case of the forward masking
paradigm (Watkins and Barbour, 2008, 2010a). The complete role
of these neurons in encoding dynamic acoustic stimuli remains the
subject of further investigation.

Peculiar adaptations such as these bear upon issues of effi-
cient coding with limited resources and sensory discrimination
across stimulus intensity but do not directly address the issue of
invariance in perception across intensity. In fact, given the previ-
ous discussion that the neural code actually changes depending
upon the temporal stimulus context and multiple strategies to
implement optimal stimulus encoding, achieving an invariant neu-
ral representation across intensity likely represents a considerable
challenge for downstream circuits to implement. This task is made
considerably more difficult in the auditory system because of the
intensity-dependence of neuronal receptive fields beginning at the
auditory periphery.

4. Variation in neuronal responses across intensity

The nature of the mechanical vibrations in the cochlea leads
to a map  of acoustic frequency onto position along the cochlea.
The nonlinear nature of cochlear mechanics leads to an alter-
ation in vibration pattern as sound intensities increase such that
cochlear auditory filters become less selective to frequency (i.e.,
filters have increasing bandwidth) as stimulus intensity increases
(Glasberg and Moore, 1990; Kiang et al., 1965; Liberman and Kiang,
1978). Potentially compounding this situation is a finding in song-
bird auditory neurons that not only does the spectral filter change
with intensity, but so can the temporal filter, most likely due to
additional nonlinearities (Nagel and Doupe, 2006). While intensity
represents a straightforward stimulus parameter to normalize out
in engineered linear systems (or even in some engineered nonlin-
ear systems such as those with automatic gain control circuits),
the auditory system presumably must dedicate substantial neural
resources toward inverting nonlinearities introduced in the audi-
tory periphery by the sensory transduction apparatus.

All auditory nerve fibers exhibit an increasing bandwidth with
increasing intensity, resulting in a filter shape resembling a “V”
when response is plotted as a function of both intensity and fre-
quency. Many central auditory neurons also share this response
characteristic, even in auditory cortex. Another set of central audi-
tory neuronal response classes, however, has been described by
numerous authors as “level tolerant” because their bandwidths
remain relatively constant with sound level or intensity (Ehret and
Schreiner, 1997; Sadagopan and Wang, 2008; Suga and Manabe,
1982; Suga and Tsuzuki, 1985; Sutter, 2000). In some cases these
neurons have a monotonic rate-intensity profile, while in others
they are nonmonotonic or intensity-tuned. Taken together, these
three classic response types have been classified as “Type V,” “Type
I,” and “Type O” responses based upon the shape of their frequency

response areas, with the latter two corresponding to level-tolerant
neurons (Ramachandran et al., 1999). Model neurons of all three
classes with the same characteristic frequency, threshold and band-
width at 10 dB above threshold are depicted graphically in Fig. 5.
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Fig. 5. Classic auditory response types as a function of sound frequency and intensity, shown here as frequency response areas. Pure tones varied in frequency and amplitude
(intensity) are typically used to evaluate responsiveness of auditory neurons. Auditory nerve responses all exhibit some form of increasing frequency bandwidth as intensity
increases, referred to as a Type V response. Central auditory neurons may  have Type V responses or intensity-independent bandwidths. If the input/output function of one
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f  these latter neurons uniformly increases or saturates with increasing intensity, it
 particular best intensity, it is referred to as a Type O neuron.

rom Chen et al. (2010).

Type I and type O neurons are not present in the auditory nerve
nd must therefore be created by neural circuitry in the audi-
ory system. Sadagopan and Wang (2008) have suggested that the
xpress purpose for the creation of these neurons is to counter
he frequency-dependent nonlinearities in the cochlea that give
ise to intensity-dependent bandwidths in the auditory nerve. This
s a compelling hypothesis that is consistent with the additional
ypothesis that auditory receptive field bandwidths gradually nar-
ow along the ascending auditory pathway from the periphery to
rimary auditory cortex (Suga, 1995). Neural pathways in other
ensory systems tend to produce increasing receptive field sizes
ore centrally through divergent projections, so the unique nature

f the frequency-dependent nonlinearities in the auditory system
ay  be the driving force behind the putative narrowing of audi-

ory receptive fields. Questions remain regarding these hypotheses,
owever. Auditory neurons with nonmonotonic input/output func-
ions are nonexistent in auditory nerve but become steadily more
ommon at higher auditory centers until they represent a majority
f the neurons in A1 (Watkins and Barbour, 2010b).  Of consider-
ble interest, however, is the sizable minority of neurons that still
xhibit Type V responses similar to those observed in the auditory
erve. Why  would this type of response be valuable for the audi-

ory system to retain all the way to cortex if a major purpose of the
ntervening circuitry was to eliminate that type of response?

Furthermore, the type of decoder necessary to extract intensity-
nvariant natural stimuli from any of these three neuronal

ig. 6. Neuronal feature maps in a model of primary auditory cortex. Self-organizing featur
requency, receptive field bandwidth and response threshold (Watkins et al., 2009). A1
uperimposed upon the same grid. Neurons in the bottom right corner of the grid, for exa
nd  relatively low thresholds.

rom Chen et al. (2010).
rred to as a Type I neuron. If, on the other hand, neuronal output diminishes above

subpopulations is not entirely clear. Fig. 6 depicts a plausible map of
characteristic frequency, bandwidth and threshold of model neu-
rons in a square grid representing A1 (Chen et al., 2010). This
version of the map  assumes a uniform distribution of thresholds, as
depicted in Fig. 1. By combining the models of neuronal responses
shown in Fig. 5 with the map  in Fig. 6, a graphic depiction can be
obtained of the spatial activity of neurons driven by any particular
stimulus. In fact, one could imagine performing a functional imag-
ing experiment on a similarly arrayed collection of real neurons
to discern the pattern of activation for different stimuli. A sim-
ulated version of such an experiment was done in this case for
two steady-state vowels at two different intensities. Each model
neuron was  assumed to act as a simple linear integrator of stimu-
lus energy falling within its frequency response area (i.e., the dark
areas plotted in Fig. 5). Population response patterns for each neu-
ronal subtype were calculated separately, as was a mixture of all
three types combined in equal proportion. The results can be seen
in Fig. 7.

The vowel-driven population response patterns for linear Type
V and Type I neurons appear to be rather similar to one another
for a given stimulus, especially at higher sound levels. This finding
was somewhat surprising given the extremely wide bandwidths

of Type V neurons at higher intensities, but could potentially be
brought about by the wideband nature of the stimulus. Type V neu-
rons do result in a sparser population response at lower intensities,
as would be expected from their tapered frequency response areas

e map  algorithms were used to create plausible maps in A1 of neuronal characteristic
 is depicted here as a square grid of neurons, and the three maps shown all exist
mple, would respond to intermediate frequencies with relatively high bandwidths
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Fig. 7. Simulated functional imaging results for two vowels at two different intensities. Simulated functional imaging experiments for the A1 feature maps in Fig. 6 applied
to  the neuronal subtypes depicted in Fig. 5. In this case two  steady-state vowels (spectra shown in insets) were presented to the model network at two  different intensities.
At  low intensities, Type V neurons are actually the most selective and result in the least overall activation. They become the least selective at high intensities, however. Type
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 neurons might be expected to be visibly more selective than Type V neurons at h
nsurprisingly show no change in selectivity at different intensities. The most strik
re  most similar between two  perceptually different stimuli at the same intensity.

t the lowest intensities. Type O neurons represent a sparser pop-
lation at higher intensities. Because of the nature of the model,
owever, all three neuronal classes exhibit overcomplete repre-
entations of the stimuli. Noticeable is how similar the response
atterns of all the subtypes and the pooled population are to per-
eptually different stimuli at the same intensity. Additionally, the
esponse patterns to the same stimuli at different intensities exhibit
ittle resemblance to one another. For any vowel, type O responses
how a unique pattern of activation at different intensities. The sim-
larities between Type O responses to different vowels at the same
ntensity, however, are just as striking as the differences between
esponses to the same vowels at different intensities, raising a log-

cal question regarding what kind of advantage for downstream
ecoding the “place code” Type O neurons might provide relative
o other response classes (Shamma, 2003). In fact, a level-invariant
ecoder based upon Type O responses would not have a fundamen-
tensities, but do not appear to be so with these wideband sounds. Type O neurons
sult is that in all neuronal subpopulations and their combination, activity patterns

tally different structure than for Type I and possibly even Type V
responses.

Known flaws exist in this computational model that remove
it somewhat from physiological reality. Realistic silence-adapted
threshold distributions were not taken into account, for exam-
ple; had they been, though, the model would predict even more
population activity for the vowel stimuli. Furthermore, adaptation
phenomena were not taken into account in this model. Cortical neu-
rons are also unlikely to be purely linear integrators of sound energy
at different frequencies and intensities, especially for wideband
sounds such as those used here. In fact, studies of auditory receptive
fields using wideband stimuli at different intensities have revealed

intensity invariance, even in the auditory nerve (Barbour and Wang,
2003; Calhoun et al., 1998; Valentine and Eggermont, 2004; Yu
and Young, 2000). This phenomenon is apparently mediated by
adaptive processes away from a neuron’s characteristic frequency
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Blake and Merzenich, 2002). In like fashion, songbird vocalizations
ppear to be extracted reliably across intensity by some auditory
eurons (Billimoria et al., 2008). Frequency-dependent nonlineari-
ies in the cochlea therefore result in intensity-dependent neuronal
andwidths, which appear to be most prominent when measured
ith pure tones in isolation and are not as prominent when other

timuli are used. The question remains whether the neurons that
ccount for invariance in perception across intensity have already
een identified in A1 and are simply in need of proper experimental
robing to reveal this fact, or if more downstream circuits must be

nvolved to decode the A1 responses. In any case, Fig. 7 remains a
raphic testament to the nature of the problem the auditory system
ust solve. Stated another way that can be used to formulate spe-

ific research questions, what nonlinearities can be added to this
inear model to create an intensity-invariant neural code?

One interesting parallel can be made between the auditory sys-
em and another sensory system along these lines. Like the auditory
ystem but unlike somatosensation or vision, receptors in olfaction
lso lose specificity at higher odorant concentrations, and this phe-
omenon has actually been visualized by real functional imaging
tudies like the one simulated in Fig. 7 (Ng et al., 2002). Like the
uditory system, downstream neural circuitry appears to be per-
orming a sparsification on the stimulus representation, resulting
n more narrowly “tuned” neurons than receptors. One proposal
or how this might occur is that some downstream circuits are spe-
ialized to evaluate ratios of odorant concentrations rather than
bsolute concentrations (Uchida and Mainen, 2007). This idea could
e the olfactory equivalent of the observation that central auditory
euron receptive fields tend to maintain the same bandwidth when
easured by wideband stimuli. Nevertheless, the auditory and

lfactory systems are still quite capable of processing single tones
nd single odorants in isolation, so this hypothesis is unlikely to
ccount for the full abilities of the respective sensory systems. Mod-
rn methods of dynamical systems analysis may  begin to reveal
olutions to invariant stimulus encoding across stimulus intensity
ot with individual neurons but with dynamic networks of contin-
ally interacting neurons (Galan et al., 2006; Stopfer et al., 2003).

. Concluding remarks

The process by which images are parsed for behaviorally rele-
ant content may  be referred to as “object recognition.” The process
y which this task takes place over noisy variations in signal power

s known as “robust object recognition.” While a physical object
ay  persist unaltered in the environment, variations in lighting,

istance, viewing angle, orientation and intervening objects can
ramatically alter the initial visual representation of that object.
evertheless, the higher visual systems of many animals imple-
ent astounding robust object recognition engines.
An equivalent ability to segregate individual sound sources

rom interfering acoustic stimulation is possessed by the audi-
ory system. The rules by which invariant perception is achieved
y these two systems are likely to differ, but the result is simi-

ar. The intensity domain is one arena likely to differ substantially
etween vision and audition. Retinotopic-specific nonlinearities
o not dramatically distort early visual representations the same
ay that frequency-specific nonlinearities distort early auditory

epresentations. Intensity therefore reflects an intriguing stimulus
arameter to ponder from the perspective of robust sound recog-
ition and a challenging one to probe effectively. It is likely that

n the process of peeling away the neural mechanisms underlying

erceptual invariance of sounds in the face of variable inten-
ity, other rules of stimulus encoding affecting perception will
lso be elucidated. The result will be an improved understand-
ng of the neural representation of complex sounds available for
oral Reviews 35 (2011) 2064–2072 2071

downstream cognitive processes to assess, interpret and ultimately
act upon.
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