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1 Exploring a grasshopper’s sensory world

Our scientific understanding of sensory processing systems results from the distributed
accumulation of anatomical, physiological and ethological evidence. This process is un-
doubtedly without alternative; however, it leaves us with the challenge of integrating the
available fragments into a coherent whole in order to address issues such as the interaction
between individual system components, the functional limitations of the system overall,
or taxonomic comparisons between systems that process the same sensory modality. Any
unified framework that captures the essential functional aspects of a given sensory sys-
tem thus has the potential to deepen our current understanding and fasciliate systematic
investigations. However, building such a framework is a challenging task. It requires a
wealth of existing knowledge of the system and the signals it operates on, a clearly defined
scope, and careful reduction, abstraction, and formalization of the underlying structures

and mechanisms.

One sensory system about which extensive information has been gathered over the years is

the auditory system of grasshoppers (Acrididae). Grasshoppers rely on their sense of hear-

ing primarily for intraspecific communication, which includes mate attraction (D. v. Helversen 1972)
and evaluation (Stange and Ronacher 2012), sender localization (D. v. Helversen and Rheinlaender 198
courtship display (Elsner 1968), rival deterrence (Greenfield and Minckley 1993), and loss-

of-signal predator alarm (SOURCE). In accordance with this rich behavioral repertoire,

grasshoppers have evolved a variety of sound production mechanisms to generate acoustic
communication signals for different contexts and ranges using their wings, hindlegs, or

mandibles (Otte 1970). Among the most conspicuous acoustic signals of grasshoppers are

their species-specific calling songs, which broadcast the presence of the singing individual

— mostly the males of the species — to potential mates within range. These songs are usu-



ally more characteristic of a species than morphological traits (Tishechkin and Vedenina 2016,
Tarasova et al. 2021), which can vary greatly within species (Rowell 1972, Kéhler et al. 2017).
The reliance on songs to mediate reproduction represents a strong evolutionary driv-
ing force, that resulted in a massive species diversification (Vedenina and Mugue 2011,
Sevastianov et al. 2023), with over 6800 recognized grasshopper species in the Acrididae
family (Cigliano et al. 2024). It is this diversity of species, and the crucial role of acoustic
communication in its emergence, that makes the grasshopper auditory system an intrigu-
ing candidate for attempting to construct a functional model framework. As a necessary
reduction, the model we propose here focuses on the pathway responsible for the recogni-
tion of species-specific calling songs, disregarding other essential auditory functions such as
directional hearing (D. v. Helversen 1984, Ronacher, D. v. Helversen, and Helversen 1986,
D. v. Helversen and Rheinlaender 1988).

To understand the functional challenges faced by the grasshopper auditory system, one
has to understand the properties of the songs it is designed to recognize. Grasshop-
per songs are amplitude-modulated broad-band acoustic signals. Most songs are pro-
duced by stridulation, during which the animal pulls the serrated stridulatory file on
its hindlegs across a resonating vein on the forewings (O. v. Helversen and Elsner 1977,
Stumpner and Helversen 1994, D. v. Helversen and O. v. Helversen 1997). Every tooth
that strikes the vein generates a brief pulse of sound. Multiple pulses make up a syl-
lable; and the alternation of syllables and relatively quiet pauses forms a character-
istic, through noisy, waveform pattern. Song recognition depends on certain tempo-
ral and structural parameters of this pattern, such as the duration of syllables and
pauses (D. v. Helversen 1972), the slope of pulse onsets (D. v. Helversen 1993), and the
accentuation of syllable onsets relative to the preceeding pause (Balakrishnan et al. 2001,
D. v. Helversen, Balakrishnan, and Helversen 2004). The amplitude modulation, or enve-
lope, of the song is sufficient for recognition (D. v. Helversen and O. v. Helversen 1997).
However, the essential recognition cues can vary considerably with external physical fac-
tors, which requires the auditory system to be invariant to such variations in order to
reliably recognize songs under different conditions. For instance, the temporal struc-
ture of grasshopper songs warps with temperature (Skovmand and Boel Pedersen 1983).
The auditory system can compensate for this variability by reading out relative tempo-
ral relationships rather than absolute time intervals (Creutzig, Wohlgemuth, et al. 2009,
Creutzig, Benda, et al. 2010), as those remain relatively constant across different temper-
atures (D. v. Helversen 1972). Another, perhaps even more fundamental external source
of song variability lays in the attenuation of sound intensity with increasing distance to the

sender. Sound attenuation depends on both the frequency content of the signal and the



vegetation of the habitat (Michelsen 1978). For the receiving auditory system, this has
two major implications. First, the amplitude dynamics of the song pattern are steadily
degraded over distance, which limits the effective communication range of grasshoppers
to 1-2m in their typical grassland habitats (Lang 2000). Second, the overall intensity
level of songs at the receiver’s position varies depending on the location of the sender,
which should ideally not affect the recognition of the song pattern. This neccessitates
that the auditory system achieves a certain degree of intensity invariance — a time scale-
selective sensitivity to faster amplitude dynamics and simultaneous insensitivity to slower,
more sustained amplitude dynamics. Intensity invariance in different auditory systems
is often associated with neuronal adaptation (Benda and Hennig 2008, Barbour 2011,
Ozeri-Engelhard et al. 2018, more general: Benda 2021). In the grasshopper auditory
system, a number of neuron types along the processing chain exhibit spike-frequency
adaptation in response to sustained stimulus intensities (Rémer 1976, Gollisch et al. 2002,
Hildebrandt et al. 2009, Clemens, Weschke, et al. 2010) and thus likely contribute to the
emergence of intensity-invariant song representations. This means that intensity invari-
ance is not the result of a single processing step but rather a gradual process, in which dif-
ferent neuronal populations contribute to varying degrees (Clemens, Weschke, et al. 2010)
and by different mechanisms (Hildebrandt et al. 2009). Approximating this process within
a functional model framework thus requires a considerable amount of simplification. In
this work, we demonstrate that even a small number of basic physiologically inspired sig-
nal transformations — specifically, pairs of nonlinear and linear operations — is sufficient

to achieve a meaningful degree of intensity invariance.

Invariance to non-informative song variations is crucial for reliable song recognition; how-
ever, it is not sufficient to this end. In order to recognize a conspecific song as such,
the auditory system needs to extract sufficiently informative features of the song pattern
and then integrate the gathered information into a final categorical percept. Previous
authors have proposed a functional model framework that describes this process — fea-
ture extraction, evidence accumulation, and categorical decision making — in both crick-
ets (Clemens and Hennig 2013, Hennig et al. 2014) and grasshoppers (Clemens and Ronacher 2013,
review on both: Ronacher, Hennig, and Clemens 2015). Their framework provides a com-
prehensible and biologically plausible account of the computational mechanisms required
for species-specific song recognition, which has served as the inspiration for the devel-
opment of the model pathway we propose here. The existing framework relies on pulse
trains as input signals, which were designed to capture the essential structural proper-
ties of natural song envelopes (Clemens and Ronacher 2013). In the first step, a bank

of parallel linear-nonlinear feature detectors is applied to the input signal. Each fea-



ture detector consists of a convolutional filter and a subsequent sigmoidal nonlinear-
ity. The outputs of these feature detectors are temporally averaged to obtain a single
feature value per detector, which is then assigned a specific weight. The linear com-
bination of weighted feature values results in a single preference value, that serves as
predictor for the behavioral response of the animal to the presented input signal. Our
model pathway adopts the general structure of the existing framework but modifies it
in several key aspects. The convolutional filters, which have previously been fitted to
behavioral data for each individual species (Clemens and Hennig 2013), are replaced by
a larger, generic set of unfitted Gabor basis functions in order to cover a wide range
of possible song features across different species. Gabor functions approximate the gen-
eral structure of the filters used in the existing framework as well as the filter func-
tions found in various auditory neurons (Rokem et al. 2006, Clemens, Kutzki, et al. 2011,
Clemens, Wohlgemuth, and Ronacher 2012). The fitted sigmoidal nonlinearities in the
existing framework consistently exhibited very steep slopes and are therefore replaced by
shifted Heaviside step-functions, which results in a binarization of the feature detector
outputs. Another, more substantial modification is that the feature detector outputs are
temporally averaged in a way that does not condense them into single feature values
but retains their time-varying structure. This is in line with the fact that songs are no
discrete units but part of a continuous acoustic stream that the auditory system has to
process in real time. Moreover, a time-varying feature representation only stabilizes after
a certain delay following the onset of a song, which emphasizes the temporal dynamics of
evidence accumulation towards a final categorical decision. The most notable difference
between our model pathway and the existing framework, however, lays in the addition of
a physiologically inspired preprocessing portion, whose starting point corresponds to the
initial reception of airborne sound waves. This allows the model to operate on unmodified
recordings of natural grasshopper songs instead of condensed pulse train approximations,
which widens its scope towards more realistic, ecologically relevant scenarios. For in-
stance, we were able to investigate the contribution of different processing stages to the
emergence of intensity-invariant song representations based on actual field recordings of
songs at different distances from the sender. In the following, we outline the structure of
the proposed model of the grasshopper auditory pathway, from the initial sound recep-
tion at the tympanal membrane up to the generation of a high-dimensional, time-varying
feature representation that is suitable for species-specific song recognition. We provide
a side-by-side account of the known physiological processing steps and their functional
approximation by basic mathematical operations. We then elaborate on two key mech-
anisms that drive the emergence of intensity-invariant song representations within the

auditory pathway.



2 Developing a functional model of

the grasshopper auditory pathway

The grasshopper auditory system has been studied extensively over the past decades; and
a corresponding number of involved neuron types has been described (Rehbein et al. 1974;
Kalmring 1975; Rehbein 1976; Eichendorf and Kalmring 1980). The functional model we
propose here focuses on the pathway responsible for song recognition and assumes a strict
feed-forward organization of three consecutive neuronal populations: Peripheral auditory
receptor neurons (1st order), local interneurons of the metathoracic ganglion (2nd order),

and ascending neurons (3rd order) projecting towards the supraesophageal ganglion.

Previous authors have reported a marked increase in response heterogenity within the pop-
ulation of ascending neurons compared to receptors and local interneurons, which exhibit
almost identical filter characteristics, respectively (Clemens, Kutzki, et al. 2011). Based
on these findings, the model pathway can be divided into two distinct portions (Fig. 1lc+d).

In the preprocessing portion, generated

The preprocessing portion comprises the tympanal membrane, receptors, and local in-

terneurons. The different signal representations
Due to the similar response properties within the involved

1) ”Pre-split portion” of the auditory pathway:

Tympanal membrane — Receptor neurons — Local interneurons

Similar response/filter properties within receptor/interneuron populations (Clemens, Kutzki,
et al. 2011)

— One population-wide response trace per stage (no ”single-cell resolution”)

2) 7" Post-split portion” of the auditory pathway:

Ascending neurons (AN) — Central brain neurons

Diverse response/filter properties within AN population (Clemens, Kutzki, et al. 2011)
- Pathway splitting into several parallel branches
- Expansion into a decorrelated higher-dimensional sound representation

— Individual neuron-specific response traces from this stage onwards



Figure 1: The auditory system of grasshoppers.

2.1 Population-driven signal pre-processing

Grasshoppers receive airborne sound waves by a tympanal organ at each side of the tho-
rax (Fig.la). The tympanal membrane acts as a mechanical resonance filter: Vibrations
that fall within specific frequency bands are focused on different membrane areas, while
others are attenuated (Michelsen 1971; Windmill et al. 2008; Malkin et al. 2014). This

processing step can be approximated by an initial bandpass filter
xﬁlt(t) = (L‘(t) * th(t), fcut = 5kHZ, 30kHz (1)

applied to the acoustic input signal z(¢). The auditory receptor neurons connect directly
to the tympanal membrane (Fig. la). Besides performing the mechano-electrical trans-
duction, the receptor population is substrate to several known processing steps. First,

the receptors extract the signal envelope (Machens, Prinz, et al. 2001), which likely in-



volves a rectifying nonlinearity (Machens, Stemmler, et al. 2001). This can be modelled

as full-wave rectification followed by lowpass filtering

l’env(t) = |1’ﬁ1t(t)| * th(t), fcut = 500 Hz (2)

of the tympanal signal zg(t). Furthermore, the receptors exhibit a sigmoidal response
curve over logarithmically compressed intensity levels (Suga 1960; Gollisch et al. 2002).
In the model, logarithmic compression is achieved by conversion to decibel scale

zqp(t) = 10 - logw%;—v(fw, Trof = MAX[Teny (1)] (3)
relative to the maximum intensity z, of the signal envelope Ze.(t). Next, the ax-
ons of the receptor neurons project into the metathoracic ganglion, where they synapse
onto local interneurons (Fig.1b). Both the local interneurons (Hildebrandt et al. 2009;
Clemens, Weschke, et al. 2010) and, to a lesser extent, the receptors themselves (Fisch et al. 2012)
display spike-frequency adaptation in response to sustained stimulus intensity levels. This
mechanism allows for the robust encoding of faster amplitude modulations against a slowly
changing overall baseline intensity. Functionally, this processing step resembles a highpass

filter
Tadapt(t) = Tap(t) * hup(t),  fou = 10Hz (4)

over the logarithmically scaled envelope zqg(t). The projections of the local interneurons
remain within the metathoracic ganglion and synapse onto a small number of ascending
neurons (Fig. 1b), which marks the transition between the preprocessing stream and the

parallel processing stream of the model pathway.

2.2 Feature extraction by individual neurons
The small population of ascending neurons
Stage-specific processing steps and functional approximations:

Template matching by individual ANs
- Filter base (STA approximations): Set of Gabor kernels

- Gabor parameters: o0;, ¢;, fi — Determines kernel sign and lobe number

/2

ki(t, oi, fiy ¢i) = € 2% - sin(27f; - t + &) (5)



— Separate convolution with each member of the kernel set

+00
¢i(t) = Tadapt(t) * ki(t) :/ Tadapt (T) - ki(t — 7)dT (6)
—0o0
Thresholding nonlinearity in ascending neurons (or further downstream)
- Binarization of AN response traces into "relevant” vs. ”irrelevant”

— Shifted Heaviside step-function H(¢; — ©;) (or steep sigmoid threshold?)

HEOT TN 0w < o o

Temporal averaging by neurons of the central brain

- Finalized set of slowly changing kernel-specific features (one per AN)

- Different species-specific song patterns are characterized by a distinct combination of
feature values — Clusters in high-dimensional feature space

— Lowpass filter 1 Hz

fi(t) = bi(t) = hyp(t), fot = 1Hz (8)

3 Two mechanisms driving the emergence of intensity-

invariant song representation

Definition of invariance (general, systemic):
Invariance = Property of a system to maintain a stable output with respect to a set of
relevant input parameters (variation to be represented) but irrespective of one or more

other parameters (variation to be discarded) — Selective input-output decorrelation

Definition of intensity invariance (context of neurons and songs):

Intensity invariance = Time scale-selective sensitivity to certain faster amplitude dynamics
(song waveform, small-scale AM) and simultaneous insensitivity to slower, more sustained
amplitude dynamics (transient baseline, large-scale AM, current overall intensity level)

— Without time scale selectivity, any fully intensity-invariant output will be a flat line

3.1 Logarithmic scaling & spike-frequency adaptation
Envelope Teny (1) 4B, Logarithmic zqp(t) M Adapted Tadapt(t)

- Rewrite signal envelope Zeny(t) (Eq.2) as a synthetic mixture:
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1) Song signal s(t) (02 = 1) with variable multiplicative scale o > 0

2) Fixed-scale additive noise 7(t) (07 = 1)

Teny(t) = a - s(t) + n(t), Teny(t) >0Vt €R 9)

- Signal-to-noise ratio (SNR): Ratio of variances of synthetic mixture xen, (t) with (a > 0)

and without (o = 0) song signal s(t), assuming s(t) L n(t)

o2 ao? - o2 + o2
SNR = =% = 1 =’ + 1 (10)
5 9n

Logarithmic component:
- Simplify decibel transformation (Eq.3) and apply to synthetic Zeny(t)

- Isolate scale a and reference z,¢ using logarithm product/quotient laws

rap(t) = log = S(tx) -
ref (11)
= log S log big[s(t) + @big]

ref

— In log-space, a multiplicative scaling factor becomes additive
— Allows for the separation of song signal s(t) and its scale «
— Introduces scaling of noise term 7(t) by the inverse of «

— Normalization by .. applies equally to all terms (no individual effects)

Adaptation component:
- Highpass filter over x4g(t) (Eq.4) can be approximated as subtraction of the local signal

offset within a suitable time interval Typ (0 < Thp < ﬁ)

o n(t
Tadapt(t) ~ waB(t) — 1ng = log big[s(t) + %big] (12)
Implication for intensity invariance:

- Logarithmic scaling is essential for equalizing different song intensities

— Intensity information can be manipulated more easily when in form of a signal offset

in log-space than a multiplicative scale in linear space

- Scale a can only be redistributed, not entirely eliminated from %,qapt(t)

— Turn initial scaling of song s(t) by « into scaling of noise 7(t) by <

- Capability to compensate for intensity variations, i.e. selective amplification of output
Tadapt (t) Telative to input Zeny(t), is limited by input SNR (Eq. 10):



a > 1: Attenuation of n(t) term — s(t) dominates Zadapt(t)

a ~ 1 Negligible effect on n(t) term — Zaqapt () = log[s(t) + n(t)]

a < 1: Amplification of n(t) term — n(t) dominates Zagapt(t)

— Ability to equalize between different sufficiently large scales of s(t)
— Inability to recover s(t) when initially masked by noise floor 7n(t)

- Logarithmic scaling emphasizes small amplitudes (song onsets, noise floor)

— Recurring trade-off: Equalizing signal intensity vs preserving initial SNR,

3.2 Threshold nonlinearity & temporal averaging
Convolved ¢;(t) EON Binary b;(t) M@, peature fi(t)

Thresholding component:

- Within an observed time interval T', ¢;(t) follows probability density p(c;, T)
- Within T, ¢;(t) exceeds threshold value ©; for time Ty (Th + 1y =T)

- Threshold H(c; — ©;) splits p(c;, T') around ©; in two complementary parts

+o0 0; T,
/ plc;, T)de; =1 — / ple;, T)de; = — (13)
0; —00 T
— Semi-definite integral over right-sided portion of split p(c;, T) gives ratio of time T}

where ¢;(t) > ©; to total time 7" due to normalization of p(c;, T)

+o0

| pten 1y =1 (14)

Averaging component:

- Lowpass filter over binary response b;(t) (Eq.8) can be approximated as temporal aver-
1

aging over a suitable time interval Typ (Trp > ﬁ)

- Within Typ, b;(t) takes a value of 1 (¢;(t) > ©;) for time T} (T} + To = T1p)

1 t+TLp T,
N — bi(r)dr = —
Tor /. (7)

0 = 7= (15)

— Temporal averaging over b;(t) € [0,1] (Eq.7) gives ratio of time T} where ¢;(t) > ©; to
total averaging interval Ty p

— Feature f;(t) approximately represents supra-threshold fraction of 71 p

Combined result:
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- Feature f;(t) can be linked to the distribution of ¢;(t) using Eqs. 13 & 15

+o0

fz(t) ~ / p(CZ’, TLP) dCi = P)(CZ > @Z‘, TLP) (16)
O;

— Because the integral over a probability density is a cumulative probability, the value of

feature f;(t) (temporal compression of b;(t)) at every time point ¢ signifies the probability

that convolution output ¢;(t) exceeds the threshold value ©; during the corresponding

averaging interval T1p

Implication for intensity invariance:
- Convolution output ¢;(t) quantifies temporal similarity between amplitudes of template
waveform £;(t) and signal Zagapt(t) centered at time point ¢

— Based on amplitudes on a graded scale

- Feature f;(t) quantifies the probability that amplitudes of ¢;(¢) exceed threshold value
O, within interval T1,p around time point ¢
— Based on binned amplitudes corresponding to one of two categorical states — Delib-
erate loss of precise amplitude information

— Emphasis on temporal structure (ratio of 77 over Typ)

- Thresholding of ¢;(t) and subsequent temporal averaging of b;(¢) to obtain f;(t) consti-
tutes a remapping of an amplitude-encoding quantity into a duty cycle-encoding quantity,
mediated by threshold function H(c; — ©;)

- Different scales of ¢;(t) can result in similar 7} segments depending on the magnitude of
the derivative of ¢;(t) in temporal proximity to time points at which ¢;(¢) crosses threshold
value O,

— The steeper the slope of ¢;(t), the less T} changes with scale variations

— If T} is invariant to scale variation in ¢;(t), then so is f;(t)

- Suggests a relatively simple rule for optimal choice of threshold value ©;:
— Find amplitude ¢; that maximizes absolute derivative of ¢;(t) over time
— Optimal with respect to intensity invariance of f;(t), not necessarily for other criteria

such as song-noise separation or diversity between features

- Nonlinear operations can be used to detach representations from graded physical stimulus
(to fasciliate categorical behavioral decision-making?):

1) Capture sufficiently precise amplitude information: Zeny(t), Zadapt(f)

— Closely following the AM of the acoustic stimulus

2) Quantify relevant stimulus properties on a graded scale: ¢;(t)
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— More decorrelated representation, compared to prior stages

3) Nonlinearity: Distinguish between "relevant vs irrelevant” values: b;(t)

— Trading a graded scale for two or more categorical states

4) Represent stimulus properties under relevance constraint: f;(t)

— Graded again but highly decorrelated from the acoustic stimulus

5) Categorical behavioral decision-making requires further nonlinearities

— Parameters of a behavioral response may be graded (e.g. approach speed), initiation

of one behavior over another is categorical (e.g. approach/stay)

4 Discriminating species-specific song

patterns in feature space

5 Conclusions & outlook
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