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1 Suprathreshold stochastic resonance

1.1 Introduction

In any biological system, there is a limit to the precision of the components making
up that system. This means that even without external input the spike times of each
individual neurons will have some variation and will not be perfectly regular. In-
creasing the precision has a cost in energy requirement (Schreiber et al., 2002) but
may not even be desirable.

In populations of neurons, representation of a common stimulus can be improved
by population heterogeneity (Ahn et al., 2014). The source of this heterogeneity could
for example be a different firing threshold for each neuron. Alternatively, the im-
provement can be achieved by adding noise to the input of neurons (Shapira et al.,
2016). The effect of adding noise to a sub-threshold signal, a phenomenon known as
"stochastic resonance" (SR), has been very well investigated during the last decades
(Benzi et al., 1981; Gammaitoni et al., 1998; Shimokawa et al., 1999). The noise added
to a signal makes it more likely that the signal reaches the detection threshold so that
it triggers a spike in a neuron. But often in nature the goal is not to simply detect a
signal but to discriminate between two different signals as well as possible. For ex-
ample in auditory communication it is not sufficient to detect the presence of sound
but instead the goal is to encode an auditory stimulus so that an optimal amount
of information is gained from the stimulus. Another example is the electrosensory
communication between conspecifics in weakly electric fishes. Those fish need to for
example differentiate aggressive and courtship behaviors.

More recently it has been shown that for populations of neurons the beneficial role
of noise can also be true for signals which already are above the threshold(Stocks,
2000a,b, 2001; Stocks and Mannella, 2001; Beiran et al., 2018), a phenomenon termed
"Suprathreshold Stochastic Resonance" (SSR). Despite the similarity in name, SR and
SSR work in very different ways. The idea behind SSR is that in case of no or very
weak individual noise the different neurons in the population react to the same fea-
tures of a common input. Additional noise that affects each cell differently desyn-
chronizes the response of the neurons. The spiking behavior of the neurons becomes
more probabilistic than deterministic in nature. However, if the noise is too strong,
the noise masks the signal and less information can be coded than would be ideally
possible. In the case of infinite noise strength, no information about the signal can
be reconstructed from the responses. Because some noise is beneficial and too much
noise isn’t, there is a noise strength where performance is best. This thesis investi-
gates populations of neurons reacting to input signals with cutoff frequencies over
a large range. Population sizes range from a single neuron to many thousands of
neurons.

Here we use the Integrate-and-Fire model to simulate neuronal populations receiv-
ing a common dynamic input. We look at linear coding of signals by different sized
populations of neurons of a single type, similar to the situation in weakly electric fish.
We show that the optimal noise grows with population size and depends on proper-
ties of the input. We use input signals of varying frequencies widths and cutoffs,
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Figure 1: Array of threshold systems as described by Stocks.
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along with changing the strength of the signal.
We also present the results of electrophysiological results in the weakly electric fish

Apteronotus leptorhynchus. Because it is not obvious how to quantify noisiness in the
receptor cells of these fish, we compare different methods and find that using the
activation curve of the individual neurons allows for the best estimate of the strength
of noise in these cells. Then we show that we can see the effects of SSR in the real
world example of A. leptorhynchus.

1.2 Methods

We use a population neuron model using the Leaky-Integrate-And-Fire (LIF) neuron,
described by the equation

V jt = V jt−1 +
∆t

τv
((µ− V jt−1) + σIt +

√
2D/∆tξjt ), j ∈ [1, N ] (1)

with τv = 10ms the membrane time constant, µ = 15.0mV or µ = 10.5mV as offset.
σ is a factor which scales the standard deviation of the input, ranging from 0.1 to 1
and I the previously generated stimulus. ξt are independent Gaussian distributed
random variables with mean 0 and variance 1. The Noise D was varied between
1 ∗ 10−12mV 2/Hz and 3mV 2/Hz. Whenever Vt was greater than the voltage thresh-
old (10mV) a "spike" was recorded and the voltage has been reset to 0mV. V0 was
initialized to a random value uniformly distributed between 0mV and 10mV. For the
first sets of simulations there was no absolute refractory period1. In a later chapter
I show that qualitatively results don’t change with an added refractory period. Sim-
ulations of up to 8192 neurons were done using an Euler method with a step size
of ∆ t = 0.01ms. Typical firing rates were around 90Hz for an offset of 15.0mV and
35Hz for an offset of 10.5mV. Firing rates were larger for high noise levels than for
low noise levels.

As stimulus we used Gaussian white noise signal with different frequency cutoff on
both ends of the spectrum. By construction, the input power spectrum is flat between
0 and ±fc:

Sss(f) =
σ2

2 |fc|
Θ (fc − |f |) . (2)

A Fast Fourier Transform (FFT) was applied to the signal so it can serve as input
stimulus to the simulated cells. The signal was normalized so that the variance of the
signal was 1mV and the length of the signal was 500s with a resolution of 0.01ms.

1.3 Analysis

For each combination of parameters, a histogram of the output spikes from all neu-
rons or a subset of the neurons was created. The coherence C(f) was calculated
(Lindner, 2016) in frequency space as the fraction between the squared cross-spectral

1Absolute refractory period means a time in which the cell ignores any input and can’t spike.
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Figure 2: Snapshots of 200ms length from three example simulations with different
noise, but all other parameters held constant. Black: Spikes of 32 simu-
lated neurons. The green curve beneath the spikes is the signal that was fed
into the network. The blue curve is the best linear reconstruction possible
from the spikes. The input signal has a cutoff frequency of 50Hz. If noise is
weak, the neurons behave regularly and similar to each other (A). For opti-
mal noise strength, the neuronal population follows the signal best (B). If the
noise is too strong, the information about the signal gets drowned out (C).
D: Example coding fraction curve over the strength of the noise. Marked in
red are the noise strengths from which the examples were taken.
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density |S2
sx| of input signal s(t) = σIt and output spikes x(t), Ssx(f) = F{s(t) ∗

x(t)}(f), divided by the product of the power spectral densities of input (Sss(f) =
|F{s(t)}(f)|2) and output (Sxx(f) = |F{x(t)}(f)|2), where F{g(t)}(f) is the Fourier
transform of g(t).

C(f) =
|Ssx(f)|2

Sss(f)Sxx(f)
(3)

The coding fraction γ (Gabbiani and Koch, 1996; Krahe et al., 2002) quantifies how
much of the input signal can be reconstructed by an optimal linear decoder. It is
0 in case the input can’t be reconstructed at all and 1 if the signal can be perfectly
reconstructed(Gabbiani et al., 1996). It is defined by the reconstruction error ε2 and
the variance of the input σ2:

γ = 1−
√
ε2

σ2
. (4)

The variance is

σ2 = 〈(s(t)− 〈s(t)〉)2〉 =

∫ fhigh

flow

Sss(f)df. (5)

The reconstruction error is defined as

ε2 = 〈(s(t)− sest(t))2〉 =

∫ fhigh

flow

Sss −
|Ssx|2

Sxx
=

∫ fhigh

flow

Sss(f)(1− C(f))df (6)

with the estimate sest(t) = h ∗ x(t). h is the optimal linear filter which has Fourier
Transform H = Ssx

Sxx
(Gabbiani, 1996).

We then analyzed coding fraction as a function of these cutoff frequencies for differ-
ent parameters (noise strength, signal amplitude, signal mean/firing rate) in the limit
of large populations. The limit was considered reached if the increase in coding frac-
tion gained by doubling the population size is small (4%)(??). For the weak signals
(σ = 0.1mV ) combined with the strongest noise (D = 10−3mV 2

Hz ), convergence was
not reached for a population size of 2048 neurons for both threshold values. The same
is true for the combination of the weak signal, close to the threshold (µ = 10.5mV )
and high frequencies (200Hz).

1.4 Simulations with more neurons

1.5 Noise makes neurons’ responses different from each other

If noise levels are low (fig. 2 a)), neurons within a population with behave very simi-
larly to each other. There is little variation in the spike responses of the neurons to a
signal, and recreating the signal is difficult. If the strength of the noise is increasing, at
some point the coding fraction will also begin increasing. The signal recreation will
become better as the responses of the different neurons begin to deviate from each
other. When noise strength is increased even further at some point a peak coding
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Figure 3: Coherence for a signal with fcutoff = 200Hz. Coherence for a small and a
large population, each at weak and strong noise values. For weak noise, the
curves are indistinguishable from one another. For strong noise an increase
in population size allows much better reconstruction of the input. For the
small population size weak noise in the simulated neurons allows for better
signal reconstruction. The line marks the average firing rate (about 91Hz)
of the neurons in the population.

fraction is reached. This point is the optimal noise strength for the given parameters
(fig. 2 b)). If the strength of the noise is increased beyond this point, the responses
of the neurons will be determined more by random fluctuations and less by the ac-
tual signal, making reconstruction more difficult (fig. 2 c)). At some point, signal
encoding breaks down completely and coding fraction goes to 0.

1.6 Large population size is only useful if noise is strong

We see that an increase in population size leads to a larger coding fraction until it
hits a limit which depends on noise. For weak noise the increase in conding frac-
tion with an increase in population size is low or non-existent. This can be seen in
figure 5 c) where the red (10−5mV 2

Hz ) and orange (10−4mV 2

Hz ) curves (relatively weak
noise) saturate for relatively small population size (about 8 neurons and 32 neurons
respectively). An increase in population size also leads to the optimum noise level
moving towards stronger noise (green dots in figure 5 a)). A larger population can
exploit the higher noise levels better. Within the larger population the precision of
the individual neurons becomes less important. After the optimum noise where peak
coding fraction is reached, an increase in noise strength leads to a reduction in coding
fraction. If the noise is very strong, coding fraction can reach approximately 0. This
happens earlier (for weaker noise) in smaller populations than in larger populations.
Together those facts mean that for a given noise level and population size, coding
fraction might already be declining; whereas for larger populations, coding fraction

7



tri
al

0 200 400 600 800
time [ms]

tri
al

0 200 400 600 800
time [ms]

tri
al

0 200 400 600 800
time [ms]

tri
al

0 200 400 600 800
time [ms]

Figure 4: Rasterplots and reconstructed signals for different population sizes; insets
show signal spectrum. Rasterplots show the responses of neurons in the
different populations. Blue lines show the reconstruction of the original sig-
nal by different sets of neurons of that population size. A: Each blue line is
the reconstructed signal from the responses of a population of 4 neurons. B:
Each blue line is the reconstructed signal from the responses of a population
of 16 neurons. C: The same for 64 neurons. D: The same for 256 neurons.
Larger population sizes lead to observations which are not as dependent on
random fluctuations and are therefore closer to each other. [DH: langsames
signal hier nehmen(!?)]

can still be increasing. A given amount of noise can lead to a very low coding fraction
in a small population, but to a greater coding fraction in a larger population. (figure
5 c), blue and purple curves). The noise levels that work best for large populations
are in general performing very bad in small populations. If coding fraction is sup-
posed to reach its highest values and needs large populations to do so, the necessary
noise strength will be at a level, where basically no encoding will happen in a single
neurons or small populations.

1.7 Influence of the input is complex

Two very important variables are the mean strength of the signal, equivalent to the
baseline firing rate of the neurons and the strength of the signal. A higher baseline
firing rate leads to a larger coding fraction. In our terms that means that a mean
signal strength µ that is much above the signal will lead to higher coding fractions
than if the signal strength is close to the threshold (see figure 5 b), orange curves are
above the green curves). The influence of the signal amplitude σ is more complex. In
general, at small population sizes, larger amplitudes appear to work better, but with
large populations they might perform as well or even better than stronger signals
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Figure 5: A: Coding fraction as a function of noise for different population sizes.
Green dots mark the peak of the coding fraction curve. Increasing popu-
lation size leads to a higher peak and moves the peak to stronger noise. B:
Coding fraction as a function of population size. Each curve shows coding
fraction for a different noise strength. C: Peak coding fraction as a function
of population size for different input parameters. [DH: needs information
about noise]

(figure 5 c), dashed curves vs solid curves.)

1.8 Slow signals are more easily encoded

To encode a signal well, neurons in a population need to keep up with the rising
and falling of the signal. Signals that change fast are harder to encode than signals
which change more slowly. When a signal changes more gradually, the neurons can
slowly adapt their firing rate. A visual example can be see in figure 6. When all other
parameters are equal, a signal with a lower frequency is easier to recreate from the
firing of the neurons. In the rasterplots one can see especially for the 50Hz signal
(bottom left) that the firing probability of each neuron follows the input signal. When
the input is low, almost none of the neurons fire. The result are the “stripes” we can
see in the rasterplot. The stripes have a certain width which is determined by the
signal frequency and the noise level. When the signal frequency is low, the width of
the stripes can’t be seen in a short snapshot. For the 50Hz signal in this example we
can clearly see a break in the firing activity of the neurons at around 25ms. The slower

9



0

50

tri
al

0 200
frequency [Hz]

0 100 200 300 400
time [ms]

0
sig

na
l

0

50

tri
al

0 200
frequency [Hz]

0 100 200 300 400
time [ms]

0

sig
na

l

0

50

tri
al

0 200
frequency [Hz]

0 100 200 300 400
time [ms]

0

sig
na

l

0

50

tri
al

0 200
frequency [Hz]

0 100 200 300 400
time [ms]

0

sig
na

l

Figure 6: Rasterplots, input signal and reconstructed signals for different cutoff fre-
quencies; insets show each signal spectrum. Shown here are examples taken
from 500s long simulations. Rasterplots show the firing of 64 LIF-neurons.
Each row corresponds to one neuron. Blue lines below the rasters are the
input signal, the orange line the reconstruction, calculated by convolving
the spikes with the optimal linear filter. Reconstruction is closer to the origi-
nal signal for slower signals than for higher frequency signals. The different
time scales lead to spike patterns which appear very different from each
other.

changes in the signal allow for the reconstruction to follow the original signal more
closely. For the 200Hz signal there is little structure to be seen in the firing behaviour
of the population and instead that behaviour looks chaotic. Something similar can
be said for the 1Hz signal. Because the peaks are about 1s apart from each other,
a snapshot of 400ms cannot capture the structure of the neuronal response. Instead
what we see is a very gradual change of the firing rate following the signal. Because
the change is so gradual, the reconstructed signal follows the input signal very closely.

1.9 Fast signals are harder to encode - noise can help with that

For low frequency signals, the coding fraction is almost always at least as large as the
coding is for signals with higher frequency. For the parameters we have used there
is very little difference in coding fraction for a random noise signal with frequencies
of 1Hz and 10Hz respectively (figure 7, bottom row). For all signal frequencies and
amplitudes a signal mean much larger than the threshold (µ = 15.0mV , with the
threshold at 10.0mV ) results in a higher coding fraction than the signal mean closer
to the threshold (µ = 10.5mV ). Firing rates of the neurons is much higher at the large
input: about 90 Hz vs. 30 Hz for the lower signal mean. We also find that for the
signal mean which is further away from the threshold for the loss of coding fraction
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from the 10Hz signal to the 50Hz signal is smaller than for the lower signal mean.
This is partially explained by the firing rate of the neurons: Around the firing rate the
signal encoding is weaker (see figure 3. In general, an increase in signal frequency
and bandwidth leads to a decrease in the maximum achievable coding fraction. This
decrease is smaller if the noise is stronger. In some conditions, a 50 Hz signal can be
encoded as well as a 10 Hz signal (fig. 7 d)).

[DH: TODO: frequency vs optimum noise; For slower signals, coding fraction con-
verges faster in terms of population size (figure 7). This (convergence speed) is also
true for stronger signals as opposed to weaker signals. For slower signals the maxi-
mum value is reached for weaker noise.]

1.10 A tuning curve allows calculation of coding fraction for
arbitrarily large populations

To understand information encoding by populations of neurons it is common practice
to use simulations. However, the size of the simulated population is limited by com-
putational power. We demonstrate a way to circumvent these limitations, allowing to
make predictions in the limit case of large population size. We use the interpretation
of the tuning curve as a kind of averaged population response. To calculate this aver-
age, we need relatively few neurons to reproduce the response of an arbitrarily large
population of neurons. This allows the necessary computational power to be greatly
reduced.

At least for slow signals, the spiking probability at a given point in time is deter-
mined by the signal power in this moment. The population response should simply
be proportional to the response of a single neuron. This average firing rate is reflected
in the tuning curve. We can look at the average firing rate for the input to find the
spiking probability and how this probability changes with noise.

For faster signals, the past of the signal plays a role: after a spike there is a short
period where the simulated neuron is unlikely to fire again, even if there is no explicit
refractory period. If the next spike falls into that period, fewer neurons will spike than
they would have without the first spike. We have also seen before that faster signals
aren’t encoded as well as slower signals; but the results we receive from using the
tuning curve this way is frequency-independent.

The noise influences the shape of the tuning curve, with stronger noise linearizing
the curve. The linearity of the curve is important, because coding fraction is a linear
measure. For strong input signals (around 13mV) the curve is almost linear, resulting
in coding fractions close to 1. For signal amplitudes in this range firing rate is almost
independent of noise strength. This tells us that the increase in coding fraction that
follows a change in noise strength we saw in previous chapters is not simply due to
the neurons spiking more frequently. For slow signals (1Hz cutoff frequency, up to
10Hz) the results from the tuning curve and the simulation for large populations of
neurons match very well (figure 1.3) over a range of signal strengths, base inputs to
the neurons and noise strength. This means that the LIF-neuron tuning curve gives us
a very good approximation for the limit of encoded information that can be achieved
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Figure 7: A-D: Coding fraction in the large population limit as a function of input
signal frequency for different parameters. Each curve represents a different
noise strength. Points are only shown when the coding fraction increased
by less than 2% when population size was increased from 1024 to 2048 neu-
rons. For small amplitudes (σ = 0.1mV , A & B) there was no convergence
for a noise of 10−3mV 2/Hz. Coding fraction decreases for faster signals
(50Hz and 200Hz). In the large population limit, stronger noise results in
coding fraction at least as large as for weaker noise. E, F: Comparison of
the coding fraction in the large population limit for a 1Hz signal and a 10Hz
signal. Shapes indicate noise strength, color indicates mean signal input (i.e.
distance from threshold). Left plot shows an amplitude of σ = 0.1mV , the
right plot shows σ = 1.0mV . The diagonal black line indicates where coding
fractions are equal.
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tuning curve (top right). The tuning curve corresponds to a function g(V ),
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as is the case here, inputs below the threshold all get projected to 0. This can
be seen here at the beginning of the transformed curve. Bottom left: Tuning
curves for different noise levels. x-Axis shows the stimulus strength in mV,
the y-axis shows the corresponding firing rate. For low noise levels there
is a strong non-linearity at the threshold. For increasing noise, firing rate
becomes larger than 0 for progressively weaker signals. For strong stimuli
(roughly 13mV and more) there is little different in the firing rate depending
on the noise.
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Figure 9: Tuningcurve works for 10Hz but not for 200Hz.

by summing over independent, identical LIF-neurons with intrinsic noise. For faster
signals, the coding fraction calculated through the tuning curve stays constant, as
the tuning curve only deforms the signal. As shown in figure 7 e) and f), the cod-
ing fraction of the LIF-neuron ensemble drops with increasing frequency. Hence for
high frequency signals the tuning curve ceases to be a good predictor of the encoding
quality of the ensemble.

For high-frequency signals, the method does not work. The effective and implicit
refractory period prohibits the instantaneous firing rate from being useful, because
the neurons spike only in very short intervals around a signal peak. They are very
unlikely to immediately spike again and signal peaks that are too close to the preced-
ing one will not be resolved properly.[DH: Add a figure.]

We use the tuning curve to analyse how the signal mean and the signal amplitude
change the coding fraction we would get from an infinitely large population of neu-
rons (fig. 8, bottom two rows). We can see that in this case the stronger noise always
yields a larger coding fraction. This is expected because the tuning curve is more lin-
ear for stronger noise and coding fraction is a linear measure. It matches that we are
observing the limit of an infinitely large population, which would be able to “average
out” any noise.

For coding fraction as a function of the mean we see zero or near zero coding frac-
tion if we are far below the threshold. If the signal is too weak it doesn’t trigger any
spiking in the neurons and no information can be encoded. If we increase the mean
at one point we can see that coding fraction starts to jump up. This happens earlier
for stronger noise, as spiking can be triggered for weaker signals. The increase in
coding fraction is much smoother if we use a larger amplitude (right figure). We also
notice some sort of plateau, where increasing the mean does not lead to a larger cod-
ing fraction, before it begins rising close to 1. The plateau begins earlier for stronger
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Figure 10: A,B: Coding signal as a function of signal mean for two different frequen-
cies. There is little to no difference in the coding fraction. A: σ = 0.1mV .
Each curve shows coding fraction as a function of the signal mean for a
different noise level. The vertical line indicates the threshold. C-E: Coding
fraction as a function of signal amplitude for different tuningcurves (noise
levels). Three different means, one below the threshold (9.5mV), one at the
threshold (10.0mV), and one above the threshold (10.5mV).

noise. For coding fraction as a function of signal amplitude we see very different re-
sults depending on the parameters. Again, we see that stronger noise leads to higher
coding fraction. If we are just above or at the threshold (center and right), an increase
in signal amplitude leads to a lower coding fraction. This makes sense, as more of
the signal moves into the very non-linear area around the threshold. A very inter-
esting effect happens if we have a mean slightly below the threshold (left): while for
a strong noise we see the same effect as at or above the threshold, for weaker noise
we see the opposite. The increase can be explained as the reverse of the effect that
leads to decreasing coding fraction. Here, a larger amplitude means that the signal
moves to the more linear part of the tuning curve more often. On the other hand, an
increase in amplitude does not lead to worse encoding because of movement of the
signal into the low-firing rate, non-linear part of the tuning curve – because the signal
is already there, so it can’t get worse. This can help explain why the coding fraction
seems to saturate near 0.5: In an extreme case, the negative parts of a signal would
not get encoded at all, while the positive parts would be encoded linearly.

Discussion

In this paper we have shown the effect of Suprathreshold Stochastic Resonance (SSR)
in ensembles of neurons. We detailed how noise levels affect the impact of population
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size on the coding fraction. We looked at different frequency ranges and could show
that the encoding of high-frequency signals profits particularly well from SSR. Using
the tuningcurve we were able to provide a way to extrapolate the effects of SSR for
very large populations. Because in general analysis of the impact of changing param-
eters is complex, we investigated limit cases, in particular the slow stimulus limit and
the weak stimulus limit. For low-frequency signals, i.e. the slow stimulus limit, the
tuningcurve also allows analyzing the impact of changing signal strength; in addition
we were able to show the difference in sub-threshold SR and SSR for different noise
levels. For the weak stimulus limit, where noise is relatively strong compared to the
signal, we were able to provide an analytical solution for our observations.

(Hoch et al., 2003) also shows that SSR effects hold for both LIF- and HH- Neurons.
However, Hoch et al. have found that optimal noise level depends "close to logarith-
matically" on the number of neurons in the population. They used a cutoff frequency
of only 20Hz for their simulations. [DH: Hier fehlt ein plot, der Population size und
optimum noise in Verbindung setzt]

We investigated the impact of noise on homogeneous populations of neurons. Neu-
rons being intrinsically noisy is a phenomenom that is well investigated (Grewe et al
2017, Padmanabhan and Urban 2010). In natural systems however, neuronal popula-
tions are rarely homegeneous. Padmanabhan and Urban (2010) showed that hetero-
geneous populations of neurons carry more information that heterogenous popula-
tions. Beiran et al. (2017) investigated SSR in heterogeneous populations of neurons.
They made a point that heterogeneous populations are comparable to homogeneous
populations where the neurons receive independent noise in addition to a determin-
istic signal. They make the point that in the case of weak signals, heterogeneous
population can encode information better, as strong noise would overwhelm the sig-
nal. [DH: Unterschiede herausstellen!] Similarly, Hunsberger et al. (2014) showed
that both noise and heterogeneity linearize the tuning curve of LIF neurons. In sum-
mary, while noise and heterogeneity are not completely interchangeable. In the limit
cases we see similar behaviour.

(?) Sharafi et al. (2013) had already investigated SSR in a similar way. However,
they only observed populations of up to three neurons and were focused on the syn-
chronous output of cells. They took spike trains, convolved those with a gaussian
and then multiplied the response of the different neurons. In our simulations we in-
stead used the addition of spike trains to calculate the cohenrece between input and
output. Instead of changing the noise parameter to find the optimum noise level,
they changed the input signal frequency to find a resonating frequency, which was
possible for suprathreshold stochastic resonance, but not for subthreshold stochastic
resonance. For some combinations of parameters we also found that coding fraction
does not decrease monotonically with increasing signal frequency (fig. 7). It is es-
pecially notable for signals that are far from the threshold (fig 7 E,F (red markers)).
That we don’t see the effect that clearly matches Sharafi et al.’s observation that in the
case of subthreshold stochastic resonance, coherence monotonically decreased with
increasing frequency. Pakdaman et al. (2001) [DH: Besser verknüpfen als das Fol-
gende (vergleichen über Größenordnungen; vergleichen mit Abbildung 5??; mehr als
Sharafi zitieren Stichwort “Coherence Resonance”]
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Similar research to Sharafi et al. was done by (de la Rocha et al. 2007). They inves-
tigated the output correlation of populations of two neurons and found it increases
with firing rate. We found something similar in this paper, where an increase in µ in-
creases both the firing rate of the neurons and generally also the coding fraction [DH:
Verknüpfen mit output correlation](fig. 1.3). Our explanation is that coding fraction
and firing rate are linked via the tuningcurve. In addition to simulations of LIF neu-
rons de la Rocha et al. also carried out in vitro experiments where they confirmed
their simulations.

[DH: Konkreter machen: was machen die Anderen, das mit uns zu tun hat und
was genau hat das mit uns zu tun?] [DH: Vielleicht nochmal Stocks, obwohl er schon
in der Einleitung vorkommt? Heterogen/homogen] [DH: Dynamische stimuli! Bei
Stocks z.B. nicht, nur z.B. bei Beiran. Wir haben den Übergang.]

Examples for neuronal systems that feature noise are P-unit receptor cells of weakly
electric fish (which paper?) and ...

In the case of low cutoff frequency and strong noise we were able to derive a for-
mula that explains why in those cases coding fraction simply depends on the ratio
between noise and population size, whereas generally the two variables have very
different effects on the coding fraction.

1.11 Different frequency ranges

1.12 Narrow-/wideband

1.13 Narrowband stimuli

Using the fcutoff = 200Hz signal, we repeated the analysis (fig. 5) considering only
selected parts of the spectrum. We did so for two "low frequency" (0–8Hz, 0–50Hz)
and two "high frequency" (192–200Hz, 150–200Hz) intervals.[DH: 8Hz is not in yet.]
We then compared the results to the results we get from narrowband stimuli, with
power only in those frequency bands. To keep the power of the signal inside the two
intervals the same as in the broadband stimulus, amplitude of the narrowband sig-
nals was less than that of the broadband signal. For the 8Hz intervals, amplitude (i.e.
standard deviation) of the signal was 0.2mV, or a fifth of the amplitude of the broad-
band signal. Because signal power is proportional to the square of the amplitude, this
was appropriate for a stimulus with a spectrum 25 times smaller. Similarly, for the
50Hz intervals we used a 0.5mV amplitude, or half of that of the broadband stimulus.
As the square of the amplitude is equal to the integral over the frequency spectrum,
for a signal with a quarter of the width we need to half the amplitude to have the
same power in the interval defined by the narrowband signals.

1.14 Smaller frequency intervals in broadband signals

We want to know how well encoding works for different frequency intervals in the
signal. When we take out a narrower frequency interval from a broadband signal,
the other frequencies in the signal serve as common noise to the neurons encoding
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Figure 11: Coherence for broad and narrow frequency range inputs. a) Broad spec-
trum. At the frequency of the firing rate (91Hz, marked by the black bar)
and its first harmonic (182Hz) the coding fraction breaks down. For the
weak noise level (blue), population sizes n=4 and n=4096 show indistin-
guishable coding fraction. In case of a small population size, coherence is
higher for weak noise (blue) than for strong noise (green) in the frequency
range up to about 50Hz. For higher frequencies coherence is unchanged.
For the case of the larger population size and the greater noise strength
there is a huge increase in the coherence for all frequencies. b) Coher-
ence for two narrowband inputs with different frequency ranges. Low fre-
quency range: coherence for slow parts of the signal is close to 1 for weak
noise. SSR works mostly on the higher frequencies (here >40Hz). High fre-
quency range: At 182Hz (twice the firing frequency) there is a very sharp
decrease in coding fraction, especially for the weak noise condition (blue).
Increasing the noise makes the drop less clear. For weak noise (blue) there
is another break down at 182-(200-182)Hz. Stronger noise seems to make
this sharp drop disappear. Again, the effect of SSR is most noticeable for
the higher frequencies in the interval.[DH: Add description for 10.5mV]
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the signal. In many cases we only care about a certain frequency band in a signal of
much wider bandwidth. In figure 11 C we can see that SSR has very different effects
on some frequencies inside the signal than on others. In blue we see the case of very
weak noise (10−6mV2/Hz). Coherence starts somewhat close to 1 but falls off quickly
that it reaches about 0.5 by 50Hz and goes down to almost zero around the 91Hz fir-
ing rate of the signal. Following that there is a small increase up to about 0.1 at around
130Hz, after which coherence decreases to almost 0. Increasing the population size
from 4 neurons to 2048 neurons has practically no effect. When we keep population
size at 4 neurons, but add more noise to the neurons (green, 2 · 10−3mV2/Hz), encod-
ing of the low frequencies (up to about 50Hz) becomes worse, while encoding of the
higher frequencies stays unchanged. When we increase the population size to 2048
neurons we have almost perfect encoding for frequencies up to 50Hz. Coherence is
still reduced around the average firing rate of the neurons, but at a much higher level
than before. For higher frequencies coherence becomes higher again. For the weaker
mean input (figure ?? E results look similar. For weak noise (blue) there is no dif-
ference for the increased population. Coherence starts relatively high again (around
0.7). There is a decrease in coherence for increasing frequency which is steep at first,
until about the firing rate of the neuron, after which the decrease flattens off. For
stronger noise, encoding at low frequencies is worse for small populations; for large
populations the coherence is greatly increased for all frequencies. Coherence is very
close to 1 at first, decreases slightly in the frequency is increased up to the firing rate,
after which coherence stays about constant.

In summary, the high frequency bands inside the broadband stimulus experience a
much greater increase in encoding quality than the low frequency bands, which were
already encoded quite well.

1.15 Narrowband Signals vs Broadband Signals

In nature, often an external stimulus covers a narrow frequency range that starts at
high frequencies, so that only using broadband white noise signals as input appears
to be insufficient to describe realistic scenarios.[DH: Add examples.] Therefore, we
investigate the coding of narrowband signals in the ranges described earlier (0–50Hz,
150–200Hz). Comparing the results from coding of broadband and coding of narrow-
band signals, we see several differences.

For both low and high frequency signals, the narrowband signal can be resolved
better than the broadband signal for any amount of noise and at all population sizes
(figure 12, bottom left). That coding fractions are higher when we use narrowband
signals can be explained by the fact that the additional frequencies in the broadband
signal are now absent. In the broadband signal they are a form of "noise" that is
common to all the input neurons. Similar to what we saw for the broadband signal,
the peak of the low frequency input is still much more broad than the peak of the
high frequency input. To encode low frequency signals the exact strength of the noise
is not as important as it is for the high frequency signals which can be seen from the
wider peaks.

19



10 7 10 6 10 5 10 4 10 3 10 2 10 1 100

noise [mV2/Hz]
0.0

0.2

0.4

0.6

0.8

1.0

Co
di

ng
 fr

ac
tio

n

broadband
frequency interval

0 - 50 Hz
150 - 200 Hz

2 8 32 128 512 2048
number of neurons

10 6

10 5

10 4

10 3

10 2

op
tim

al
 n

oi
se

 [m
V

2 /H
z]

frequency interval
0 - 50 Hz
150 - 200 Hz
square root fit

10 7 10 6 10 5 10 4 10 3 10 2 10 1 100

noise [mV2/Hz]

frequency interval [Hz]
0 - 50
150 - 200

2 8 32 128 512 2048
number of neurons

frequency interval [Hz]
0 - 50
150 - 200

2 8 32 128 512 2048
number of neurons

0.0

0.2

0.4

0.6

0.8

1.0

m
ax

im
um

 c
od

in
g 

fra
ct

io
n

signal, interval [Hz]
smallband, (0, 50)
smallband, (150, 200)
broadband, (0, 50)
broadband, (150, 200)

Figure 12: C and D [DH: B and C right now because the order in the right column
was mixed up]: Best amount of noise for different number of neurons. The
dashed lines show where coding fraction still is at least 95% from the max-
imum. The width of the peaks is much larger for the narrowband signals
which encompasses the entire width of the high-frequency interval peak.
Optimum noise values for a fixed number of neurons are always higher for
the broadband signal than for narrowband signals. In the broadband case,
the optimum amount of noise is larger for the high-frequency interval than
for the low-frequency interval and vice-versa for the narrowband case. E
and F: Coding fraction as a function of noise for a fixed population size
(N=512). Red dots show the maximum, the red line where coding fraction
is at least 95% of the maximum value. G: An increase in population size
leads to a higher coding fraction especially for broader bands and higher
frequency intervals. Coding fraction is larger for the narrowband signal
than in the equivalent broadband interval for all neural population sizes
considered here. The coding fraction for the low frequency intervals is al-
ways larger than for the high frequency interval. Signal mean µ = 15.0mV,
signal amplitude σ = 1.0mV and σ = 0.5mV respectively.
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1.16 Discussion

The usefulness of noise on information encoding of subthreshold signals by single
neurons has been well investigated. However, the encoding of supra-threshold sig-
nals by populations of neurons has received comparatively little attention and dif-
ferent effects play a role for suprathreshold signals than for subthreshold signals (?).
This paper delivers an important contribution for the understanding of suprathresh-
old stochastic resonance (SSR). We simulate populations of leaky integrate-and-fire
neurons to answer the question how population size influences the optimal noise
strength for linear encoding of suprathreshold signals. We are able to show that
this optimal noise is well described as a function of the square root of population
size.[DH: Currently missing, but it is somewhere in my notes ...] This relationship is
independent of frequency properties of the input signal and holds true for narrow-
band and broadband signals.

In this paper, we show that SSR works in LIF-neurons for a variety of signals of
different bandwidth and frequency intervals. We show that signal-to-noise ratio is
for signals above a certain strength sufficient to describe the optimal noise strength
in the population, but that the actual coding fraction depends on the absolute value
of signal strength.

We contrast how well the low and high frequency parts of a broadband signal can
be encoded. We take an input signal with fcutoff = 200 Hz and analyse the coding
fraction for the frequency ranges 0 to 50 Hz and 150 to 200 Hz separately. The maxi-
mum value of the coding fraction is lower for the high frequency interval compared to
the low frequency interval. This means that inside broadband signals higher frequen-
cies intervals appear more difficult to encode for each level of noise and population
size. The low frequency interval has a wider peak (defined as 95% coding fraction
of its coding fraction maximum value), which means around the optimal amount of
noise there is a large area where coding fraction is still good. The noise optimum
for the low frequency parts of the input is lower than the optimum for the high fre-
quency interval (Fig. ??). In both cases, the optimal noise value appears to grow with
the square root of population size.[DH: See note above]

In general, narrowband signals can be encoded better than broadband signals. nar-
rowband vs broadband

Another main finding of this paper is the discovery of frequency dependence of
SSR. We can see from the shape of the coherence between the signal and the output
of the simulated neurons, SSR works mostly for the higher frequencies in the signal.
As the lower frequency components are in many cases already encoded really well,
the addition of noise helps to flatten the shape of the coherence curve. In the case of
weak noise, often there are border effects which disappear with increasing strength
of the noise. In addition, for weak noise there are often visible effects from the firing
rate of the neurons, in so far that the encoding around those frequencies is worse
than for the surrounding frequencies. Generally this effect becomes less pronounced
when we add more noise to the simulation, but we found a very striking exception
in the case of narrowband signals. Whereas for a firing rate of about 91Hz the coding
fraction of the encoding of a signal in the 0-50Hz band is better than for the encoding
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of a signal in the 150-200Hz band. However, this is not the case if the neurons have a
firing rate about 34Hz. We were thus able to show that the firing rate on the neurons
in the simulation is of critical importance to the encoding of the signal.

2 Theory

2.1 For large population sizes and strong noise, coding fraction
becomes a function of their quotient

For the linear response regime of large noise, we can estimate the coding fraction.
From Beiran et al. 2018 we know the coherence in linear response is given as

CN (ω) =
N |χ(ω)|2Sss

Sxixi(ω) + (N1)|χ(ω)|2Sss
(7)

whereC1(ω) is the coherence function for a single LIF neuron. Generally, the single-
neuron coherence is given by (?)

C1(ω) =
r0

D
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where r0 is the firing rate of the neuron,
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. In the limit of large noise (calculation in the appendix) this equation evaluates to:
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From eqs.7 and 9 it follows that in the case D → ∞ the coherence, and therefore
the coding fraction, of the population of LIF neurons is a function of D−1N . We plot
the approximation as a function of ω (fig. 2.1). In the limit of small frequencies the
approximation matches the exact equation very well, though not for higher frequen-
cies. We can verify this in our simulations by plotting coding fraction as a function of
D
N . We see (fig. 2.1) that in the limit of large D, the curves actually lie on top of each
other. This is however not the case (fig. 2.1) for stimuli with a large cutoff frequency
fc, as expected by our evaluation of the approximation as a function of the frequency.
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Figure 13: Top row: Coding fraction as a function of noise. Bottom row: Coding
fraction as a function of the ratio between noise strength and population
size. For strong noise, coding fraction is a function of this ratio. Left: sig-
nal mean 10.5mV, signal amplitude 0.5mV, fc 10Hz. Middle: signal mean
15.0mV, signal amplitude 0.5mV, fc 50Hz. Right: signal mean 15.0mV, sig-
nal amplitude 1.0mV, fc 200Hz.

2.2 Refractory period

We analyzed the effect of non-zero refractory periods on the previous results. We re-
peated the same simulations as before but added a 1ms or a 5ms refractory period to
each of the LIF-neurons. Results are summarized in figure 16. Results change very
little for a refractory period of 1ms, especially for large noise values. For a refractory
period of 5ms resulting coding fraction is lower for almost all noise values. Paradox-
ically, for high frequencies in smallband signals and very small noise, coding fraction
actually is larger for 5ms refractory period than for 1ms. [DH: Needs plots!] In spite
of this, coding fraction is still largest for the LIF-ensembles without refractory period.

We also find all other results replicated even with refractory periods of 1ms or 5ms:
Figure 16 shows that the optimal noise stills grows with

√
N for both the 1ms and

the 5ms refractory period. We see an increase in the value of the optimum noise
with an increase of the refractory period. The achievable coding fraction is lower
for the neurons with refractory periods, especially at the maximum. In the limit of
large noise, the neurons with 1ms refractory period and the ones with no refractory
period also result in similar coding fractions, over a wide range of population sizes.
However, this is not true for the neurons with 5ms refractory period.
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Figure 14: Repeating the simulations adding a refractory period to the LIF-neurons
shows no qualitative changes in the SSR behaviour of the neurons. Coding
fraction is lower the longer the refractory period. The SSR peak moves to
stronger noise; cells with larger refractory periods need stronger noise to
work optimally.
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3 Electric fish

3.1 Introduction

3.2 Methods

Electrophysiology

We recorded electrophysiological data from X cells from Y different fish.
Surgery. Twenty-two E. virescens (10 to 21 cm) were used for single-unit record-

ings. Recordings of electroreceptors were made from the anterior part of the lateral
line nerve. Fish were initially anesthetized with 150 mg/l MS-222 (PharmaQ, Ford-
ingbridge, UK) until gill movements ceased and were then respirated with a con-
stant flow of water through a mouth tube, containing 120 mg/l MS-222 during the
surgery to sustain anesthesia. The lateral line nerve was exposed dorsal to the oper-
culum. Fish were fixed in the setup with a plastic rod glued to the exposed skull bone.
The wounds were locally anesthetized with Lidocainehydrochloride 2% (bela-pharm,
Vechta, Germany) before the nerve was exposed. Local anesthesia was renewed ev-
ery 2 h by careful application of Lidocaine to the skin surrounding the wound. After
surgery, fish were immobilized with 0.05 ml 5 mg/ml tubocurarine (Sigma-Aldrich,
Steinheim, Germany) injected into the trunk muscles. Since tubocurarine suppresses
all muscular activity, it also suppresses the activity of the electrocytes of the electric
organ and thus strongly reduces the EOD of the fish. We therefore mimicked the
EOD by a sinusoidal signal provided by a sine-wave generator (Hameg HMF 2525;
Hameg Instruments, Mainhausen, Germany) via silver electrodes in the mouth tube
and at the tail. The amplitude and frequency of the artificial field were adjusted to
the fish’s own field as measured before surgery. After surgery, fish were transferred
into the recording tank of the setup filled with water from the fish’s housing tank
not containing MS-222. Respiration was continued without anesthesia. The animals
were submerged into the water so that the exposed nerve was just above the water
surface. Electroreceptors located on the parts above water surface did not respond to
the stimulus and were excluded from analysis. Water temperature was kept at 26°C.2

Recording. Action potentials from electroreceptor afferents were recorded intracel-
lularly with sharp borosilicate microelectrodes (GB150F-8P; Science Products, Hofheim,
Germany), pulled to a resistance between 20 and 100 M and filled with a 1 M KCl so-
lution. Electrodes were positioned by microdrives (Luigs-Neumann, Ratingen, Ger-
many). As a reference, glass microelectrodes were used. They were placed in the
tissue surrounding the nerve, adjusted to the isopotential line of the recording elec-
trode. The potential between the micropipette and the reference electrode was ampli-
fied (SEC-05X; npi electronic) and lowpass filtered at 10 kHz. Signals were digitized
by a data acquisition board (PCI-6229; National Instruments) at a sampling rate of
20 kHz. Spikes were detected and identified online based on the peak-detection al-
gorithm proposed by Todd and Andrews (1999). The EOD of the fish was measured
between the head and tail via two carbon rod electrodes (11 cm long, 8-mm diam-

2From Stöckl et al. 2014
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eter). The potential at the skin of the fish was recorded by a pair of silver wires,
spaced 1 cm apart, which were placed orthogonal to the side of the fish at two-thirds
body length. The residual EOD potentials were recorded and monitored with a pair
of silver wire electrodes placed in a piece of tube that was put over the tip of the
tail. These EOD voltages were amplified by a factor of 1,000 and band-pass filtered
between 3 Hz and 1.5 kHz (DPA-2FXM; npi electronics). Stimuli were attenuated
(ATN-01M; npi electronics), isolated from ground (ISO-02V; npi electronics), and de-
livered by two carbon rod electrodes (30-cm length, 8-mm diameter) placed on either
side of the fish parallel to its longitudinal axis. Stimuli were calibrated to evoke de-
fined AM measured close to the fish. Spike and EOD detection, stimulus generation
and attenuation, as well as preanalysis of the data were performed online during the
experiment within the RELACS software version 0.9.7 using the efish plugin-set (by
J. Benda: http://www.relacs.net).3

Stimulation. White noise stimuli with a cutoff frequency of 300Hz defined an AM of
the fish’s signal. The stimulus was combined with the fish’s own EOD in a way that
the desired AM could be measured near the fish. Amplitude of the AM was 10% (?)
of the amplitude of the EOD. Stimulus duration was between 2s and 10s, with a time
resolution of X.

3.3 How to determine noisiness

Determining noise in real world

While in simulations we can control the noise parameter directly, we cannot do so in
electrophysiological experiments. Therefore, we need a way to quantify "noisiness".
One such way is by using the activation curve of the neuron, fitting a function and
extracting the parameters from this function. Stocks (2000) uses one such function to
simulate groups of noisy spiking neurons:

1

2
erfc

(
θ − x√

2σ2

)
(10)

where σ is the parameter quantifying the noise (figure ??). σ determines the steep-
ness of the curve. A neuron with a σ of 0 would be a perfect thresholding mechanism.
Firing probability for all inputs below the threshold is 0, and firing probability for all
inputs above is 1. Larger values mean a flatter activation curve. Neurons with such an
activation curve can sometimes fire even for signals below the firing threshold, while
it will sometimes not fire for inputs above the firing threshold. Its firing behaviour is
influenced less by the signal and more affected by noise. We also tried different other
methods of quantifying noise commonly used (citations), but none of them worked
as well as the errorfunction fit (fig. 20 and ??).

3From Stöckl et al. 2014
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Methodology

We calculate the cross correlation between the signal and the discrete output spikes.
The signal values were binned in 50 bins. The result is a discrete Gaussian distribu-
tion around 0mV, the mean of the signal, as is expected from the way the signal was
created. We have to account for the delay between the moment we play the signal and
when it gets processed in the cell, which can for example depend on the position of
the cell on the skin. We can easily reconstruct the delay from the measurements. The
position of the peak of the crosscorrelation is the time shift for which the signal influ-
ences the result of the output the most. [DH: This will be much clearer with a plot.]
Then for every spike we assign the value of the signal at the time of the spike minus
the time shift. The result is a histogram, where each signal value bin has a number
of spikes. This histogram is then normalized by the distribution of the signal. The
result is another histogram, whose values are firing frequencies for each signal value.
Because those frequencies are just firing probabilities multiplied by time, we can fit a
Gaussian error function to those probabilities.

Simulation

To confirm that the σ parameter estimated from the fit is indeed a good measure for
the noisiness, we validated it against D, the noise parameter from the simulations.
We find that there is a strictly monotonous relationship between the two for different
sets of simulation parameters. Other parameters often used to determine noisiness
(citations) such as the variance of the spike PSTH, the coefficient of variation (CV) of
the interspike interval are not as useful. In figure 20 we see why. The variance of the
psth is not always monotonous in D and is very flat for low values of D.

We tried several different bin sizes (30 to 300 bins) and spike widths. There was
little difference between the different parameters (see appendix).

Electric fish as a real world model system

To put the results from our simulations into a real world context, we chose the weakly
electric fish Apteronotus leptorhynchus as a model system. A. leptorhynchus uses an
electric organ to produce electric fields which it uses for orientation, prey detection
and communication. Distributed over the skin of A. leptorhynchus are electroreceptors
which produce action potentials in response to electric signals.

These receptor cells ("p-units") are analogous to the simulated neurons we used in
our simulations because they do not receive any input other than the signal they are
encoding. Individual cells fire independently of each other and there is no feedback.

Electrophysiology

We can see from figure ?? that the fits look very close to the data. Due to the gaussian
signal distribution there are fewer samples for very weak and very strong inputs. In
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Figure 15: a)The parameter σ as a function of the noise parameter D in LIF-
simulations. There is a strictly monotonous relationship between the two,
which allows us to use σ as a susbtitute for D in the analysis of electrophys-
iological experiments. b-d) different other parameters commonly used to
quantify noise. None of these functions is stricly monotonous and there-
fore none is useful as a substitute for D. b) Peri-stimulus time histogram
(PSTH) of the spikes with a bin width of 1ms, normalized by c) PSTH of
the spikes with a bin width of 5ms. d) coefficient of variation (cv) of the
interspike-intervals.
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Figure 16: a)The parameter σ as a function of the noise parameter D in LIF-
simulations. There is a strictly monotonous relationship between the two,
which allows us to use σ as a susbtitute for D in the analysis of electrophys-
iological experiments. b-e) Left to right: σ, CV and standard deviation of
the psth with two diffrent kernel widths as a function of D for different
membrane constants (4ms, 10ms and 16ms). The membrane constant τ
determines how quickly the voltage of a LIF-neuron changes, with lower
constants meaning faster changes. Only σ does not change its values with
different τ . The CV (c)) is not even monotonous in the case of a timecon-
stant of 4ms, ruling out any potential usefulness. f-i) Left to right: σ, CV
and standard deviation of the psth with two diffrent kernel widths as a
function of D for different refractory periods (0ms, 1ms and 5ms). Only σ
does not change with different refractory periods.
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Figure 17: Histogram of spike count distribution (firing rate) and errorfunction fits.
50 bins represent different values of the Gaussian distributed input signal
[maybe histogram in background again]. The value of each of those bins
is the number of spikes during the times the signal was in that bin. Each
of the values was normalized by the signal distribution. To account for
delay, we first calculated the cross-correlation of signal and spike train and
took its peak as the delay. The lines show fits according to equation (11).
Left and right plots show two different cells, one with a relatively narrow
distribution and one with a distribution that is more broad, as indicated
by the parameter σ. Different amounts of bins (30 and 100) showed no
difference in resulting parameters. [DH: Show a plot.] [DH: Show more
than two plots?]

these regions the firing rates become somewhat noisy. This is especially noticeable
for strong inputs, as there are more spikes there, and therefore large fluctuations.
Fluctuations are less visible for weak inputs where there is very little spiking anyway.

When we group neurons by their noise and plot coding fraction as a function of
population size for averages of the groups, we see results similar to what we see for
simulations. Noisier cells have a lower coding fraction for small populations. For
increasing population size, coding fraction increases for all groups, but the increase
is much larger for noisy cells. For large population sizes the noisy cells show a better
linear encoding of the signal than the more regular cells.

Electrophysiology

We find that the fitted plots match the experimental data very well (figure 21). For
very weak and very strong inputs, the firing rates themselves become noisy, because
the signal only assumes those values rarely. This is especially noticeable for strong
inputs, as there are more spikes there, and therefore large fluctuations, while there is
very little spiking anyway for weak inputs.

When we group neurons by their noise and plot coding fraction as a function of
population size for averages of the groups, we see results similar to what we see
for simulations (figure 22 a)): Noisier cells (larger σ, purple) have a lower coding
fraction for small populations. However, coding fraction mostly stops increasing with
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Figure 18: Firing rate as a function of signal strength. Examples from experimental
data.
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Figure 19: Left: Coding fraction as a function of population size for all recorded neu-
rons. Color are by σ from the fit of the function in equation 11, so that there
are roughly an equal number of neurons in each category. Red: σ = 0 to 0.5,
pink: 0.5 to 1.0, purple: 1.0 to 1.5, blue: 1.5 and above. Thick colored lines
are average of the neurons in each group. For a population size of 1, cod-
ing fraction descreases on average with increasing σ. As population sizes
increase, coding fraction for weak noise neurons quickly stops increasing.
Strong noise neurons show better coding performance for larger popua-
tion sizes (about 8 to 32 neurons). Right [missing]: Increase in coding as a
function of sigma. y-axis shows the difference in coding fraction between
N=1 and N=32,
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Figure 20: Histogram of spike count distribution (firing rate) and errorfunction fits.
50 bins represent different values of the Gaussian distributed input signal
[maybe histogram in background again]. The value of each of those bins
is the number of spikes during the times the signal was in that bin. Each
of the values was normalized by the signal distribution. For very weak
and very strong inputs, the firing rates themselves become noisy, because
the signal only assumes those values rarely. To account for delay, we first
calculated the cross-correlation of signal and spike train and took its peak
as the delay. The lines show fits according to equation (11). Left and right
plots show two different cells, one with a relatively narrow distribution
(left) and one with a distribution that is more broad (right), as indicated
by the parameter σ. An increase of σ is equivalent to an broader distribu-
tion. Cells with broader distributions are assumed to be noisier, as their
thresholding is less sharp than those with narrow distributions. Different
amounts of bins (30 and 100) showed no difference in resulting parameters.
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Figure 21: Left: Coding fraction as a function of population size for all recorded neu-
rons. Cells are grouped by σ from the fit of the function in equation 11.
Lines are averages over three cells each, with the shading showing the
standard deviation. For stronger noise, coding fraction is far smaller for
a single neuron. With increasing population size, coding fraction increases
much faster for the noisy cells than for the less noisy cells. Right: Examples
for the two cells with lowest, intermediate and highest σ. For a popula-
tion size of N=1, the cell with the largest σ (brown) has the lowest coding
fraction out of all the cells here. The coding fraction of that cell increases
hugely with population size. At a population of N=128, coding fraction is
second highest among the pictured cells.

population sizes once a population size of about 16 is reached. The increase is much
larger for noisy cells (orange). The averages of the coding fraction for the noisy cells
does not increase above the coding fraction of the less noisy cells for the population
sizes investigated here (N=128). In contrast to the more regular cells, coding fraction
is still improving for the noisy cells, so it is plausible that at a certain population size
the noisy cells can outperform the less noisy cells. Indeed, if results are not averaged
and single cells are considered, we find that for large population sizes the noisy cells
show a better linear encoding of the signal than the more regular cells (figure 22 b),
red).

Results

Figure 3.4 A,B and C show three examples for coherence from intracellular measure-
ments in A. leptorhynchusĖach cell was exposed to up to 128 repetitions of the same
signal. The response was then averaged over different numbers of trials to simulate
different population sizes of homogeneous cells. We can see that an increase in pop-
ulation size leads to higher coherence. Similar to what we saw in the simulations,
around the average firing rate of the cell (marked by the red vertical lines), coherence
decreases sharply. We then aggregated the results for 31 different cells (50 experi-
ments total, as some cells were presented with the stimulus more than once). Figure
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Figure 22: A,B,C: examples of coherence in the p-Units of A. leptorhynchus. Each plot
shows the coherence of the response of a single cell to a stimulus for differ-
ent numbers of trials. Like in the simulations, increased population sizes
lead to a higher coherence. D: Encoding of higher frequency intervals prof-
its more from an increase in population size than encoding of lower fre-
quency intervals. The ratio of the coding fraction for the largest number of
trials divided by the coding fraction for a single trial for each of six differ-
ent frequency intervals. Shown here are the data for all 50 experiments (31
different cells). The orange line signifies the median value for all cells. The
box extends over the 2nd and 3rd quartile.

?? D shows that the increase is largest inside the high frequency intervals. As we
could see in our simulations (figures 14 C and ?? C), the ratio of coding fraction in a
large population to the coding fraction in a single cell is larger for higher frequencies.

3.4 Discussion

We also confirmed that the results from the theory part of the paper play a role in
a real world example. Inside the brain of the weakly electric fish Apteronotus lep-
torhynchus pyramidal cells in different areas are responsible for encoding different
frequencies. In each of those areas, cells integrate over different numbers of the same
receptor cells. Artificial populations consisting of different trials of the same receptor
cell show what we have seen in our simulations: Larger populations help especially
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Figure 23: This is about frequency and how it determines deltacf . In other paper I
have used quotcf .
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with the encoding of high frequency signals. These results are in line with what is
known about the pyramidal cells of A. leptorhynchus: The cells which encode high fre-
quency signals best are the cells which integrate over the largest number of neurons.

4 Discussion: Combining experiment and simulation

5 Literature
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