Add plots to appendix for defending choice of bin numbers to calculate sigma
This commit is contained in:
parent
d821e818bf
commit
2a6d9ae388
23
main.tex
23
main.tex
@ -654,7 +654,7 @@ To confirm that the $\sigma$ parameter estimated from the fit is indeed a good m
|
||||
\label{noiseparameters2}
|
||||
\end{figure}
|
||||
|
||||
We tried several different bin sizes (30 to 300 bins) and spike widths. There was little difference between the different parameters (see appendix).
|
||||
We tried several different bin sizes (30 to 300 bins) and spike widths. There was little difference between the different parameters (see figure \ref{sigma_bins} in appendix).
|
||||
|
||||
\section*{Electric fish as a real world model system}
|
||||
|
||||
@ -755,9 +755,6 @@ and \ref{fig:popsizenarrow10} C), the ratio of coding fraction in a large popula
|
||||
to the coding fraction in a single cell is larger for higher frequencies.
|
||||
|
||||
%simulation plots are from 200hz/nice coherence curves.ipynb
|
||||
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
broad
|
||||
@ -768,6 +765,24 @@ to the coding fraction in a single cell is larger for higher frequencies.
|
||||
\includegraphics[width=0.48\linewidth]{img/fish/cf_curves/cfN_broad_3.pdf}
|
||||
\end{figure}
|
||||
|
||||
|
||||
%compare_params_300.py auf oilbird
|
||||
\begin{figure}
|
||||
\includegraphics[width=0.30\linewidth]{img/sigma/parameter_assessment/bins100v300.pdf}
|
||||
\includegraphics[width=0.30\linewidth]{img/sigma/parameter_assessment/bins50v300.pdf}
|
||||
\includegraphics[width=0.30\linewidth]{img/sigma/parameter_assessment/bins30v300.pdf}
|
||||
|
||||
\hspace{0.30\linewidth}
|
||||
\includegraphics[width=0.30\linewidth]{img/sigma/parameter_assessment/bins50v100.pdf}
|
||||
\includegraphics[width=0.30\linewidth]{img/sigma/parameter_assessment/bins30v100.pdf}
|
||||
|
||||
\hspace{0.60\linewidth}
|
||||
\includegraphics[width=0.30\linewidth]{img/sigma/parameter_assessment/bins30v50.pdf}
|
||||
\caption{Comparing different bin numbers for the calculation of $\sigma$. Values were in good agreement when we compare 50 bins and 100 bins. For 300 bins $\sigma$ was estimated smaller than for the other bin numbers, especially for $\sigma > 0.8$. For 30 bins a few estimates stuck close to $\sigma = 0$, when they didn't for the other bin numbers. We chose to proceed with 50 bins.}
|
||||
\label{sigma_bins}
|
||||
\end{figure}
|
||||
|
||||
|
||||
%box_script.py, quot_sigma() und quot_sigma_narrow()
|
||||
\begin{figure}
|
||||
\centering
|
||||
|
Loading…
Reference in New Issue
Block a user