movingcomb/analysis_graphs_new.py

78 lines
3.3 KiB
Python

# ---------------------------------------------------------------------------------------------------------------------
# Name: Firing Rate and Fourier Script (moving comb repro)
# Purpose: Takes nixio spike data from moving comb repro and plots firing rate and power spectrum density graph
# Usage: python3 analysis_graphs.py average
# Author: Carolin Sachgau, University of Tuebingen
# Created: 20/09/2018
# ---------------------------------------------------------------------------------------------------------------------
import matplotlib.pyplot as plt
from IPython import embed
import sys
from icr_analysis import *
from open_nixio_new import *
# Parameters
sampling_rate = 20000
sigma = 0.01 # for Gaussian
delay = 1.5 # delay in seconds after comb reaches one end, before commencing movement again
cell_name = sys.argv[1].split('/')[-2]
# Open Nixio File
intervals_dict = open_nixio_new(sys.argv[1])
# Kernel Density estimator: gaussian fit
t = np.arange(-sigma*4, sigma*4, 1/sampling_rate)
fxn = np.exp(-0.5*(t/sigma)**2) / np.sqrt(2*np.pi) / sigma # gaussian function
# for (rep, speed, direct, pos, comb) in intervals_dict:
# spike_train = intervals_dict[rep, speed, direct, pos, comb]
# avg_convolve_spikes = gaussian_convolve(spike_train, fxn, sampling_rate)
# p, freq, std_four, mn_four = fourier_psd(avg_convolve_spikes, sampling_rate)
#
# # Graphing
# fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1)
#
# # Firing Rate Graph
# firing_times = np.arange(0, len(avg_convolve_spikes))
# ax1.plot((firing_times / sampling_rate), avg_convolve_spikes)
# ax1.set_title('Firing Rate of trial ' + str((speed, direct)) + ' comb = ' + str(comb) + '\n')
# ax1.set_xlabel('Time (s)')
# ax1.set_ylabel('Firing rate (Hz)')
#
# # Fourier Graph
# ax2.semilogy(freq[freq < 200], p[freq < 200])
# ax2.axhline(y=(mn_four+std_four), xmin=0, xmax=1, linestyle='--', color='red')
# # ax2.axvline(x=max_four,linestyle='--', color='green')
#
# plt.savefig(('nonavg_' + '_' + str(rep) + '_' + str(cell_name) + '_' + str(speed) + '_' + str(pos)
# + '_' + str(comb) + '_' + str(direct) + '.png'))
# plt.close(fig)
for (rep, time, speed, direct, comb) in intervals_dict:
spike_train = intervals_dict[(rep, time, speed, direct, comb)]
avg_convolve_spikes = gaussian_convolve(spike_train, fxn, sampling_rate, time)
p, freq, std_four, mn_four = fourier_psd(avg_convolve_spikes, sampling_rate)
# Graphing
fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1)
# Firing Rate Graph
firing_times = np.arange(0, len(avg_convolve_spikes))
ax1.plot((firing_times / sampling_rate), avg_convolve_spikes)
ax1.set_title('Firing Rate of trial ' + str((speed, direct)) + ' comb = ' + str(comb) + '\n')
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Firing rate (Hz)')
# Fourier Graph
ax2.semilogy(freq[freq < 400], p[freq < 400])
ax2.axhline(y=(mn_four + std_four), xmin=0, xmax=1, linestyle='--', color='red')
plt.tight_layout()
plt.savefig((str(rep) + '_''avg_' + '_' + str(cell_name) + '_' + str(speed) + '_' + str(comb)
+ '_' + str(direct) + '.png'))
plt.close(fig)
# ---------------------------------------------------------------------------------------------------------------------