changed for multiple repros

This commit is contained in:
Carolin Sachgau 2018-11-20 17:27:35 +01:00
parent 3bcc6b72ad
commit ccd7623421
4 changed files with 95 additions and 43 deletions

View File

@ -10,7 +10,7 @@ import matplotlib.pyplot as plt
from IPython import embed
import sys
from icr_analysis import *
from open_nixio import *
from open_nixio_new import *
# Parameters
sampling_rate = 20000
@ -19,7 +19,7 @@ delay = 1.5 # delay in seconds after comb reaches one end, before commencing mo
cell_name = sys.argv[1].split('/')[-2]
# Open Nixio File
curr_comb, intervals_dict = open_nixio(sys.argv[1], sys.argv[2])
curr_comb, intervals_dict = open_nixio_new(sys.argv[1], sys.argv[2])
# Kernel Density estimator: gaussian fit
t = np.arange(-sigma*4, sigma*4, 1/sampling_rate)
@ -53,7 +53,7 @@ if sys.argv[2] == 'average':
plt.close(fig)
elif sys.argv[2] == 'nonaverage':
for (speed, direct, pos, comb) in intervals_dict:
for (repro, speed, direct, pos, comb) in intervals_dict:
spike_train = intervals_dict[speed, direct, pos, comb]
avg_convolve_spikes = gaussian_convolve(spike_train, fxn, sampling_rate)
p, freq, std_four, mn_four = fourier_psd(avg_convolve_spikes, sampling_rate)
@ -73,7 +73,7 @@ elif sys.argv[2] == 'nonaverage':
ax2.axhline(y=(mn_four+std_four), xmin=0, xmax=1, linestyle='--', color='red')
# ax2.axvline(x=max_four,linestyle='--', color='green')
plt.savefig(('nonavg_' + '_' + str(cell_name) + '_' + str(speed) + '_' + str(pos)
plt.savefig(('nonavg_' + str(repro) +'_' + str(cell_name) + '_' + str(speed) + '_' + str(pos)
+ '_' + str(comb) + '_' + str(direct) + '.png'))
plt.close(fig)

53
analysis_graphs_new.py Normal file
View File

@ -0,0 +1,53 @@
# ---------------------------------------------------------------------------------------------------------------------
# Name: Firing Rate and Fourier Script (moving comb repro)
# Purpose: Takes nixio spike data from moving comb repro and plots firing rate and power spectrum density graph
# Usage: python3 analysis_graphs.py average
# Author: Carolin Sachgau, University of Tuebingen
# Created: 20/09/2018
# ---------------------------------------------------------------------------------------------------------------------
import matplotlib.pyplot as plt
from IPython import embed
import sys
from icr_analysis import *
from open_nixio_new import *
# Parameters
sampling_rate = 20000
sigma = 0.01 # for Gaussian
delay = 1.5 # delay in seconds after comb reaches one end, before commencing movement again
cell_name = sys.argv[1].split('/')[-2]
# Open Nixio File
intervals_dict = open_nixio_new(sys.argv[1])
# Kernel Density estimator: gaussian fit
t = np.arange(-sigma*4, sigma*4, 1/sampling_rate)
fxn = np.exp(-0.5*(t/sigma)**2) / np.sqrt(2*np.pi) / sigma # gaussian function
for (repro, speed, direct, pos, comb) in intervals_dict:
spike_train = intervals_dict[speed, direct, pos, comb]
avg_convolve_spikes = gaussian_convolve(spike_train, fxn, sampling_rate)
p, freq, std_four, mn_four = fourier_psd(avg_convolve_spikes, sampling_rate)
# Graphing
fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1)
# Firing Rate Graph
firing_times = np.arange(0, len(avg_convolve_spikes))
ax1.plot((firing_times / sampling_rate), avg_convolve_spikes)
ax1.set_title('Firing Rate of trial ' + str((speed, pos)) + ' comb = ' + str(comb) + '\n')
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Firing rate (Hz)')
# Fourier Graph
ax2.semilogy(freq[freq < 200], p[freq < 200])
ax2.axhline(y=(mn_four+std_four), xmin=0, xmax=1, linestyle='--', color='red')
# ax2.axvline(x=max_four,linestyle='--', color='green')
plt.savefig(('nonavg_' + str(repro) +'_' + str(cell_name) + '_' + str(speed) + '_' + str(pos)
+ '_' + str(comb) + '_' + str(direct) + '.png'))
plt.close(fig)
# ---------------------------------------------------------------------------------------------------------------------

View File

@ -39,6 +39,5 @@ def open_nixio(nix_file, avg_opt):
# Spike data at baseline
# comb_baseline = spikes[(spikes < comb_pos[0])]
embed()
quit()
return curr_comb, intervals_dict

View File

@ -3,40 +3,40 @@ from IPython import embed
from collections import defaultdict
import numpy as np
nix_file = '/home/sachgau/Documents/combproject/comb_data/2018-11-16-ag/2018-11-16-ag.nix'
f = nix.File.open(nix_file, nix.FileMode.ReadOnly)
b = f.blocks[0] # first block
mt = b.multi_tags['moving object-1']
comb_pos = mt.positions[:]
comb_ext = np.array(mt.extents[:])
spikes = b.data_arrays["Spikes-1"][:]
feature_dict = {}
for feat in mt.features:
feature_dict.update({feat.data.name[16:]: mt.features[feat.data.name].data[:]})
tags = b.tags
intervals_dict = defaultdict(list)
for tag in tags:
if tag.name.startswith('Baseline'):
continue
curr_comb = tag.metadata["RePro-Info"]["settings"]["object"]
repro_pos, = tag.position
repro_ext, = tag.extent
idx_qry = np.logical_and(repro_pos < comb_pos, comb_pos < (repro_pos + repro_ext))
tag_idx = np.flatnonzero(idx_qry)
tag_pos = comb_pos[idx_qry]
for idx, position in zip(tag_idx, tag_pos):
if idx == (len(comb_pos)-1):
break
curr_speed = feature_dict['speed'][idx]
curr_pos = comb_pos[idx]
curr_dir = feature_dict['direction'][idx]
curr_spikes = spikes[(spikes < comb_pos[idx + 1]) & (spikes > comb_pos[idx])]
intervals_dict.update({(tag.name, curr_speed, curr_dir, curr_pos, curr_comb): curr_spikes})
embed()
quit()
def open_nixio_new(nix_file):
f = nix.File.open(nix_file, nix.FileMode.ReadOnly)
b = f.blocks[0] # first block
mt = b.multi_tags['moving object-1']
comb_pos = mt.positions[:]
comb_ext = np.array(mt.extents[:])
spikes = b.data_arrays["Spikes-1"][:]
feature_dict = {}
for feat in mt.features:
feature_dict.update({feat.data.name[16:]: mt.features[feat.data.name].data[:]})
tags = b.tags
intervals_dict = defaultdict(list)
for tag in tags:
if tag.name.startswith('Baseline'):
continue
curr_comb = tag.metadata["RePro-Info"]["settings"]["object"]
repro_pos, = tag.position
repro_ext, = tag.extent
idx_qry = np.logical_and(repro_pos < comb_pos, comb_pos < (repro_pos + repro_ext))
tag_idx = np.flatnonzero(idx_qry)
tag_pos = comb_pos[idx_qry]
for idx, position in zip(tag_idx, tag_pos):
if idx == (len(comb_pos)-1):
break
curr_speed = feature_dict['speed'][idx]
curr_pos = comb_pos[idx]
curr_dir = feature_dict['direction'][idx]
curr_spikes = spikes[(spikes < comb_pos[idx + 1]) & (spikes > comb_pos[idx])]
intervals_dict.update({(tag.name, curr_speed, curr_dir, curr_pos, curr_comb): curr_spikes})
return intervals_dict