MISE
This commit is contained in:
parent
942248c992
commit
c348729c9a
@ -4,7 +4,7 @@ from scipy.signal import convolve
|
||||
import matplotlib.mlab as mlab
|
||||
|
||||
|
||||
def avgNestedLists(nested_vals):
|
||||
def avg_nested_lists(nested_vals):
|
||||
"""
|
||||
Averages a 2-D array and returns a 1-D array of all of the columns
|
||||
averaged together, regardless of their dimensions.
|
||||
@ -22,39 +22,88 @@ def avgNestedLists(nested_vals):
|
||||
output.append(np.nanmean(temp))
|
||||
return output
|
||||
|
||||
def fourier_psd(avg_convolve_spikes, sampling_rate):
|
||||
|
||||
p, freq = mlab.psd(avg_convolve_spikes, NFFT=sampling_rate * 3, noverlap=sampling_rate * 1.5,
|
||||
Fs=sampling_rate,
|
||||
detrend=mlab.detrend_mean)
|
||||
std_four = np.std(freq[5:])
|
||||
mn_four = np.mean(freq)
|
||||
|
||||
return p, freq, std_four, mn_four
|
||||
|
||||
|
||||
def kernel_estimation_mise(all_spike_trains, sampling_rate):
|
||||
|
||||
for spike_train in all_spike_trains:
|
||||
|
||||
spike_train = spike_train[1]
|
||||
spike_train = spike_train - spike_train[0] # changing spike train to start at 0 (subtracting baseline)
|
||||
|
||||
# Boolean list in length of trial length, where 1 means spike happened, 0 means no spike
|
||||
trial_length = int((spike_train[-1] - spike_train[0]) * sampling_rate)
|
||||
trial_bool = np.zeros(trial_length + 1)
|
||||
spike_indx = (spike_train * sampling_rate).astype(np.int)
|
||||
trial_bool[spike_indx] = 1
|
||||
|
||||
bin_sizes = np.arange(2, len(trial_bool)/2, dtype=int)
|
||||
#
|
||||
cost_averages = []
|
||||
bin_sizes = np.arange(1, (len(trial_bool)/2), dtype=int)
|
||||
for bin in bin_sizes:
|
||||
|
||||
cost_per_bin = []
|
||||
start_win = 0
|
||||
stop_win = int(bin)
|
||||
|
||||
bin_slides = np.arange(bin)
|
||||
for slid in bin_slides:
|
||||
embed()
|
||||
quit()
|
||||
# #spike_count = np.sum(trial_bool[start_win:stop_win])
|
||||
# #spike_var = np.var(trial_bool[start_win:stop_win])
|
||||
#
|
||||
# start_win = start_win + bin
|
||||
# stop_win = stop_win + bin
|
||||
# cost = (2*mean_bin - var_bin)/(bin**2)
|
||||
# cost_per_bin.append(cost)
|
||||
# cost_averages.append(np.mean(cost_per_bin))
|
||||
|
||||
|
||||
#sigma = best_bin/sampling_rate/2
|
||||
|
||||
|
||||
|
||||
def gaussian_convolve(all_spike_trains, fxn, sampling_rate, time):
|
||||
"""
|
||||
Takes an array of spike trains of different sizes,
|
||||
convolves it with a gaussian, returns the average gaussian convolve spikes
|
||||
"""
|
||||
|
||||
all_convolve_spikes = []
|
||||
all_pos = []
|
||||
|
||||
for spike_train in all_spike_trains:
|
||||
time_cutoff = time * sampling_rate
|
||||
trial_length = int((spike_train[-1] - spike_train[0]) * sampling_rate)
|
||||
spike_train = spike_train[1]
|
||||
all_pos.append(spike_train[0])
|
||||
spike_train = spike_train - spike_train[0] # changing spike train to start at 0 (subtracting baseline)
|
||||
trial_time = np.arange(0, (trial_length + 1), 1)
|
||||
trial_bool = np.zeros(len(trial_time))
|
||||
#Boolean list in length of trial length, where 1 means spike happened, 0 means no spike
|
||||
|
||||
# Boolean list in length of trial length, where 1 means spike happened, 0 means no spike
|
||||
trial_length = int((spike_train[-1] - spike_train[0]) * sampling_rate)
|
||||
trial_bool = np.zeros(trial_length + 1)
|
||||
spike_indx = (spike_train * sampling_rate).astype(np.int)
|
||||
trial_bool[spike_indx] = 1
|
||||
|
||||
# trial_bool = trial_bool[30000:(len(trial_bool)-30000)]
|
||||
convolve_spikes = np.asarray([convolve(trial_bool, fxn, mode='valid')]) # convolve gaussian with boolean spike list
|
||||
all_convolve_spikes.append(convolve_spikes[0, :][:time_cutoff])
|
||||
#
|
||||
# cutoff = min([len(i) for i in all_convolve_spikes])
|
||||
# for ix, convolved in enumerate(all_convolve_spikes):
|
||||
# all_convolve_spikes[ix] = all_convolve_spikes[ix][:cutoff]
|
||||
#avg_convolve_spikes = avgNestedLists(all_convolve_spikes)
|
||||
avg_convolve_spikes = np.mean(all_convolve_spikes, 0)
|
||||
return avg_convolve_spikes
|
||||
# convolve gaussian with boolean spike list
|
||||
time_cutoff = int(time * sampling_rate) # time for which trial runs
|
||||
convolve_spikes = np.asarray(convolve(trial_bool, fxn, mode='valid'))
|
||||
all_convolve_spikes.append(convolve_spikes[0:time_cutoff])
|
||||
|
||||
# for trials which are shorter than the trial time
|
||||
cutoff = min([len(i) for i in all_convolve_spikes])
|
||||
for ix, convolved in enumerate(all_convolve_spikes):
|
||||
all_convolve_spikes[ix] = all_convolve_spikes[ix][:cutoff]
|
||||
|
||||
def fourier_psd(avg_convolve_spikes, sampling_rate):
|
||||
p, freq = mlab.psd(avg_convolve_spikes, NFFT=sampling_rate * 3, noverlap=sampling_rate * 1.5,
|
||||
Fs=sampling_rate,
|
||||
detrend=mlab.detrend_mean)
|
||||
std_four = np.std(freq[5:])
|
||||
mn_four = np.mean(freq)
|
||||
return p, freq, std_four, mn_four
|
||||
avg_convolve_spikes = np.mean(all_convolve_spikes, 0)
|
||||
|
||||
return avg_convolve_spikes
|
||||
|
Loading…
Reference in New Issue
Block a user