Initial Commit

This commit is contained in:
Carolin Sachgau 2018-10-10 11:15:54 +02:00
commit 01320b8458
4 changed files with 222 additions and 0 deletions

80
analysis_graphs.py Normal file
View File

@ -0,0 +1,80 @@
# ---------------------------------------------------------------------------------------------------------------------
# Name: Firing Rate and Fourier Script (moving comb repro)
# Purpose: Takes nixio spike data from moving comb repro and plots firing rate and power spectrum density graph
# Usage: python3 analysis_graphs.py average
# Author: Carolin Sachgau, University of Tuebingen
# Created: 20/09/2018
# ---------------------------------------------------------------------------------------------------------------------
import matplotlib.pyplot as plt
from IPython import embed
import sys
from icr_analysis import *
from open_nixio import *
# Parameters
sampling_rate = 20000
sigma = 0.01 # for Gaussian
delay = 1.5 # delay in seconds after comb reaches one end, before commencing movement again
cell_name = sys.argv[1].split('/')[-2]
# Open Nixio File
curr_comb, intervals_dict = open_nixio(sys.argv[1], sys.argv[2])
# Kernel Density estimator: gaussian fit
t = np.arange(-sigma*4, sigma*4, 1/sampling_rate)
fxn = np.exp(-0.5*(t/sigma)**2) / np.sqrt(2*np.pi) / sigma # gaussian function
if sys.argv[2] == 'average':
for (speed, direct, comb) in intervals_dict:
for trial in intervals_dict[(speed, direct, comb)]:
spike_train = trial[1]
pos = trial[0]
avg_convolve_spikes = gaussian_convolve(spike_train, fxn, sampling_rate)
p, freq, std_four, mn_four = fourier_psd(avg_convolve_spikes, sampling_rate)
# Graphing
fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1)
# Firing Rate Graph
firing_times = np.arange(0, len(avg_convolve_spikes))
ax1.plot((firing_times / sampling_rate), avg_convolve_spikes)
ax1.set_title('Firing Rate of trial ' + str((speed, direct)) + ' comb = ' + str(comb) + '\n')
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Firing rate (Hz)')
# Fourier Graph
ax2.semilogy(freq[freq < 400], p[freq < 400])
ax2.axhline(y=(mn_four+std_four), xmin=0, xmax=1, linestyle='--', color='red')
plt.tight_layout()
plt.savefig(('avg_' + '_' + str(cell_name) + '_' + str(speed) + '_' + str(comb)
+ '_' + str(direct) + '.png'))
plt.close(fig)
elif sys.argv[2] == 'nonaverage':
for (speed, direct, pos, comb) in intervals_dict:
spike_train = intervals_dict[speed, direct, pos, comb]
avg_convolve_spikes = gaussian_convolve(spike_train, fxn, sampling_rate)
p, freq, std_four, mn_four = fourier_psd(avg_convolve_spikes, sampling_rate)
# Graphing
fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1)
# Firing Rate Graph
firing_times = np.arange(0, len(avg_convolve_spikes))
ax1.plot((firing_times / sampling_rate), avg_convolve_spikes)
ax1.set_title('Firing Rate of trial ' + str((speed, pos)) + ' comb = ' + str(comb) + '\n')
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Firing rate (Hz)')
# Fourier Graph
ax2.semilogy(freq[freq < 200], p[freq < 200])
ax2.axhline(y=(mn_four+std_four), xmin=0, xmax=1, linestyle='--', color='red')
# ax2.axvline(x=max_four,linestyle='--', color='green')
plt.savefig(('nonavg_' + '_' + str(cell_name) + '_' + str(speed) + '_' + str(pos)
+ '_' + str(comb) + '_' + str(direct) + '.png'))
plt.close(fig)
# ---------------------------------------------------------------------------------------------------------------------

50
icr_analysis.py Normal file
View File

@ -0,0 +1,50 @@
import numpy as np
from IPython import embed
from scipy.signal import convolve
import matplotlib.mlab as mlab
def avgNestedLists(nested_vals):
"""
Averages a 2-D array and returns a 1-D array of all of the columns
averaged together, regardless of their dimensions.
"""
output = []
maximum = 0
for lst in nested_vals:
if len(lst) > maximum:
maximum = len(lst)
for index in range(maximum): # Go through each index of longest list
temp = []
for lst in nested_vals: # Go through each list
if index < len(lst): # If not an index error
temp.append(lst[index])
output.append(np.nanmean(temp))
return output
def gaussian_convolve(spike_train, fxn, sampling_rate):
all_convolve_spikes = []
trial_length = int((spike_train[-1] - spike_train[0]) * sampling_rate)
spike_train = spike_train - spike_train[0] # changing spike train to start at 0 (subtracting baseline)
trial_time = np.arange(0, (trial_length + 1), 1)
trial_bool = np.zeros(len(trial_time))
# Boolean list in length of trial length, where 1 means spike happened, 0 means no spike
spike_indx = (spike_train * sampling_rate).astype(np.int)
trial_bool[spike_indx] = 1
# trial_bool = trial_bool[30000:(len(trial_bool)-30000)]
convolve_spikes = np.asarray(
[convolve(trial_bool, fxn, mode='valid')]) # convolve gaussian with boolean spike list
all_convolve_spikes.append(convolve_spikes[0, :])
avg_convolve_spikes = avgNestedLists(all_convolve_spikes)
return avg_convolve_spikes
def fourier_psd(avg_convolve_spikes, sampling_rate):
p, freq = mlab.psd(avg_convolve_spikes, NFFT=sampling_rate * 3, noverlap=sampling_rate * 1.5,
Fs=sampling_rate,
detrend=mlab.detrend_mean)
std_four = np.std(freq[5:])
mn_four = np.mean(freq)
return p, freq, std_four, mn_four

44
open_nixio.py Normal file
View File

@ -0,0 +1,44 @@
import nixio as nix
from IPython import embed
from collections import defaultdict
def open_nixio(nix_file, avg_opt):
# Opening file using nixio
f = nix.File.open(nix_file, nix.FileMode.ReadOnly)
b = f.blocks[0] # first block
meta = b.metadata
mt = b.multi_tags['moving object-1']
tags = b.tags["MovingObjects_1"]
# Important parts of nixio file
curr_comb = tags.metadata["RePro-Info"]["settings"]["object"]
comb_pos = mt.positions[:] #
spikes = b.data_arrays["Spikes-1"][:] # spikes for all trials in one recording
# All feature tags: ['GlobalEField', 'GlobalEFieldAM', 'LocalEField', 'I', 'EOD Rate', 'EOD Amplitude',
# 'AmplifierMode', 'abs_time', 'delay', 'amplitude', 'speed', 'lateral position', 'direction']
feature_dict = {}
for feat in mt.features:
feature_dict.update({feat.data.name[16:]: mt.features[feat.data.name].data[:]})
# Spike data in intervals of comb position + speed
intervals_dict = defaultdict(list)
for idx, position in enumerate(comb_pos):
if idx == (len(comb_pos)-1):
break
curr_speed = feature_dict['speed'][idx]
curr_pos = comb_pos[idx]
curr_dir = feature_dict['direction'][idx]
curr_spikes = spikes[(spikes < comb_pos[idx + 1]) & (spikes > comb_pos[idx])]
if avg_opt == 'average':
intervals_dict[(curr_speed, curr_dir, curr_comb)].append((curr_pos, curr_spikes))
else:
intervals_dict.update({(curr_speed, curr_dir, curr_pos, curr_comb): curr_spikes})
# Spike data at baseline
# comb_baseline = spikes[(spikes < comb_pos[0])]
return curr_comb, intervals_dict

48
raster_plot.py Normal file
View File

@ -0,0 +1,48 @@
# ---------------------------------------------------------------------------------------------------------------------
# Name: Firing Rate and Fourier Script (moving comb repro)
# Purpose: Takes nixio spike data from moving comb repro and plots firing rate and power spectrum density graph
# Usage: python3 analysis_graphs.py average
# Author: Carolin Sachgau, University of Tuebingen
# Created: 20/09/2018
# ---------------------------------------------------------------------------------------------------------------------
from open_nixio import *
import numpy as np
import matplotlib.pyplot as plt
from IPython import embed
import sys
colorCodes = np.array([[0, 1, 1],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 1]])
sampling_rate = 20000
sigma = 0.01 # for Gaussian
delay = 1.5 # delay in seconds after comb reaches one end, before commencing movement again
cell_name = sys.argv[1].split('/')[-2]
curr_comb, intervals_dict = open_nixio(sys.argv[1], sys.argv[2])
spike_repeats = []
for (speed, direct, comb) in intervals_dict:
s_trials = intervals_dict[(speed, direct, comb)]
for trial in intervals_dict[(speed, direct, comb)]:
spike_train = trial[1]
spike_train = spike_train - spike_train[0] # changing spike train to start at 0 (subtracting baseline)
spike_repeats.append(spike_train)
fig, ax = plt.subplots()
plt.eventplot(spike_repeats, linelengths = 0.05, lineoffsets = 0.05)
ax.set_title('Raster Plot of ' + str((speed, direct)) + ' comb = ' + str(comb) + '\n')
ax.set_xlabel('Time (s)')
ax.set_ylabel('Trials')
plt.show()