forked from jgrewe/fishbook
98 lines
2.9 KiB
Python
98 lines
2.9 KiB
Python
print(__name__)
|
|
print(__package__)
|
|
__package__ = "fishbook"
|
|
from fishbook.fishbook import Dataset
|
|
#from .database.database import *
|
|
#from .fishbook import Cell, Dataset
|
|
|
|
#schema = dj.schema("fish_book", locals())
|
|
from IPython import embed
|
|
|
|
class BaselineData(object):
|
|
|
|
def __init__(self, dataset:Dataset):
|
|
self.__data = []
|
|
self.__dataset = dataset
|
|
self.__cell = dataset.cells[0]
|
|
self._get_data()
|
|
|
|
def _get_data(self):
|
|
if not self.__dataset:
|
|
self.__data = []
|
|
self.__data = []
|
|
|
|
repros = (Repros & self.__dataset & "repro_name like 'BaselineActivity%'")
|
|
for r in repros:
|
|
self.__data.append(self.__read_data(r))
|
|
|
|
def __read_data(self, r:Repros):
|
|
if self.__dataset["has_nix"]:
|
|
return self.__read_data_from_nix(r)
|
|
else:
|
|
return self.__read_data_from_directory(r)
|
|
|
|
@property
|
|
def dataset(self):
|
|
return self.__dataset
|
|
|
|
@property
|
|
def data(self, index:int=0):
|
|
return self.__data[0] if len(self.__data) >= index else None
|
|
|
|
@property
|
|
def size(self):
|
|
return len(self.__data)
|
|
|
|
def __str__(self):
|
|
str = "Baseline data of %s " % self.__dataset
|
|
|
|
def __read_data_from_nix(self, r)->np.ndarray:
|
|
data_source = os.path.join(self.__dataset["data_source"], self.__dataset["dataset_id"] + ".nix")
|
|
if not os.path.exists(data_source):
|
|
print("Data not found! Trying from folder")
|
|
return self.__read_data_from_directory(r)
|
|
f = nix.File.open(data_source, nix.FileMode.ReadOnly)
|
|
b = f.blocks[0]
|
|
t = b.tags[r["repro_id"]]
|
|
if not t:
|
|
print("Tag not found!")
|
|
data = t.retrieve_data("Spikes-1")[:]
|
|
f.close()
|
|
return data
|
|
|
|
def __read_data_from_directory(self, r)->np.ndarray:
|
|
data = []
|
|
data_source = os.path.join(self.__dataset["data_source"], "basespikes1.dat")
|
|
if os.path.exists(data_source):
|
|
found_run = False
|
|
with open(data_source, 'r') as f:
|
|
l = f.readline()
|
|
while l:
|
|
if "index" in l:
|
|
index = int(l.strip("#").strip().split(":")[-1])
|
|
found_run = index == r["run"]
|
|
if l.startswith("#Key") and found_run:
|
|
data = self.__do_read(f)
|
|
break
|
|
l = f.readline()
|
|
return data
|
|
|
|
def __do_read(self, f)->np.ndarray:
|
|
data = []
|
|
f.readline()
|
|
f.readline()
|
|
l = f.readline()
|
|
while l and "#" not in l and len(l.strip()) > 0:
|
|
data.append(float(l.strip()))
|
|
l = f.readline()
|
|
return np.asarray(data)
|
|
|
|
|
|
#if __name__ == "__main__":
|
|
print("Test")
|
|
embed()
|
|
exit()
|
|
|
|
dataset = Dataset(tuple=(Datasets & "dataset_id like '2018-11-09-aa-%'").fetch(limit=1, as_dict=True))
|
|
baseline = BaselineData(dataset)
|
|
embed() |