susceptibility1/data_overview_mod.py
2024-06-20 21:19:27 +02:00

325 lines
15 KiB
Python

from matplotlib import gridspec as gridspec, pyplot as plt
import numpy as np
from scipy import stats
from threefish.defaults import default_figsize
from threefish.load import save_visualization
from threefish.RAM.calc_bursts import setting_overview_score
from threefish.RAM.plot_colors import colors_overview
from threefish.RAM.plot_grid import get_grid_4
from threefish.RAM.plot_labels import basename_small, label_NLI_scorename2_small, label_pearson, label_stimname_small, \
make_log_ticks
from threefish.RAM.plot_subplots import plt_specific_cells, scatter_with_marginals_colorcoded
from threefish.RAM.reformat_population import load_overview_susept, update_cell_names_to_unify_invivo_nomenclature
from threefish.RAM.values import start_name
from threefish.reformat import exclude_nans_for_corr
try:
from plotstyle import plot_style, spines_params
except:
a = 5
def data_overview3():
plot_style()
default_figsize(column=2, length=6.2) #65.5
var_it = 'Response Modulation [Hz]'
var_it2 = ''
right = 0.85
ws = 0.75
grid0 = gridspec.GridSpec(3, 2, wspace=ws, bottom=0.06,
hspace=0.45, left=0.1, right=right, top=0.95)
##########################
# Auswahl: wir nehmen den mean um nicht Stimulus abhängigen Noise rauszumitteln
save_names = ['calc_RAM_overview-_simplified_noise_data12_nfft0.5sec_original__StimPreSaved4__direct_']
cell_types = [' P-unit',' Ampullary', ]#, ' P-unit',]#' P-unit',
cell_types_name = ['P-units','Ampullary cells',]
species = ' Apteronotus leptorhynchus'
burst_fraction = [1, 1] # ,1,1]
burst_corr_reset = 'burst_fraction_burst_corr_individual_stim'
redo = False
counter = 0
tags = []
frame_load_sp = load_overview_susept(save_names[0], redo=redo, redo_class=redo)
scores = ['max(diag5Hz)/med_diagonal_proj_fr','max(diag5Hz)/med_diagonal_proj_fr',
] # + '_diagonal_proj'
printing = False # print values for paper
max_xs = [[[],[],[]],[[],[],[]]]
for c, cell_type_here in enumerate(cell_types):# iteriert über die columns
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species)
frame_file = frame_file[frame_file.cv_stim <5]
colorbar_value = [var_it,var_it,var_it2]#,var_it2]#['Response Modulation [Hz]',]
colorbar_name = ['response_modulation','response_modulation','']#,'']#'response_modulation'
x_axis = ['cv_base', 'cv_stim', 'response_modulation'] # ,'fr_base']#
x_axis_names = ['CV$' + basename_small() +'$','CV$' + label_stimname_small() + '$', 'Response modulation [Hz]']#$'+basename()+'$,'Fr$'+basename()+'$',]
score = scores[c]
y_axis_values = [score,score,score]#,score]
y_axis_name = [label_NLI_scorename2_small(), label_NLI_scorename2_small(), label_NLI_scorename2_small()]#NLI_scorename()] # 'Fr/Med''Perc99/Med'
ax_j = []
axls = []
axss = []
max_x = max_xs[c]
log = ''#'logall'#''#'logy','logall'True#False
for v, colorbar_name in enumerate(colorbar_name):# iteriert über die rows
axx, axy, axs, axls, axss, ax_j = get_grid_4(ax_j, axls, axss, grid0[v,counter])
if log == 'logy':
ymin = 'no'
else:
ymin = 0
#frame.filter(like = 'fr')#wo_burstcorr
xmin = 0
xlimk = None
labelpad = 0.5#-1
cmap, _, y_axis = scatter_with_marginals_colorcoded(colorbar_value[v], axs, cell_type_here, x_axis[v],
frame_file, y_axis_values[v], axy, axx, ymin=ymin,
xmin=xmin, burst_fraction_reset=burst_corr_reset,
var_item=colorbar_name, labelpad=labelpad, max_x=max_x[v],
xlim=None, x_pos=1, burst_fraction=burst_fraction[c],
ha='right')
if printing:
print(cell_type_here + ' median '+y_axis_values[v]+''+str(np.nanmedian(frame_file[y_axis_values[v]])))
print(cell_type_here + ' max ' + x_axis[v] + '' + str(np.nanmax(frame_file[x_axis[v]])))
if v == 0:
colors = colors_overview()
axx.set_title(cell_types_name[c], color = colors[cell_type_here])
axx.show_spines('')
axy.show_spines('')
axs.set_ylabel(y_axis_name[v])
axs.set_xlabel(x_axis_names[v], labelpad = labelpad)
extra_lim = False
if extra_lim:
if (' P-unit' in cell_type_here) & ('cv' in x_axis[v]):
axs.set_xlim(xlimk)
axx.set_xlim(xlimk)
#embed()
#remove_yticks(axl)
if log == 'logy':
axy.set_yscale('log')
axs.set_yscale('log')
make_log_ticks([axs])
axy.minorticks_off()
elif log == 'logall':
axy.set_yscale('log')
axs.set_yscale('log')
make_log_ticks([axs])
axy.minorticks_off()
axx.set_xscale('log')
axs.set_xscale('log')
make_log_ticks([axs])
axx.minorticks_off()
axy.set_yticks_blank()
plt_specific_cells(axs, cell_type_here, x_axis[v], frame_file, y_axis_values[v], marker = ['o',"s"])
tags.append(axx)
counter += 1
if printing:
printing_values_data_overview(cell_types, frame_load_sp, scores, species, x_axis, y_axis)
show = False#True
fig = plt.gcf()
tags_final = np.concatenate([tags[0::3],tags[1::3],tags[2::3]])#,tags[2::3]
fig.tag(tags_final, xoffs=-4.2, yoffs=1.12)
save_visualization(pdf = True, show = show)
def printing_values_data_overview(cell_types, frame_load_sp, scores, species, x_axis, y_axis):
############################
# 1 Print scores
print('\n')
speciess = [' Apteronotus leptorhynchus', ' Eigenmannia virescens']
# for species in speciess:
for c, cell_type_here in enumerate(cell_types):
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
print(cell_type_here + str(len(frame_file.cell.unique())))
# embed()
cells_amp = ['2011-09-21-ab', '2010-06-21-am', '2012-05-15-ac', '2012-04-26-ae', '2012-05-07-ac',
'2010-06-21-ac']
cells_amp = update_cell_names_to_unify_invivo_nomenclature(cells_amp)
frame_amps = frame_file[frame_file.cell.isin(cells_amp)]
frame_amps.cell.unique()
#################################################################
# print the corrs
score = scores[c] # 'ser_base',
score_print = [score]
score_print = [scores[c], scores[c], scores[c], scores[c], scores[c],
'burst_fraction_burst_corr_individual_base']
corr_vars = ['cv_base', 'response_modulation', 'fr_base', 'ser_first_base',
'burst_fraction_burst_corr_individual_stim', 'cv_base']
# for score in score_print:
for c_nr, corr_var in enumerate(corr_vars): # ,'ser_sum_corr'
score = score_print[c_nr]
x = frame_file['fr_base']
y = frame_file['ser_first']
c = frame_file['cv_base']
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, corr_var, cv_name=corr_var,
score=score)
corr, p_value = stats.pearsonr(x_axis, y_axis)
pears_l = label_pearson(corr, p_value, y_axis, n=True)
print(start_name(cell_type_here, species) + ' ' + corr_var + ' to ' + str(score) + pears_l)
print('\n')
################################
# cv to fr correlation
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, 'fr_base', cv_name='fr_base',
score='cv_base')
corr, p_value = stats.pearsonr(x_axis, y_axis)
pears_l = label_pearson(corr, p_value, y_axis, n=True)
print(start_name(cell_type_here, species) + ' ' + 'fr_base' + ' to ' + 'cv_base' + pears_l)
################################
# cv to fr correlation
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species)
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file,
'burst_fraction_burst_corr_individual_base',
cv_name='burst_fraction_burst_corr_individual_base',
score='cv_base')
corr, p_value = stats.pearsonr(x_axis, y_axis)
pears_l = label_pearson(corr, p_value, y_axis, n=True)
print(start_name(cell_type_here,
species) + ' amprange: ' + 'burst_fraction_individual_base' + ' to ' + 'cv_base' + pears_l)
###############################
# fr to nonline but for both modulations
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, 'fr_base', cv_name='fr_base',
score=score)
corr, p_value = stats.pearsonr(x_axis, y_axis)
pears_l = label_pearson(corr, p_value, y_axis, n=True)
print(start_name(cell_type_here, species) + ' amprange: ' + ' ' + 'fr_base' + ' to score' + pears_l)
##################################
print('\n')
# embed()
# todo: hier noch die Werte für die Methodik printen
test = False
# embed()
if test:
plt.hist(frame_file['lim_individual'])
# print(frame_file['lim_individual'])
############################################
############################
# 2 Print names
# printe um welchen Zeitraum es sich handelt
frame_file = setting_overview_score(frame_load_sp, cell_type_here='', f_exclude=False, snippet=None, min_amp='min',
species='')
print('\n')
print('From ' + str(np.sort(frame_file.cell)[0]) + ' to ' + str(np.sort(frame_file.cell)[-1]) + ' nr ' + str(
len(frame_file.cell)))
# embed()
# embed()
#####################################################################
############################
# 3 Print , EODF
print('\n')
speciess = [' Apteronotus leptorhynchus', ' Eigenmannia virescens']
for species in speciess:
fish = []
for c, cell_type_here in enumerate(cell_types):
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
if len(frame_file) > 0:
# ja der fisch hatte halt eine ziemlich niedriege EODf
frame_here = frame_file[frame_file.cell != '2022-01-05-af-invivo-1']
print(start_name(cell_type_here,
species) + ' eodf_min ' + str(
int(np.round(np.nanmin(frame_here.eod_fr)))) + ' eodf_max ' + str(
int(np.round(np.nanmax(frame_here.eod_fr)))) + ' n ' + str(len(frame_here)))
my_list = np.unique(frame_here.cell)
new_list = [item[0:10] for item in my_list]
fish.extend(new_list)
print(species[0:7] + ' n_fish ' + str(len(np.unique(fish))))
#####################################################################
# Burst corr limits
print('\n')
for species in speciess:
fish = []
for c, cell_type_here in enumerate(cell_types):
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
lims = np.unique(frame_file['lim_individual'])
lims_name = ''
for lim in lims:
lims_name = lims_name + str(lim) + ': ' + str(np.sum(frame_file['lim_individual'] == lim)) + ','
print(start_name(cell_type_here, species) + ' ' + lims_name)
#####################################################################
############################
# 3 Print , EODF
# Amplituden
print('\n')
speciess = [' Apteronotus leptorhynchus', ' Eigenmannia virescens']
for species in speciess:
for c, cell_type_here in enumerate(cell_types):
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='', species=species)
if len(frame_file) > 0:
# embed()
print(start_name(cell_type_here, species) + ' amp_min ' + str(
np.nanmin(frame_file.amp)) + ' amp_max ' + str(
np.nanmax(frame_file[~np.isinf(frame_file.amp)].amp)))
############################
# CVs min max
for species in speciess:
for c, cell_type_here in enumerate(cell_types):
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='', species=species)
if len(frame_file) > 0:
print(start_name(cell_type_here, species) + ' CV_min ' + str(
np.round(np.nanmin(frame_file.cv_base), 2)) + ' CV max ' + str(
np.round(np.nanmax(frame_file.cv_base), 2)) + ' FR max ' + str(
np.round(np.nanmin(frame_file.fr_base))) + ' FR max ' + str(
np.round(np.nanmax(frame_file.fr_base))))
############################################
#######
# N
print('\n N')
speciess = [' Apteronotus leptorhynchus', ' Eigenmannia virescens']
for species in speciess:
for c, cell_type_here in enumerate(cell_types):
##################
# printe wie viele Zellen es am Anfang gab
frame_file = setting_overview_score(frame_load_sp, cell_type_here, f_exclude=False, snippet=None,
min_amp='min', species=species)
print(start_name(cell_type_here, species) + ' nr ' + str(len(frame_file)))
############################################
# printe um welchen Zeitraum es sich handelt
frame_file = setting_overview_score(frame_load_sp, cell_type_here='', f_exclude=False, snippet=None, min_amp='min',
species='')
print('\n sampling' + str(frame_file.sampling.unique()))
print('P-units Fr: 50-450 Hz CV: 0.15 - 1.35')
print('Ampullary Fr: 80-200 Hz, CV: 0.08 - 0.22')
if __name__ == '__main__':
data_overview3()