571 lines
25 KiB
Python
571 lines
25 KiB
Python
#sys.path.insert(0, '..')
|
|
#from plt_RAM import plt_RAM_overview_nice
|
|
#from utils_susept import
|
|
from IPython import embed
|
|
from matplotlib import gridspec as gridspec, pyplot as plt
|
|
import numpy as np
|
|
from utils_all_down import default_settings
|
|
from utils_suseptibility import colors_overview
|
|
from utils_suseptibility import default_figsize, NLI_scorename2_small,pearson_label, exclude_nans_for_corr, kernel_scatter, \
|
|
scatter_with_marginals_colorcoded, \
|
|
version_final, basename_small, stimname_small
|
|
from utils_all import update_cell_names, load_overview_susept, make_log_ticks, p_units_to_show, save_visualization, setting_overview_score
|
|
from scipy import stats
|
|
try:
|
|
from plotstyle import plot_style, spines_params
|
|
except:
|
|
a = 5
|
|
|
|
|
|
def data_overview3():
|
|
# calcdf_RAM_overview()
|
|
|
|
save_name = 'calc_RAM_overview-noise_data8_nfft1sec_original__LocalEOD_CutatBeginning_0.05_s_NeurDelay_0.005_s_burst_corr'
|
|
save_name = 'calc_RAM_overview-noise_data8_nfft1sec_original__LocalEOD_CutatBeginning_0.05_s_NeurDelay_0.005_s'
|
|
save_name = 'calc_RAM_overview-noise_data9_nfft1sec_original__StimPreSaved4__CutatBeginning_0.05_s_NeurDelay_0.005_s'
|
|
save_name = 'calc_RAM_overview-noise_data9_nfft1sec_original__StimPreSaved4__mean5__CutatBeginning_0.05_s_NeurDelay_0.005_s'
|
|
|
|
col = 4
|
|
row = 2 # sharex=True,
|
|
|
|
plot_style()
|
|
default_figsize(column=2, length=6.2) #65.5
|
|
#fig, ax = plt.subplots(4, 2) # , figsize=(14, 7.5) constrained_layout=True,
|
|
var_it = 'Response Modulation [Hz]'
|
|
var_it2 = ''
|
|
if var_it == '':
|
|
ws = 0.35
|
|
|
|
else:
|
|
ws = 0.65
|
|
if var_it2 != '':
|
|
right = 0.9
|
|
else:
|
|
right = 0.98
|
|
right = 0.85
|
|
ws = 0.75
|
|
print(right)
|
|
grid0 = gridspec.GridSpec(3, 2, wspace=ws, bottom=0.07,
|
|
hspace=0.45, left=0.1, right=right, top=0.95)
|
|
|
|
###################################
|
|
###############################
|
|
# Das ist der Finale Score
|
|
scoreall = 'perc99/med_diagonal_proj'
|
|
scoreall = 'max(diag5Hz)/med_diagonal_proj_fr'#'max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr'#'perc99/med_diagonal_proj'
|
|
#'max(diag5Hz)/med_diagonal_proj_fr','max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr',
|
|
###################################
|
|
#scores = [scoreall+'_diagonal_proj']
|
|
|
|
##########################
|
|
# Auswahl: wir nehmen den mean um nicht Stimulus abhängigen Noise rauszumitteln
|
|
|
|
#save_names = []
|
|
save_names = ['calc_RAM_overview-_simplified_'+version_final()]#'calc_RAM_overview-_simplified_noise_data9_nfft1sec_original__StimPreSaved4__mean5__CutatBeginning_0.05_s_NeurDelay_0.005_s__burstIndividual_','calc_RAM_overview-noise_data9_nfft1sec_original__StimPreSaved4__mean5__CutatBeginning_0.05_s_NeurDelay_0.005_s__burstIndividual_',
|
|
save_names = ['calc_RAM_overview-_simplified_noise_data12_nfft0.5sec_original__StimPreSaved4__abs__direct_']
|
|
save_names = ['calc_RAM_overview-_simplified_noise_data12_nfft0.5sec_original__StimPreSaved4__direct_']
|
|
|
|
#save_names = ['calc_RAM_overview-_simplified_noise_data12_nfft0.5sec_original__StimPreSaved4__abs_']
|
|
|
|
#####################################################
|
|
#grid_lower_lower = gridspec.GridSpecFromSubplotSpec(1, 2, grid0[1], wspace = 0.5, hspace=0.55)#, height_ratios = [1,3]
|
|
cell_types = [' P-unit',' Ampullary', ]#, ' P-unit',]#' P-unit',
|
|
cell_types_name = ['P-units','Ampullary cells',]
|
|
species = ' Apteronotus leptorhynchus'
|
|
burst_corr_reset = 'response_modulation'
|
|
burst_fraction = [1000, 1000]# 50, # ,1,1]
|
|
burst_fraction = [1, 1] # ,1,1]
|
|
burst_corr_reset = 'burst_fraction_burst_corr_individual_stim'
|
|
redo = False
|
|
#embed()
|
|
counter = 0
|
|
tags = []
|
|
frame_load_sp = load_overview_susept(save_names[0], redo=redo, redo_class=redo)
|
|
scores = ['max(diag5Hz)/med_diagonal_proj_fr','max(diag5Hz)/med_diagonal_proj_fr',
|
|
'max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr'] # + '_diagonal_proj'
|
|
scores = ['max(diag5Hz)/med_diagonal_proj_fr','max(diag5Hz)/med_diagonal_proj_fr',
|
|
] # + '_diagonal_proj'
|
|
|
|
max_xs = [[[],[],[]],[[],[],[]]]
|
|
for c, cell_type_here in enumerate(cell_types):
|
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species)
|
|
#embed()
|
|
test = False
|
|
# ok das schließe ich aus weil da irgendwas in der Detektion ist, das betrifft jetzt genau 3 Zellen, also nicht so schlimm
|
|
#63 2018-08-14-af-invivo-1
|
|
#241 2018-09-05-aj-invivo-1
|
|
#252 2022-01-08-ah-invivo-1
|
|
frame_file = frame_file[frame_file.cv_stim <5]
|
|
if test:
|
|
frame_file[frame_file.cv_base > 3].cell
|
|
frame_file[frame_file.cv_stim > 3].cv_stim
|
|
|
|
#
|
|
frame_file.groupby('cell').count()
|
|
frame_file.groupby('cell').groups.keys()
|
|
frame_file.group_by('cell')
|
|
len(frame_file.cell.unique())
|
|
|
|
##############################################
|
|
# modulatoin comparison for both cell_types
|
|
################################
|
|
# Modulation, cell type comparison
|
|
# todo: hier die diff werte über die zellen
|
|
|
|
#ax_here = []
|
|
#axd = plt.subplot(grid_lower_lower[0, c])
|
|
|
|
#kernel_histogram(axk, colors[str(cell_type_here)], np.array(x_axis), norm=True, step=0.03, alpha=0.5)
|
|
#embed()
|
|
|
|
#axk.show_spines('lb')
|
|
|
|
#axs = plt.subplot(grid0[6+c])
|
|
colorbar = False
|
|
#if colorbar:
|
|
|
|
x_axis = ['cv_base','cv_stim','response_modulation']#,'fr_base']#
|
|
var_item_names = [var_it,var_it,var_it2]#,var_it2]#['Response Modulation [Hz]',]
|
|
var_types = ['response_modulation','response_modulation','']#,'']#'response_modulation'
|
|
max_x = max_xs[c]
|
|
x_axis_names = ['CV$'+basename_small()+'$','CV$'+stimname_small()+'$','Response Modulation [Hz]']#$'+basename()+'$,'Fr$'+basename()+'$',]
|
|
#score = scores[0]
|
|
score_n = ['Perc99/Med', 'Perc99/Med', 'Perc99/Med']
|
|
score = scores[c]
|
|
scores_here = [score,score,score]#,score]
|
|
score_name = ['max(diag5Hz)/med_diagonal_proj_fr','max(diag5Hz)/med_diagonal_proj_fr']#,'max(diag5Hz)/med_diagonal_proj_fr']#'Perc99/Med'
|
|
score_name = ['Fr/Med', 'Fr/Med']#'Fr/Med'] # 'Perc99/Med'
|
|
score_name = [NLI_scorename2_small(), NLI_scorename2_small(), NLI_scorename2_small()]#NLI_scorename()] # 'Fr/Med''Perc99/Med'
|
|
ax_j = []
|
|
axls = []
|
|
axss = []
|
|
#embed()
|
|
#frame_max = frame_file[frame_file[score]>5]
|
|
cv_name = "cv_base"
|
|
max_val = 1.5
|
|
log = ''#'logall'#''#'logy','logall'True#False
|
|
|
|
|
|
marker = ['o']
|
|
for v, var_type in enumerate(var_types):
|
|
# ax = plt.subplot(grid0[1+v])#grid_lower[0, v]
|
|
|
|
axx, axy, axs, axls, axss, ax_j = get_grid_4(ax_j, axls, axss, grid0[v,counter])
|
|
|
|
|
|
if log == 'logy':
|
|
ymin = 'no'
|
|
else:
|
|
ymin = 0
|
|
xmin = 0
|
|
|
|
if (' P-unit' in cell_type_here) & ('cv' in x_axis[v]):
|
|
xlimk = [0, 2]
|
|
else:
|
|
xlimk = None
|
|
xlimk = None
|
|
|
|
labelpad = 0.5#-1
|
|
cmap, _, y_axis = scatter_with_marginals_colorcoded(var_item_names[v], axs, cell_type_here, x_axis[v],
|
|
frame_file, scores_here[v], axy, axx, ymin=ymin,
|
|
xmin=xmin, burst_fraction_reset=burst_corr_reset,
|
|
var_item=var_type, labelpad=labelpad, max_x=max_x[v],
|
|
xlim=xlimk, x_pos=1, burst_fraction=burst_fraction[c],
|
|
ha='right')
|
|
|
|
print(cell_type_here + ' median '+scores_here[v]+''+str(np.nanmedian(frame_file[scores_here[v]])))
|
|
print(cell_type_here + ' max ' + x_axis[v] + '' + str(np.nanmax(frame_file[x_axis[v]])))
|
|
|
|
if v == 0:
|
|
colors = colors_overview()
|
|
axx.set_title(cell_types_name[c], color = colors[cell_type_here])
|
|
|
|
axx.show_spines('')
|
|
axy.show_spines('')
|
|
axs.set_ylabel(score_name[v])
|
|
axs.set_xlabel(x_axis_names[v], labelpad = labelpad)
|
|
extra_lim = False
|
|
if extra_lim:
|
|
if (' P-unit' in cell_type_here) & ('cv' in x_axis[v]):
|
|
axs.set_xlim(xlimk)
|
|
axx.set_xlim(xlimk)
|
|
#embed()
|
|
#remove_yticks(axl)
|
|
|
|
if log == 'logy':
|
|
axy.set_yscale('log')
|
|
axs.set_yscale('log')
|
|
make_log_ticks([axs])
|
|
axy.minorticks_off()
|
|
elif log == 'logall':
|
|
axy.set_yscale('log')
|
|
axs.set_yscale('log')
|
|
make_log_ticks([axs])
|
|
axy.minorticks_off()
|
|
|
|
axx.set_xscale('log')
|
|
axs.set_xscale('log')
|
|
make_log_ticks([axs])
|
|
axx.minorticks_off()
|
|
axy.set_yticks_blank()
|
|
|
|
plt_specific_cells(axs, cell_type_here, x_axis[v], frame_file, scores_here[v], marker = ['o',"s"])
|
|
tags.append(axx)
|
|
counter += 1
|
|
#plt.show()
|
|
############################
|
|
# 1 Print scores
|
|
print('\n')
|
|
speciess = [' Apteronotus leptorhynchus', ' Eigenmannia virescens']
|
|
#for species in speciess:
|
|
for c, cell_type_here in enumerate(cell_types):
|
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
|
|
print(cell_type_here + str(len(frame_file.cell.unique())))
|
|
#embed()
|
|
cells_amp = ['2011-09-21-ab', '2010-06-21-am', '2012-05-15-ac', '2012-04-26-ae', '2012-05-07-ac',
|
|
'2010-06-21-ac']
|
|
cells_amp = update_cell_names(cells_amp)
|
|
frame_amps = frame_file[frame_file.cell.isin(cells_amp)]
|
|
frame_amps.cell.unique()
|
|
#['2012-05-07-ac-invivo-1', '2012-04-26-ae','2012-05-15-ac-invivo-1', '2010-06-21-ac-invivo-1','2010-06-21-am-invivo-1', '2011-09-21-ab-invivo-1']
|
|
#embed()
|
|
#if len(frame_amps)
|
|
#################################################################
|
|
# print the corrs
|
|
score = scores[c]#'ser_base',
|
|
score_print = [score]
|
|
score_print = [scores[c],scores[c],scores[c],scores[c],scores[c],'burst_fraction_burst_corr_individual_base']
|
|
corr_vars = ['cv_base','response_modulation','fr_base','ser_first_base','burst_fraction_burst_corr_individual_stim','cv_base']
|
|
#for score in score_print:
|
|
for c_nr, corr_var in enumerate(corr_vars):#,'ser_sum_corr'
|
|
score = score_print[c_nr]
|
|
x = frame_file['fr_base']
|
|
y = frame_file['ser_first']
|
|
c = frame_file['cv_base']
|
|
try:
|
|
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, corr_var, cv_name=corr_var , score=score)
|
|
except:
|
|
print('frame file lost')
|
|
embed()
|
|
corr, p_value = stats.pearsonr(x_axis, y_axis)
|
|
pears_l = pearson_label(corr, p_value, y_axis, n=True)
|
|
print(start_name(cell_type_here, species) + ' ' + corr_var + ' to '+str(score) + pears_l)
|
|
#if corr_var == 'ser_first_base':#
|
|
# embed()
|
|
print('\n')
|
|
################################
|
|
# cv to fr correlation
|
|
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, 'fr_base', cv_name='fr_base',
|
|
score='cv_base')
|
|
corr, p_value = stats.pearsonr(x_axis, y_axis)
|
|
pears_l = pearson_label(corr, p_value, y_axis, n=True)
|
|
print(start_name(cell_type_here, species) + ' ' + 'fr_base' + ' to ' + 'cv_base' + pears_l)
|
|
|
|
|
|
################################
|
|
# cv to fr correlation
|
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species)
|
|
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, 'burst_fraction_burst_corr_individual_base', cv_name='burst_fraction_burst_corr_individual_base',
|
|
score='cv_base')
|
|
corr, p_value = stats.pearsonr(x_axis, y_axis)
|
|
pears_l = pearson_label(corr, p_value, y_axis, n=True)
|
|
print(start_name(cell_type_here, species) + ' amprange: ' + 'burst_fraction_individual_base' + ' to ' + 'cv_base' + pears_l)
|
|
###############################
|
|
# fr to nonline but for both modulations
|
|
|
|
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, 'fr_base', cv_name='fr_base',
|
|
score=score)
|
|
corr, p_value = stats.pearsonr(x_axis, y_axis)
|
|
pears_l = pearson_label(corr, p_value, y_axis, n=True)
|
|
print(start_name(cell_type_here, species) + ' amprange: ' + ' ' + 'fr_base' + ' to score' + pears_l)
|
|
##################################
|
|
print('\n')
|
|
#embed()
|
|
#todo: hier noch die Werte für die Methodik printen
|
|
test = False
|
|
#embed()
|
|
|
|
if test:
|
|
plt.hist(frame_file['lim_individual'])
|
|
#print(frame_file['lim_individual'])
|
|
|
|
############################################
|
|
############################
|
|
# 2 Print names
|
|
# printe um welchen Zeitraum es sich handelt
|
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here = '', f_exclude=False, snippet=None, min_amp='min',
|
|
species='')
|
|
|
|
print('\n')
|
|
print('From ' +str(np.sort(frame_file.cell)[0])+' to '+str(np.sort(frame_file.cell)[-1])+' nr '+str(len(frame_file.cell)))
|
|
#embed()
|
|
|
|
|
|
#embed()
|
|
|
|
#####################################################################
|
|
############################
|
|
# 3 Print , EODF
|
|
print('\n')
|
|
speciess = [' Apteronotus leptorhynchus', ' Eigenmannia virescens']
|
|
for species in speciess:
|
|
fish = []
|
|
for c, cell_type_here in enumerate(cell_types):
|
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
|
|
|
|
if len(frame_file)> 0:
|
|
# ja der fisch hatte halt eine ziemlich niedriege EODf
|
|
frame_here = frame_file[frame_file.cell != '2022-01-05-af-invivo-1']
|
|
try:
|
|
print(start_name(cell_type_here,
|
|
species) + ' eodf_min ' + str(int(np.round(np.nanmin(frame_here.eod_fr)))) + ' eodf_max ' + str(int(np.round(np.nanmax(frame_here.eod_fr))))+' n '+str(len(frame_here)))
|
|
except:
|
|
print('eodf thing')
|
|
embed()
|
|
my_list = np.unique(frame_here.cell)
|
|
new_list = [item[0:10] for item in my_list]
|
|
fish.extend(new_list)
|
|
|
|
|
|
print(species[0:7]+' n_fish '+str(len(np.unique(fish))))
|
|
|
|
#####################################################################
|
|
# Burst corr limits
|
|
print('\n')
|
|
for species in speciess:
|
|
fish = []
|
|
for c, cell_type_here in enumerate(cell_types):
|
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
|
|
|
|
lims = np.unique(frame_file['lim_individual'])
|
|
lims_name = ''
|
|
for lim in lims:
|
|
lims_name = lims_name + str(lim) + ': ' + str(np.sum(frame_file['lim_individual'] == lim)) + ','
|
|
print(start_name(cell_type_here, species) + ' ' + lims_name)
|
|
|
|
#####################################################################
|
|
############################
|
|
# 3 Print , EODF
|
|
# Amplituden
|
|
print('\n')
|
|
speciess = [' Apteronotus leptorhynchus', ' Eigenmannia virescens']
|
|
for species in speciess:
|
|
for c, cell_type_here in enumerate(cell_types):
|
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here,min_amp = '',species=species)
|
|
|
|
if len(frame_file)> 0:
|
|
#embed()
|
|
print(start_name(cell_type_here, species) + ' amp_min ' + str(
|
|
np.nanmin(frame_file.amp)) + ' amp_max ' + str(np.nanmax(frame_file[~np.isinf(frame_file.amp)].amp)))
|
|
test = False
|
|
#embed()
|
|
if test:
|
|
frame_file[['cv_stim','cv_base']]
|
|
frame_file['cv_stim']
|
|
embed()
|
|
############################
|
|
# CVs min max
|
|
for species in speciess:
|
|
for c, cell_type_here in enumerate(cell_types):
|
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='', species=species)
|
|
|
|
if len(frame_file) > 0:
|
|
try:
|
|
print(start_name(cell_type_here, species) + ' CV_min ' + str(np.round(np.nanmin(frame_file.cv_base), 2)) + ' CV max ' + str(np.round(np.nanmax(frame_file.cv_base), 2)) + ' FR max ' + str(np.round(np.nanmin(frame_file.fr_base))) + ' FR max ' + str(np.round(np.nanmax(frame_file.fr_base))))
|
|
except:
|
|
print('min here')
|
|
embed()
|
|
|
|
############################################
|
|
#######
|
|
# N
|
|
print('\n N')
|
|
speciess = [' Apteronotus leptorhynchus', ' Eigenmannia virescens']
|
|
for species in speciess:
|
|
for c, cell_type_here in enumerate(cell_types):
|
|
##################
|
|
# printe wie viele Zellen es am Anfang gab
|
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here, f_exclude = False, snippet = None, min_amp='min', species=species)
|
|
print(start_name(cell_type_here, species) + ' nr ' + str(len(frame_file)))
|
|
#embed()
|
|
#if c in [0,2]:
|
|
|
|
|
|
#cmap, _, y_axis = plt_modulation_overview(axs, c, cell_type_here,
|
|
# cv_name, frame_file, max_val, score,
|
|
# species)
|
|
#axs.set_ylabel(score)
|
|
#embed()#frame_file[(frame_file.cv_base < 0.65) & (frame_file.response_modulation > 200)].response_modulation
|
|
#axs.set_xlabel(cv_name)
|
|
|
|
#axs.get_shared_x_axes().join(*[axs, axd])
|
|
|
|
|
|
# elif species == ' Apteronotus albifrons':
|
|
# plt_albi(ax[4, 1], cell_type_here, colors, max_val, species, x_axis, y_axis)
|
|
|
|
#ax[1,cv_n].set_xlim(0, max_val)
|
|
#set_same_ylim(np.concatenate(ax[1::, :]))
|
|
#set_same_ylim(np.concatenate(ax[1::, :]),ylim_type ='xlim')
|
|
#set_same_ylim(ax[0, :], ylim_type='xlim')
|
|
|
|
#set_ylim_same()
|
|
#ax[1, 1].get_shared_y_axes().join(*ax[1, 1::])
|
|
|
|
#counter += 1
|
|
#embed()
|
|
|
|
############################################
|
|
# printe um welchen Zeitraum es sich handelt
|
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here = '', f_exclude=False, snippet=None, min_amp='min',
|
|
species='')
|
|
print('\n sampling'+str(frame_file.sampling.unique()))
|
|
|
|
print('P-units Fr: 50-450 Hz CV: 0.15 - 1.35')
|
|
print('Ampullary Fr: 80-200 Hz, CV: 0.08 - 0.22')
|
|
#plt.show()
|
|
show = False#True
|
|
fig = plt.gcf()
|
|
#embed()
|
|
tags_final = np.concatenate([tags[0::3],tags[1::3],tags[2::3]])#,tags[2::3]
|
|
fig.tag(tags_final, xoffs=-4.2, yoffs=1.12)
|
|
save_visualization(pdf = True, show = show)
|
|
|
|
|
|
def start_name(cell_type_here, species):
|
|
return species[0:7] + ' ' + cell_type_here[0:7]
|
|
|
|
|
|
def plt_specific_cells(axs, cell_type_here, cv_name, frame_file, score, marker = []):
|
|
######################################################
|
|
# hier kommen die kontrast Punkte dazu
|
|
# für die Zellen spielt Burst correctin ja keine Rolle
|
|
# if cv_n == 0:
|
|
if cell_type_here == ' P-unit':
|
|
cells_plot2 = p_units_to_show(type_here='contrasts')[0:2]
|
|
else:
|
|
cells_plot2 = [p_units_to_show(type_here='amp')[0]]
|
|
# for cell_plt in cells_plot2:
|
|
cells_extra = frame_file[frame_file['cell'].isin(cells_plot2)].index
|
|
# ax = plt.subplot(grid[1, cv_n])
|
|
# todo: hier nur noch die kleinste und größte Amplitude nehmen
|
|
|
|
if not marker:
|
|
axs.scatter(frame_file[cv_name].loc[cells_extra], frame_file[score].loc[cells_extra],
|
|
s=9, facecolor="None", edgecolor='black', alpha=0.7, clip_on=False) # colors[str(cell_type_here)]
|
|
else:
|
|
#embed()
|
|
axs.scatter(frame_file[cv_name].loc[cells_extra][0:2], frame_file[score].loc[cells_extra][0:2],
|
|
s=9, facecolor="None", marker = marker[1], edgecolor='black', alpha=0.7, clip_on=False) # colors[str(cell_type_here)]
|
|
axs.scatter(frame_file[cv_name].loc[cells_extra][2:4], frame_file[score].loc[cells_extra][2:4],
|
|
s=9, facecolor="None", marker = marker[0], edgecolor='black', alpha=0.7, clip_on=False) # colors[str(cell_type_here)]
|
|
|
|
|
|
def plt_var_axis(ax_j, axls, axss,score_name, burst_fraction, cell_type_here, counter, cv_name, frame_file, grid0, max_val, score,
|
|
scores_here, var_item_names, var_types, x_axis, x_axis_names, log = False):
|
|
for v, var_type in enumerate(var_types):
|
|
# ax = plt.subplot(grid0[1+v])#grid_lower[0, v]
|
|
|
|
axk, axl, axs, axls, axss, ax_j = get_grid_4(ax_j, axls, axss, grid0[counter])
|
|
counter += 1
|
|
cmap, _, y_axis = scatter_with_marginals_colorcoded(var_item_names[v], axs, cell_type_here, x_axis[v],
|
|
frame_file, scores_here[v], axl, axk, var_item=var_type,
|
|
burst_fraction=burst_fraction[v])
|
|
axs.set_ylabel(score_name[v])
|
|
axs.set_xlabel(x_axis_names[v])
|
|
if v in [0, 1]:
|
|
if log:
|
|
axl.set_yscale('log')
|
|
axs.set_yscale('log')
|
|
axl.set_yticks_blank()
|
|
# remove_yticks(axl)
|
|
axl.minorticks_off()
|
|
|
|
if v == 0:
|
|
############################
|
|
# extra Zellen Scatter
|
|
# todo: diese Zellen müssen noch runter konvertiert werden
|
|
# todo: extra funktion für Zellen über 9 Snippets schreiben und die nochmal extra machen
|
|
cells_plot2 = p_units_to_show(type_here='bursts')
|
|
# for cell_plt in cells_plot2:
|
|
cells_extra = frame_file[frame_file['cell'].isin(cells_plot2)].index
|
|
# ax = plt.subplot(grid[1, cv_n])
|
|
axs.scatter(frame_file[x_axis[v]].loc[cells_extra], frame_file[score].loc[cells_extra],
|
|
s=5, color='white', edgecolor='black', alpha=0.5,
|
|
clip_on=False) # colors[str(cell_type_here)]
|
|
|
|
return ax_j, axls, axs, axss, counter
|
|
|
|
|
|
def species_with_both_cells(grid0, cell_types,ax_j, axls, axss, colors, cv_name_title, save_names, scores, species_all, x_axis, log = True):
|
|
for cv_n, cv_name in enumerate(x_axis):
|
|
if cv_n == 0:
|
|
redo = False
|
|
else:
|
|
redo = False
|
|
redo = False
|
|
frame_load_sp = load_overview_susept(save_names[0], redo=redo, redo_class=redo)
|
|
# frame_file = setting_overview_score(cell_type_here, frame_load_sp, min_amp=True, species=species)
|
|
|
|
# print(np.isnan(species))
|
|
|
|
|
|
score = scores[0]
|
|
max_val = 1.5
|
|
for c, cell_type_here in enumerate(cell_types):
|
|
#if c == 1:
|
|
# embed()
|
|
|
|
species = species_all[cv_n]
|
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
|
|
|
|
##################################
|
|
# modulation and species comparison
|
|
# x_axis, y_axis = get_axis(cv_name, frame_file, score)
|
|
# if cv_n == 0:
|
|
|
|
###############################
|
|
#######################
|
|
# Kernel Histogram
|
|
|
|
# plot the histograms of the values above the according vals
|
|
# grid = gridspec.GridSpecFromSubplotSpec(1, 1, grid0[0],hspace=0, wspace = 0.15)#grid[0, cv_n]
|
|
#
|
|
if c == 0:
|
|
axk, axl, axs, axls, axss, ax_j = get_grid_4(ax_j, axls, axss, grid0)
|
|
|
|
if c in [0, 2]:
|
|
axk.set_title(species)
|
|
|
|
|
|
if len(frame_file) > 0:
|
|
axs, x_axis = kernel_scatter(axl, axk, axs, c, cell_type_here, colors, cv_name,
|
|
frame_file, score, log = log)
|
|
if log:
|
|
axl.set_yscale('log')
|
|
axl.set_yticks_blank()
|
|
axl.minorticks_off()
|
|
axs.set_xlabel(cv_name_title[cv_n])
|
|
if cv_n == 0:
|
|
axs.set_ylabel('Perc(99)/Median')
|
|
|
|
if cv_n == 0:
|
|
axm = [axs]
|
|
return ax_j, axls, axss, cell_types, frame_load_sp, max_val, score
|
|
|
|
|
|
def get_grid_4(ax_j, axls, axss, grid0):
|
|
grid_k = gridspec.GridSpecFromSubplotSpec(2, 2, grid0,
|
|
hspace=0.1, wspace=0.1, height_ratios=[0.35, 3], width_ratios=[3, 0.5])
|
|
axk = plt.subplot(grid_k[0, 0])
|
|
ax_j.append(axk)
|
|
axs = plt.subplot(grid_k[1, 0])
|
|
axss.append(axs)
|
|
axl = plt.subplot(grid_k[1, 1])
|
|
axls.append(axl)
|
|
return axk, axl, axs, axls, axss, ax_j
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
data_overview3() |