susceptibility1/motivation.py

289 lines
13 KiB
Python

import numpy as np
from matplotlib import gridspec, pyplot as plt
from plotstyle import plot_style
from threefish.defaults import default_figsize
from threefish.load import save_visualization
from threefish.RAM.plot_labels import title_motivation
from threefish.RAM.plot_subplots import circle_plot, colors_suscept_paper_dots, plot_arrays_ROC_psd_single3, \
plot_shemes4
from threefish.RAM.reformat import chose_certain_group, extract_waves, load_cells_three, \
predefine_grouping_frame, save_arrays_susept
from threefish.RAM.values import find_all_dir_cells, ws_nonlin_systems
from threefish.reformat import load_b_public
def motivation_all_small(dev_desired = '1', ylim=[-1.25, 1.25], c1=10, devs=['2'],
figsize=None, save=True, end='0', sorted_on='LocalReconst0.2Norm'):
plot_style()
default_figsize(column=2, length=4.3) #6.7 ts=12, ls=12, fs=12
show = True
datasets, data_dir = find_all_dir_cells()
cells = ['2021-08-03-ac-invivo-1']
c2 = 10
eodftype = '_psdEOD_'
chirps = [
''] # '_ChirpsDelete3_',,'_ChirpsDelete3_'','','',''#'_ChirpsDelete3_'#''#'_ChirpsDelete3_'#'#'_ChirpsDelete2_'#''#'_ChirpsDelete_'#''#'_ChirpsDelete_'#''#'_ChirpsDelete_'#''#'_ChirpsCache_'
extract = '' # '_globalmax_'
if len(cells) < 1:
data_dir, cells = load_cells_three(end, data_dir=data_dir, datasets=datasets)
cells = ['2021-08-03-ac-invivo-1']
ax_s = []
for c, cell in enumerate(cells):
contrasts = [c2]
for c, contrast in enumerate(contrasts):
DF1_desired = [1.2]#DF1_desired # [::-1]
DF2_desired = [0.95]#DF2_desired # [::-1]
#embed()
#######################################
# ROC part
b = load_b_public(c, cell, data_dir)
frame_loaded = predefine_grouping_frame(b, eodftype=eodftype, cell_name=cell)
frame_loaded = frame_loaded[(frame_loaded['c2'] == c2) & (frame_loaded['c1'] == c1)]
for gg in range(len(DF1_desired)):
ax_w = []
###################
# all trials in one
group_mean = group_saved_matrix(DF1_desired, DF2_desired, gg, frame_loaded)
detection = 'MeanTrialsIndexPhaseSort'
mean_type = '_' + detection # + '_' + minsetting + '_' + extend_trials + concat
##############################################################
# load plotting arrays
arrays, arrays_original, spikes_pure = save_arrays_susept(
data_dir, cell, c, chirps, extract, group_mean, mean_type, plot_group=0,
rocextra=False, sorted_on=sorted_on, dev_desired = dev_desired)
####################################################
if figsize:
fig = plt.figure(figsize=figsize)
else:
fig = plt.figure()
grid = gridspec.GridSpec(2, 1, wspace=0.7, hspace=0.15, left=0.055, top=0.96,
bottom=0.15,
right=0.935, height_ratios=[0.5, 5.3]) # height_ratios=[1, 2], height_ratios = [1,6]bottom=0.25, top=0.8,
##########################################################################
# plot shemes above (top)
grid00 = gridspec.GridSpecFromSubplotSpec(1, 4, wspace=0.15, hspace=0.05,
subplot_spec=grid[0, :])
plot_pictograms(ax_s, grid00)
##########################################################################
# plot stimulus (first row)
grid0 = gridspec.GridSpecFromSubplotSpec(5, 4, wspace=0.15, hspace=0.35,
subplot_spec=grid[1, :],
height_ratios=[1, 0.35, 1.2, 0, 3, ])
color0, color01, color012, color01_2, color02, color0_burst, xlim = plot_stimulus_motivation(ax_w,
grid0,
group_mean,
ylim)
##########################################
# spike response (bottom)
array_chosen = 1
smoothed_base = arrays[0][0]
mat_base = arrays_original[0][0]
fr_isi, ax_ps, ax_as = plot_arrays_ROC_psd_single3(
[[smoothed_base], arrays[2], arrays[1], arrays[3]],
[[mat_base], arrays_original[2], arrays_original[1],
arrays_original[3]], spikes_pure, cell, grid0, mean_type,
group_mean, xlim=xlim, row=1,
array_chosen=array_chosen,
color0_burst=color0_burst, color01=color01, color02=color02,ylim_log=(-22, 3),
color012=color012,color012_minus = color01_2,color0=color0)
##########################################################################
individual_tag = 'DF1' + str(DF1_desired[gg]) + 'DF2' + str(
DF2_desired[gg]) + cell + '_c1_' + str(c1) + '_c2_' + str(c2) + mean_type
axes = []
axes.append(ax_w)
fig.tag(ax_s, xoffs=-1.9, yoffs=1.2)
if save:
save_visualization(individual_tag=individual_tag, show=show, pdf=True)
def group_saved_matrix(DF1_desired, DF2_desired, gg, mt_sorted):
grouped = mt_sorted.groupby(
['c1', 'c2', 'm1, m2'],
as_index=False)
grouped_mean = chose_certain_group(DF1_desired[gg],
DF2_desired[gg], grouped,
several=True, emb=False,
concat=True)
grouped = mt_sorted.groupby(
['c1', 'c2', 'm1, m2', 'repro_tag_id'],
as_index=False)
grouped_orig = chose_certain_group(DF1_desired[gg],
DF2_desired[gg],
grouped,
several=True)
group_mean = [grouped_orig[0][0], grouped_mean]
return group_mean
def plot_stimulus_motivation(ax_w, grid0, group_mean, ylim):
xlim = [0, 100]
stimulus_length = 0.3
deltat = 1 / 40000
eodf = np.mean(group_mean[1].eodf)
eod_fr = eodf
a_fr = 1
eod_fe = eodf + np.mean(
group_mean[1].DF2) # data.eodf.iloc[0] + 10 # cell_model.eode.iloc[0]
a_fe = group_mean[0][1] / 100
eod_fj = eodf + np.mean(
group_mean[1].DF1) # data.eodf.iloc[0] + 50 # cell_model.eodj.iloc[0]
a_fj = group_mean[0][0] / 100
variant_cell = 'no' # 'receiver_emitter_jammer'
eod_fish_j, time_array, time_fish_r, eod_fish_r, time_fish_e, eod_fish_e, time_fish_sam, eod_fish_sam, stimulus_am, stimulus_sam = extract_waves(
variant_cell, '',
stimulus_length, deltat, eod_fr, a_fr, a_fe, [eod_fe], 0, eod_fj, a_fj)
titles = title_motivation()
gs = [0, 1, 2, 3, 4]
waves_presents = [['receiver', '', '', 'all'],
['receiver', 'emitter', '', 'all'],
['receiver', '', 'jammer', 'all'],
['receiver', 'emitter', 'jammer', 'all'],
] # ['', '', '', ''],['receiver', '', '', 'all'],
symbols = ['', '', '', '', '']
time_array = time_array * 1000
color01, color012, color01_2, color02, color0_burst, color0 = colors_suscept_paper_dots()
colors_am = ['black', 'black', 'black', 'black'] # color01, color02, color012]
extracted = [False, True, True, True]
extracted2 = [False, False, False, False]
for i in range(len(waves_presents)):
ax = plot_shemes4(eod_fish_r, eod_fish_e, eod_fish_j, grid0, time_array,
g=gs[i], title_top=True, eod_fr=eod_fr,
waves_present=waves_presents[i], ylim=ylim,
xlim=xlim, color_am=colors_am[i],
color_am2=color01_2, extracted=extracted[i], extracted2=extracted2[i],
title=titles[i], add=0.1) # 'intruder','receiver'#jammer_name
ax_w.append(ax)
if ax:
ax.text(1.1, 0.45, symbols[i], fontsize=35, transform=ax.transAxes)
bar = False
if bar:
if i == 0:
ax.plot([0, 20], [ylim[0] + 0.01, ylim[0] + 0.01], color='black')
ax.text(0, -0.16, '20 ms', va='center', fontsize=10,
transform=ax.transAxes)
return color0, color01, color012, color01_2, color02, color0_burst, xlim
def plot_pictograms(ax_s, grid00):
texts1 = ['', '$s_{1}(t)$', '$s_{2}(t)$', '$s_{1} +s_{2}(t)$']
texts2 = ['$r_{0}$', '$r_{0} +r_{1}(t)$', '$r_{0} +r_{2}(t)$', r'$r_{t} \neq r_{0}+r_{1}(t)+r_{2}(t)$']
for g in range(4):
horizontal = True
if horizontal:
grid000 = gridspec.GridSpecFromSubplotSpec(1, 4, wspace=0, hspace=0,
subplot_spec=grid00[g], width_ratios=[2, 0.7, 2, 1.6])
else:
grid000 = gridspec.GridSpecFromSubplotSpec(3, 1, wspace=0, hspace=0,
subplot_spec=grid00[g])
ax0 = plt.subplot(grid000[0])
color = 'black' # color_beats()
# ax0.plot(time_array, sine, color=color, clip_on=False)
ax0.show_spines('')
# ax0.set_title('$s(t)$') # xy=(0.2, 0.2),
ax0.show_spines('')
# xytext=(0.8, 0.8),
lw = 0.5
ws = ws_nonlin_systems()
fs = 8
middle = 0.5
if horizontal:
start = 0.7
if texts1[g] != '':
ax0.annotate('', ha='center', xycoords='axes fraction',
xy=(1, middle), textcoords='axes fraction',
xytext=(start, middle),
arrowprops={"arrowstyle": "->",
"linestyle": "-",
"linewidth": lw,
"color":
'black'},
zorder=1, annotation_clip=False, transform=ax0.transAxes, )
ax0.text(start, 0.5, texts1[g], transform=ax0.transAxes, ha='right',
va='center', fontsize=fs)
else:
start = 1.5
if g != texts1[g]:
ax0.annotate('', ha='center', xycoords='axes fraction',
xy=(middle, start), textcoords='axes fraction',
xytext=(middle, 0),
arrowprops={"arrowstyle": "<-",
"linestyle": "-",
"linewidth": lw,
"color":
'black'},
zorder=1, annotation_clip=False, transform=ax0.transAxes, )
ax0.text(0.5, start, texts1[g], transform=ax0.transAxes, ha='center', va='center')
ax_s.append(ax0)
# embed()
# fig.texts.append(ax[0].texts.pop())
###################################
ax1 = plt.subplot(grid000[1])
circle_plot(ax1, ws)
ax1.show_spines('')
ax1.set_xlim(0, 20)
ax1.set_ylim(-20, 40)
####################################texts1[g]texts2[g]
ax2 = plt.subplot(grid000[2])
if horizontal:
end = 0.3
ax2.annotate('', ha='center', xycoords='axes fraction',
xy=(end, middle), textcoords='axes fraction',
xytext=(0, middle),
arrowprops={"arrowstyle": "->",
"linestyle": "-",
"linewidth": lw,
"color":
'black'},
zorder=1, annotation_clip=False, transform=ax2.transAxes, )
ax2.text(end, 0.5, texts2[g], transform=ax2.transAxes, ha='left', va='center', fontsize=fs)
else:
end = -0.5
ax2.annotate('', ha='center', xycoords='axes fraction',
xy=(middle, end), textcoords='axes fraction',
xytext=(middle, 1),
arrowprops={"arrowstyle": "->",
"linestyle": "-",
"linewidth": lw,
"color":
'black'},
zorder=1, annotation_clip=False, transform=ax2.transAxes, )
ax2.text(middle, end, texts2[g], transform=ax2.transAxes, ha='center', va='center')
ax2.show_spines('')
if __name__ == '__main__':#2.5
motivation_all_small(dev_desired = '1', c1=10, devs=['05'], save=True, end='all',
sorted_on='LocalReconst0.2NormAm')#