from utils_suseptibility import * def model_full(): plot_style() default_figsize(column=2, length=2.3) grid = gridspec.GridSpec(1, 1, wspace=0.6, bottom = 0.1,hspace=0.15, top=0.95, left=0.075, right=0.87) axes = [] ################################## # model part ls = '--' lw = 0.5 ax = plt.subplot(grid[0]) axes.append(ax) perc,im,stack_final = plt_model_big(ax, ls = ls, lw = 0.5) fr_waves = 139 fr_noise = 120 f1 = 33 f2 = 139 #embed() ax.plot(fr_noise * f1/fr_waves, fr_noise*f2/fr_waves, 'o', ms = 5, markeredgecolor = 'orange', markerfacecolor="None") ax.plot(-fr_noise * f1 / fr_waves, fr_noise * f2 / fr_waves, 'o', ms = 5, markeredgecolor='pink', markerfacecolor="None") # if len(cbar) > 0: ############################### # data part data_extra = False if data_extra: ax = plt.subplot(grid[0]) axes.append(ax) cell = '2012-07-03-ak-invivo-1' mat_rev,stack_final_rev = load_stack_data_susept(cell, save_name = version_final(), end = '_revQuadrant_') mat, stack = load_stack_data_susept(cell, save_name=version_final(), end = '') #embed() #try: full_matrix = create_full_matrix2(np.array(mat),np.array(mat_rev)) #except: # print('full matrix something') # embed() stack_final = get_axis_on_full_matrix(full_matrix, mat) abs_matrix = np.abs(stack_final) #embed() #if np. abs_matrix, add_nonlin_title, resize_val = rescale_colorbar_and_values(abs_matrix) ax.axhline(0, color = 'white', linestyle = ls, linewidth = lw) ax.axvline(0, color='white', linestyle = ls, linewidth = lw) im = plt_RAM_perc(ax, perc, abs_matrix) cbar, left, bottom, width, height = colorbar_outside(ax, im, add=5, width=0.01) set_clim_same_here([im], mats=[abs_matrix], lim_type='up', nr_clim='perc', clims='', percnr=95) #clim = im.get_clim() #if clim[1]> 1000: #todo: change clim values with different Hz values #embed() cbar.set_label(nonlin_title(add_nonlin_title = ' ['+add_nonlin_title), rotation=90, labelpad=8) set_ylabel_arrow(ax, xpos = -0.07, ypos = 0.97) set_xlabel_arrow(ax, xpos=1, ypos=-0.07) ''' eod_fr, stack_spikes = plt_data_suscept_single(ax, cbar_label, cell, cells, f, fig, file_names_exclude, lp, title, width)''' cbar, left, bottom, width, height = colorbar_outside(ax, im, add=5, width=0.01) #print('finished model_full') fig = plt.gcf() #axes = plt.gca() #fig.tag(axes[::-1], xoffs=-4.5, yoffs=0.4) # ax_ams[3], save_visualization() def load_stack_data_susept(cell, save_name, end = ''): load_name = load_folder_name('calc_RAM') + '/' + save_name+end add = '_cell' + cell +end# str(f) # + '_amp_' + str(amp) #embed() stack_cell = load_data_susept(load_name + '_' + cell + '.pkl', load_name + '_' + cell, add=add, load_version='csv') file_names_exclude = get_file_names_exclude() stack_cell = stack_cell[~stack_cell['file_name'].isin(file_names_exclude)] # if len(stack_cell): file_names = stack_cell.file_name.unique() #embed() file_names = exclude_file_name_short(file_names) cut_off_nr = get_cutoffs_nr(file_names) try: maxs = list(map(float, cut_off_nr)) except: embed() file_names = file_names[np.argmax(maxs)] #embed() stack_file = stack_cell[stack_cell['file_name'] == file_names] amps = [np.min(stack_file.amp.unique())] amps = restrict_punits(cell, amps) amp = np.min(amps)#[0] # for amp in amps: stack_amps = stack_file[stack_file['amp'] == amp] lengths = stack_amps.stimulus_length.unique() trial_nr_double = stack_amps.trial_nr.unique() trial_nr = np.max(trial_nr_double) stack_final = stack_amps[ (stack_amps['stimulus_length'] == np.max(lengths)) & (stack_amps.trial_nr == trial_nr)] mat, new_keys = get_mat_susept(stack_final) return mat,stack_final if __name__ == '__main__': model_full()