updated figures and anwsered parts of questions

This commit is contained in:
saschuta 2024-05-23 11:08:22 +02:00
parent f1b588d9ae
commit bf429e784b
25 changed files with 120771 additions and 362239 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,725 +1,242 @@
,spikes
0,0.006
1,0.0135
2,0.020050000000000002
3,0.0296
4,0.0383
5,0.0427
6,0.05655
7,0.0664
8,0.07490000000000001
1,0.012450000000000001
2,0.02755
3,0.03295
4,0.0415
5,0.05115
6,0.0567
7,0.06420000000000001
8,0.0738
9,0.07930000000000001
10,0.0889
11,0.09325
12,0.1029
13,0.11255000000000001
14,0.11800000000000001
15,0.13090000000000002
16,0.13855
17,0.14815
18,0.15475
19,0.1633
20,0.1719
21,0.1773
22,0.18475
23,0.19785
24,0.20435
25,0.21280000000000002
26,0.2215
27,0.229
28,0.23970000000000002
29,0.24625000000000002
30,0.2516
31,0.25695
32,0.26785000000000003
33,0.2816
34,0.28615
35,0.29355000000000003
36,0.30005000000000004
37,0.30655
38,0.3226
39,0.3291
40,0.33775
41,0.3421
42,0.35495000000000004
43,0.3647
44,0.37115000000000004
45,0.38280000000000003
46,0.38730000000000003
47,0.39390000000000003
10,0.091
11,0.0976
12,0.11365
13,0.11800000000000001
14,0.1255
15,0.12985
16,0.13965
17,0.1504
18,0.15575
19,0.16755
20,0.1751
21,0.18155000000000002
22,0.188
23,0.19770000000000001
24,0.2063
25,0.21180000000000002
26,0.21925
27,0.23015000000000002
28,0.23545000000000002
29,0.2451
30,0.25485
31,0.2591
32,0.2752
33,0.28065
34,0.28605
35,0.2968
36,0.30435
37,0.3098
38,0.31945
39,0.32580000000000003
40,0.3335
41,0.3453
42,0.3518
43,0.3603
44,0.36885
45,0.37970000000000004
46,0.3884
47,0.39590000000000003
48,0.40345000000000003
49,0.4142
50,0.42065
51,0.42810000000000004
52,0.43355000000000005
53,0.44545
54,0.45940000000000003
55,0.46365
56,0.4692
57,0.4766
58,0.48310000000000003
59,0.49065000000000003
60,0.5003500000000001
61,0.5079
62,0.52195
63,0.52615
64,0.536
65,0.54345
66,0.55315
67,0.56065
68,0.56715
69,0.5791000000000001
70,0.58765
71,0.5930500000000001
72,0.6048
73,0.6112500000000001
74,0.62095
75,0.6264500000000001
76,0.6371
77,0.64575
78,0.6545000000000001
79,0.6609
80,0.6695
81,0.677
82,0.6900000000000001
83,0.6963
84,0.7029500000000001
85,0.71035
86,0.71785
87,0.72655
88,0.734
89,0.74055
90,0.7481
91,0.75565
92,0.7621
93,0.7707
94,0.7858
95,0.7922
96,0.7998500000000001
97,0.8095
98,0.8139000000000001
99,0.8246
100,0.8331000000000001
101,0.8428
102,0.85045
103,0.85695
104,0.86345
105,0.8731
106,0.88265
107,0.88705
108,0.9022
109,0.9075500000000001
110,0.9183
111,0.9247000000000001
112,0.93445
113,0.9398500000000001
114,0.9484
115,0.9558500000000001
116,0.9624
117,0.9722000000000001
118,0.97855
119,0.9883000000000001
120,0.9959
121,1.0066
122,1.0141
123,1.0195
124,1.02915
125,1.03885
126,1.04315
127,1.054
128,1.06265
129,1.07005
130,1.07665
131,1.08085
132,1.0918
133,1.1024500000000002
134,1.11215
135,1.1185500000000002
136,1.13045
137,1.1380000000000001
138,1.1466
139,1.1530500000000001
140,1.1627
141,1.1715
142,1.17785
143,1.18435
144,1.18975
145,1.2015
146,1.2112500000000002
147,1.2209
148,1.2307000000000001
149,1.23715
150,1.2458
151,1.25315
152,1.2586000000000002
153,1.2705
154,1.2801500000000001
155,1.2856
156,1.29305
157,1.2996
158,1.30705
159,1.3168
160,1.3242500000000001
161,1.33195
162,1.3404500000000001
163,1.3523500000000002
164,1.3565500000000001
165,1.3717000000000001
166,1.3814
167,1.3857000000000002
168,1.3932
169,1.4029500000000001
170,1.41375
171,1.4245
172,1.42785
173,1.43425
174,1.4407
175,1.4492
176,1.46005
177,1.4644000000000001
178,1.4772500000000002
179,1.4816
180,1.48805
181,1.5019
182,1.5106000000000002
183,1.52145
184,1.5257
185,1.5365
186,1.54305
187,1.5537
188,1.5602
189,1.56765
190,1.5795000000000001
191,1.5872000000000002
192,1.5905
193,1.6044
194,1.6108
195,1.6195000000000002
196,1.627
197,1.6357000000000002
198,1.64525
199,1.6517000000000002
200,1.6615
201,1.6701000000000001
202,1.67865
203,1.6905000000000001
204,1.6958
205,1.7034500000000001
206,1.70985
207,1.7176
208,1.7293500000000002
209,1.7336
210,1.74015
211,1.74865
212,1.7563000000000002
213,1.7701500000000001
214,1.7756
215,1.7853
216,1.7916500000000002
217,1.8004
218,1.8089000000000002
219,1.81665
220,1.82505
221,1.8327
222,1.8423500000000002
223,1.8467500000000001
224,1.8585500000000001
225,1.86395
226,1.87155
227,1.8822500000000002
228,1.8876000000000002
229,1.9006
230,1.907
231,1.91565
232,1.921
233,1.93395
234,1.9404000000000001
235,1.9489500000000002
236,1.9555
237,1.9620000000000002
238,1.9673500000000002
239,1.9770500000000002
240,1.9877500000000001
241,1.99425
242,2.005
243,2.0158
244,2.0212
245,2.02975
246,2.0341
247,2.04605
248,2.0513
249,2.05995
250,2.0739
251,2.0825
252,2.0911
253,2.0965000000000003
254,2.101
255,2.1138
256,2.1246
257,2.1353500000000003
258,2.14065
259,2.14505
260,2.15265
261,2.16445
262,2.1698
263,2.1742
264,2.1828000000000003
265,2.1945
266,2.20425
267,2.214
268,2.22255
269,2.2279500000000003
270,2.2376
271,2.24405
272,2.2516000000000003
273,2.25925
274,2.271
275,2.28085
276,2.2873
277,2.299
278,2.30345
279,2.3131
280,2.3206
281,2.3303000000000003
282,2.3367500000000003
283,2.3497
284,2.3550500000000003
285,2.3637
286,2.37445
287,2.3789000000000002
288,2.3885
289,2.4013500000000003
290,2.4067000000000003
291,2.4122500000000002
292,2.4219
293,2.42725
294,2.4370000000000003
295,2.44775
296,2.4541500000000003
297,2.4628
298,2.4692000000000003
299,2.4757000000000002
300,2.4865500000000003
301,2.4939
302,2.50035
303,2.5102
304,2.5177
305,2.53165
306,2.5391500000000002
307,2.5446
308,2.5532500000000002
309,2.5641000000000003
310,2.5705
311,2.5770500000000003
312,2.5888500000000003
313,2.5975
314,2.6018000000000003
315,2.6157
316,2.6233500000000003
317,2.6318
318,2.6393500000000003
319,2.6458
320,2.65335
321,2.6674
322,2.67285
323,2.6782500000000002
324,2.68685
325,2.6944500000000002
326,2.7018500000000003
327,2.71055
328,2.718
329,2.7256500000000004
330,2.7407500000000002
331,2.7482
332,2.75475
333,2.7600000000000002
334,2.76765
335,2.77725
336,2.78165
337,2.7934
338,2.8031
339,2.81175
340,2.8225000000000002
341,2.8268
342,2.83645
343,2.8473
344,2.85475
345,2.8645
346,2.8710500000000003
347,2.8796500000000003
348,2.8883
349,2.89365
350,2.9021500000000002
351,2.9087
352,2.91725
353,2.93345
354,2.9389000000000003
355,2.9442500000000003
356,2.955
357,2.9657500000000003
358,2.97325
359,2.9786
360,2.9840500000000003
361,2.99915
362,3.0035000000000003
363,3.0122
364,3.01965
365,3.0283
366,3.0369
367,3.04765
368,3.0551500000000003
369,3.0638
370,3.0692
371,3.07775
372,3.0865
373,3.09505
374,3.0993500000000003
375,3.1069500000000003
376,3.123
377,3.12745
378,3.1359500000000002
379,3.14665
380,3.15645
381,3.16495
382,3.1715
383,3.1781
384,3.1843500000000002
385,3.193
386,3.2027
387,3.2071
388,3.2199500000000003
389,3.2285000000000004
390,3.234
391,3.2426000000000004
392,3.2512000000000003
393,3.2586500000000003
394,3.2704500000000003
395,3.2759500000000004
396,3.28565
397,3.29115
398,3.3029
399,3.3104
400,3.3211500000000003
401,3.3287500000000003
402,3.33535
403,3.3449
404,3.3504
405,3.3600000000000003
406,3.3653
407,3.3750500000000003
408,3.3827000000000003
409,3.39445
410,3.3998000000000004
411,3.4148
412,3.4192
413,3.4311000000000003
414,3.4365
415,3.444
416,3.45155
417,3.4591000000000003
418,3.4676
419,3.4784
420,3.48605
421,3.4903500000000003
422,3.50535
423,3.51295
424,3.51825
425,3.5280500000000004
426,3.5398500000000004
427,3.54625
428,3.5540000000000003
429,3.56565
430,3.56995
431,3.5775
432,3.5829500000000003
433,3.5915000000000004
434,3.6044
435,3.6131
436,3.6237000000000004
437,3.63035
438,3.6388000000000003
439,3.64425
440,3.64975
441,3.66255
442,3.6701
443,3.67865
444,3.68305
445,3.6896
446,3.6993500000000004
447,3.7121500000000003
448,3.7175000000000002
449,3.7251000000000003
450,3.7315
451,3.74445
452,3.7499000000000002
453,3.7574
454,3.77035
455,3.7767500000000003
456,3.7832000000000003
457,3.79395
458,3.8017000000000003
459,3.8091000000000004
460,3.821
461,3.8275
462,3.8393
463,3.8478000000000003
464,3.85325
465,3.86085
466,3.8714000000000004
467,3.8748500000000003
468,3.891
469,3.89535
470,3.90395
471,3.91035
472,3.9190500000000004
473,3.9276
474,3.9350500000000004
475,3.94265
476,3.9566500000000002
477,3.9643
478,3.9728000000000003
479,3.9846000000000004
480,3.9901
481,3.9987000000000004
482,4.00515
483,4.0126
484,4.02125
485,4.0277
486,4.0417000000000005
487,4.0494
488,4.0568
489,4.0654
490,4.0729500000000005
491,4.0795
492,4.08805
493,4.0923
494,4.0977500000000004
495,4.1127
496,4.1183000000000005
497,4.12675
498,4.1365
499,4.143
500,4.1527
501,4.1635
502,4.16885
503,4.1764
504,4.1882
505,4.1948
506,4.20335
507,4.2109000000000005
508,4.21955
509,4.22605
510,4.23345
511,4.2441
512,4.25495
513,4.260400000000001
514,4.268
515,4.2756
516,4.2883000000000004
517,4.2949
518,4.30345
519,4.311
520,4.31755
521,4.3239
522,4.33255
523,4.33905
524,4.3509
525,4.35735
526,4.37025
527,4.3777
528,4.3832
529,4.39175
530,4.39935
531,4.4101
532,4.4197500000000005
533,4.426200000000001
534,4.4380500000000005
535,4.4436
536,4.45005
537,4.46185
538,4.46825
539,4.47795
540,4.4823
541,4.4899000000000004
542,4.4952000000000005
543,4.51015
544,4.5156
545,4.5200000000000005
546,4.53515
547,4.5416
548,4.5523
549,4.55665
550,4.564150000000001
551,4.571750000000001
552,4.5813500000000005
553,4.591
554,4.60285
555,4.608350000000001
556,4.61365
557,4.6201
558,4.6276
559,4.64055
560,4.64605
561,4.655600000000001
562,4.6622
563,4.67075
564,4.6847
565,4.69015
566,4.700950000000001
567,4.70525
568,4.7117
569,4.725750000000001
570,4.73115
571,4.7376000000000005
572,4.7536000000000005
573,4.762300000000001
574,4.7687
575,4.7742
576,4.78495
577,4.7935
578,4.7988
579,4.80965
580,4.81615
581,4.824800000000001
582,4.8355500000000005
583,4.8420000000000005
584,4.85065
585,4.856
586,4.8656500000000005
587,4.87115
588,4.88295
589,4.8958
590,4.9002
591,4.9066
592,4.9153
593,4.92285
594,4.93355
595,4.94325
596,4.95075
597,4.9583
598,4.9637
599,4.97125
600,4.97775
601,4.98315
602,4.996
603,5.0024500000000005
604,5.0133
605,5.02285
606,5.03155
607,5.0402000000000005
608,5.0477
609,5.05755
610,5.06715
611,5.0736
612,5.0821000000000005
613,5.08645
614,5.09305
615,5.10475
616,5.1135
617,5.1231
618,5.12755
619,5.1393
620,5.1479
621,5.15545
622,5.1661
623,5.1738
624,5.1813
625,5.1879
626,5.1965
627,5.20275
628,5.21035
629,5.2233
630,5.2308
631,5.2383500000000005
632,5.2449
633,5.252400000000001
634,5.2664
635,5.2717
636,5.27815
637,5.287850000000001
638,5.29445
639,5.29975
640,5.31165
641,5.321400000000001
642,5.3268
643,5.3375
644,5.34285
645,5.35475
646,5.36225
647,5.3687000000000005
648,5.37835
649,5.38375
650,5.3935
651,5.401000000000001
652,5.408650000000001
653,5.41495
654,5.4236
655,5.43325
656,5.44955
657,5.4538
658,5.461250000000001
659,5.4677500000000006
660,5.47865
661,5.4871
662,5.4937000000000005
663,5.50005
664,5.510750000000001
665,5.519550000000001
666,5.5281
667,5.53345
668,5.54215
669,5.556100000000001
670,5.560350000000001
671,5.569
672,5.57875
673,5.587350000000001
674,5.5969500000000005
675,5.603400000000001
676,5.6109
677,5.6197
678,5.6283
679,5.63685
680,5.6433
681,5.649900000000001
682,5.66165
683,5.6714
684,5.68205
685,5.68975
686,5.69615
687,5.7005
688,5.710100000000001
689,5.72085
690,5.729500000000001
691,5.736000000000001
692,5.7457
693,5.7533
694,5.764
695,5.7694
696,5.7758
697,5.7877
698,5.79525
699,5.8006
700,5.8167
701,5.8212
702,5.8340000000000005
703,5.8393500000000005
704,5.848
705,5.8534500000000005
706,5.85775
707,5.8759500000000005
708,5.8815
709,5.8868
710,5.8964
711,5.9019
712,5.9094500000000005
713,5.9169
714,5.92445
715,5.93625
716,5.948250000000001
717,5.9589
718,5.96445
719,5.96865
720,5.9762
721,5.9858
722,5.995550000000001
723,5.99985
49,0.4088
50,0.41535
51,0.42925
52,0.43585
53,0.44235
54,0.453
55,0.46165
56,0.4723
57,0.48310000000000003
58,0.48855000000000004
59,0.49385
60,0.50365
61,0.5175000000000001
62,0.5251
63,0.5296000000000001
64,0.5349
65,0.5434
66,0.5521
67,0.56275
68,0.5725
69,0.5790500000000001
70,0.58755
71,0.5942000000000001
72,0.60275
73,0.6124
74,0.62
75,0.63275
76,0.6404000000000001
77,0.6456500000000001
78,0.6534
79,0.6588
80,0.67045
81,0.68125
82,0.6878000000000001
83,0.69315
84,0.6996
85,0.7104
86,0.7222000000000001
87,0.73085
88,0.7395
89,0.74595
90,0.7523500000000001
91,0.75895
92,0.7706500000000001
93,0.77815
94,0.7869
95,0.79225
96,0.7966000000000001
97,0.81265
98,0.8181
99,0.8279000000000001
100,0.8374
101,0.8429000000000001
102,0.8579
103,0.8622500000000001
104,0.86665
105,0.8785000000000001
106,0.88385
107,0.8925000000000001
108,0.90315
109,0.91195
110,0.91935
111,0.9247500000000001
112,0.93015
113,0.94515
114,0.9527500000000001
115,0.9570500000000001
116,0.9635
117,0.9731500000000001
118,0.9808
119,0.9937
120,1.00215
121,1.00865
122,1.01625
123,1.0291000000000001
124,1.04
125,1.0486
126,1.0539
127,1.0582500000000001
128,1.0702500000000001
129,1.0745500000000001
130,1.0852
131,1.0928
132,1.10345
133,1.11425
134,1.11965
135,1.1271
136,1.13795
137,1.1434
138,1.15205
139,1.1617
140,1.1692
141,1.1767
142,1.1864000000000001
143,1.194
144,1.2026000000000001
145,1.2101
146,1.2167000000000001
147,1.22195
148,1.2327000000000001
149,1.2414
150,1.25535
151,1.2597
152,1.2640500000000001
153,1.27905
154,1.28345
155,1.29525
156,1.30175
157,1.30705
158,1.3201
159,1.3264500000000001
160,1.3308
161,1.3404500000000001
162,1.34805
163,1.3566500000000001
164,1.3621
165,1.37715
166,1.3846500000000002
167,1.3944
168,1.3986
169,1.40825
170,1.4148
171,1.4234
172,1.4342000000000001
173,1.43865
174,1.44485
175,1.4557
176,1.4687000000000001
177,1.4741
178,1.48795
179,1.4934
180,1.50205
181,1.5074500000000002
182,1.52045
183,1.5257500000000002
184,1.53105
185,1.5429000000000002
186,1.5515
187,1.5623
188,1.572
189,1.5785500000000001
190,1.58705
191,1.5926
192,1.59785
193,1.6119
194,1.6194000000000002
195,1.62805
196,1.6335000000000002
197,1.64205
198,1.6496000000000002
199,1.6594
200,1.6700000000000002
201,1.6765
202,1.68205
203,1.68955
204,1.6948500000000002
205,1.70665
206,1.71425
207,1.72825
208,1.7346000000000001
209,1.7433
210,1.7477
211,1.754
212,1.76055
213,1.7681
214,1.7788000000000002
215,1.78745
216,1.7950000000000002
217,1.80685
218,1.81335
219,1.8209000000000002
220,1.8284
221,1.83705
222,1.8445
223,1.8576000000000001
224,1.8628500000000001
225,1.8703500000000002
226,1.8801
227,1.8897000000000002
228,1.89955
229,1.9059000000000001
230,1.91555
231,1.9210500000000001
232,1.92755
233,1.9372
234,1.94795
235,1.9554
236,1.96185
237,1.97065
238,1.9803000000000002
239,1.98895
240,1.99865

1 spikes
2 0 0.006
3 1 0.0135 0.012450000000000001
4 2 0.020050000000000002 0.02755
5 3 0.0296 0.03295
6 4 0.0383 0.0415
7 5 0.0427 0.05115
8 6 0.05655 0.0567
9 7 0.0664 0.06420000000000001
10 8 0.07490000000000001 0.0738
11 9 0.07930000000000001
12 10 0.0889 0.091
13 11 0.09325 0.0976
14 12 0.1029 0.11365
15 13 0.11255000000000001 0.11800000000000001
16 14 0.11800000000000001 0.1255
17 15 0.13090000000000002 0.12985
18 16 0.13855 0.13965
19 17 0.14815 0.1504
20 18 0.15475 0.15575
21 19 0.1633 0.16755
22 20 0.1719 0.1751
23 21 0.1773 0.18155000000000002
24 22 0.18475 0.188
25 23 0.19785 0.19770000000000001
26 24 0.20435 0.2063
27 25 0.21280000000000002 0.21180000000000002
28 26 0.2215 0.21925
29 27 0.229 0.23015000000000002
30 28 0.23970000000000002 0.23545000000000002
31 29 0.24625000000000002 0.2451
32 30 0.2516 0.25485
33 31 0.25695 0.2591
34 32 0.26785000000000003 0.2752
35 33 0.2816 0.28065
36 34 0.28615 0.28605
37 35 0.29355000000000003 0.2968
38 36 0.30005000000000004 0.30435
39 37 0.30655 0.3098
40 38 0.3226 0.31945
41 39 0.3291 0.32580000000000003
42 40 0.33775 0.3335
43 41 0.3421 0.3453
44 42 0.35495000000000004 0.3518
45 43 0.3647 0.3603
46 44 0.37115000000000004 0.36885
47 45 0.38280000000000003 0.37970000000000004
48 46 0.38730000000000003 0.3884
49 47 0.39390000000000003 0.39590000000000003
50 48 0.40345000000000003
51 49 0.4142 0.4088
52 50 0.42065 0.41535
53 51 0.42810000000000004 0.42925
54 52 0.43355000000000005 0.43585
55 53 0.44545 0.44235
56 54 0.45940000000000003 0.453
57 55 0.46365 0.46165
58 56 0.4692 0.4723
59 57 0.4766 0.48310000000000003
60 58 0.48310000000000003 0.48855000000000004
61 59 0.49065000000000003 0.49385
62 60 0.5003500000000001 0.50365
63 61 0.5079 0.5175000000000001
64 62 0.52195 0.5251
65 63 0.52615 0.5296000000000001
66 64 0.536 0.5349
67 65 0.54345 0.5434
68 66 0.55315 0.5521
69 67 0.56065 0.56275
70 68 0.56715 0.5725
71 69 0.5791000000000001 0.5790500000000001
72 70 0.58765 0.58755
73 71 0.5930500000000001 0.5942000000000001
74 72 0.6048 0.60275
75 73 0.6112500000000001 0.6124
76 74 0.62095 0.62
77 75 0.6264500000000001 0.63275
78 76 0.6371 0.6404000000000001
79 77 0.64575 0.6456500000000001
80 78 0.6545000000000001 0.6534
81 79 0.6609 0.6588
82 80 0.6695 0.67045
83 81 0.677 0.68125
84 82 0.6900000000000001 0.6878000000000001
85 83 0.6963 0.69315
86 84 0.7029500000000001 0.6996
87 85 0.71035 0.7104
88 86 0.71785 0.7222000000000001
89 87 0.72655 0.73085
90 88 0.734 0.7395
91 89 0.74055 0.74595
92 90 0.7481 0.7523500000000001
93 91 0.75565 0.75895
94 92 0.7621 0.7706500000000001
95 93 0.7707 0.77815
96 94 0.7858 0.7869
97 95 0.7922 0.79225
98 96 0.7998500000000001 0.7966000000000001
99 97 0.8095 0.81265
100 98 0.8139000000000001 0.8181
101 99 0.8246 0.8279000000000001
102 100 0.8331000000000001 0.8374
103 101 0.8428 0.8429000000000001
104 102 0.85045 0.8579
105 103 0.85695 0.8622500000000001
106 104 0.86345 0.86665
107 105 0.8731 0.8785000000000001
108 106 0.88265 0.88385
109 107 0.88705 0.8925000000000001
110 108 0.9022 0.90315
111 109 0.9075500000000001 0.91195
112 110 0.9183 0.91935
113 111 0.9247000000000001 0.9247500000000001
114 112 0.93445 0.93015
115 113 0.9398500000000001 0.94515
116 114 0.9484 0.9527500000000001
117 115 0.9558500000000001 0.9570500000000001
118 116 0.9624 0.9635
119 117 0.9722000000000001 0.9731500000000001
120 118 0.97855 0.9808
121 119 0.9883000000000001 0.9937
122 120 0.9959 1.00215
123 121 1.0066 1.00865
124 122 1.0141 1.01625
125 123 1.0195 1.0291000000000001
126 124 1.02915 1.04
127 125 1.03885 1.0486
128 126 1.04315 1.0539
129 127 1.054 1.0582500000000001
130 128 1.06265 1.0702500000000001
131 129 1.07005 1.0745500000000001
132 130 1.07665 1.0852
133 131 1.08085 1.0928
134 132 1.0918 1.10345
135 133 1.1024500000000002 1.11425
136 134 1.11215 1.11965
137 135 1.1185500000000002 1.1271
138 136 1.13045 1.13795
139 137 1.1380000000000001 1.1434
140 138 1.1466 1.15205
141 139 1.1530500000000001 1.1617
142 140 1.1627 1.1692
143 141 1.1715 1.1767
144 142 1.17785 1.1864000000000001
145 143 1.18435 1.194
146 144 1.18975 1.2026000000000001
147 145 1.2015 1.2101
148 146 1.2112500000000002 1.2167000000000001
149 147 1.2209 1.22195
150 148 1.2307000000000001 1.2327000000000001
151 149 1.23715 1.2414
152 150 1.2458 1.25535
153 151 1.25315 1.2597
154 152 1.2586000000000002 1.2640500000000001
155 153 1.2705 1.27905
156 154 1.2801500000000001 1.28345
157 155 1.2856 1.29525
158 156 1.29305 1.30175
159 157 1.2996 1.30705
160 158 1.30705 1.3201
161 159 1.3168 1.3264500000000001
162 160 1.3242500000000001 1.3308
163 161 1.33195 1.3404500000000001
164 162 1.3404500000000001 1.34805
165 163 1.3523500000000002 1.3566500000000001
166 164 1.3565500000000001 1.3621
167 165 1.3717000000000001 1.37715
168 166 1.3814 1.3846500000000002
169 167 1.3857000000000002 1.3944
170 168 1.3932 1.3986
171 169 1.4029500000000001 1.40825
172 170 1.41375 1.4148
173 171 1.4245 1.4234
174 172 1.42785 1.4342000000000001
175 173 1.43425 1.43865
176 174 1.4407 1.44485
177 175 1.4492 1.4557
178 176 1.46005 1.4687000000000001
179 177 1.4644000000000001 1.4741
180 178 1.4772500000000002 1.48795
181 179 1.4816 1.4934
182 180 1.48805 1.50205
183 181 1.5019 1.5074500000000002
184 182 1.5106000000000002 1.52045
185 183 1.52145 1.5257500000000002
186 184 1.5257 1.53105
187 185 1.5365 1.5429000000000002
188 186 1.54305 1.5515
189 187 1.5537 1.5623
190 188 1.5602 1.572
191 189 1.56765 1.5785500000000001
192 190 1.5795000000000001 1.58705
193 191 1.5872000000000002 1.5926
194 192 1.5905 1.59785
195 193 1.6044 1.6119
196 194 1.6108 1.6194000000000002
197 195 1.6195000000000002 1.62805
198 196 1.627 1.6335000000000002
199 197 1.6357000000000002 1.64205
200 198 1.64525 1.6496000000000002
201 199 1.6517000000000002 1.6594
202 200 1.6615 1.6700000000000002
203 201 1.6701000000000001 1.6765
204 202 1.67865 1.68205
205 203 1.6905000000000001 1.68955
206 204 1.6958 1.6948500000000002
207 205 1.7034500000000001 1.70665
208 206 1.70985 1.71425
209 207 1.7176 1.72825
210 208 1.7293500000000002 1.7346000000000001
211 209 1.7336 1.7433
212 210 1.74015 1.7477
213 211 1.74865 1.754
214 212 1.7563000000000002 1.76055
215 213 1.7701500000000001 1.7681
216 214 1.7756 1.7788000000000002
217 215 1.7853 1.78745
218 216 1.7916500000000002 1.7950000000000002
219 217 1.8004 1.80685
220 218 1.8089000000000002 1.81335
221 219 1.81665 1.8209000000000002
222 220 1.82505 1.8284
223 221 1.8327 1.83705
224 222 1.8423500000000002 1.8445
225 223 1.8467500000000001 1.8576000000000001
226 224 1.8585500000000001 1.8628500000000001
227 225 1.86395 1.8703500000000002
228 226 1.87155 1.8801
229 227 1.8822500000000002 1.8897000000000002
230 228 1.8876000000000002 1.89955
231 229 1.9006 1.9059000000000001
232 230 1.907 1.91555
233 231 1.91565 1.9210500000000001
234 232 1.921 1.92755
235 233 1.93395 1.9372
236 234 1.9404000000000001 1.94795
237 235 1.9489500000000002 1.9554
238 236 1.9555 1.96185
239 237 1.9620000000000002 1.97065
240 238 1.9673500000000002 1.9803000000000002
241 239 1.9770500000000002 1.98895
242 240 1.9877500000000001 1.99865
241 1.99425
242 2.005
243 2.0158
244 2.0212
245 2.02975
246 2.0341
247 2.04605
248 2.0513
249 2.05995
250 2.0739
251 2.0825
252 2.0911
253 2.0965000000000003
254 2.101
255 2.1138
256 2.1246
257 2.1353500000000003
258 2.14065
259 2.14505
260 2.15265
261 2.16445
262 2.1698
263 2.1742
264 2.1828000000000003
265 2.1945
266 2.20425
267 2.214
268 2.22255
269 2.2279500000000003
270 2.2376
271 2.24405
272 2.2516000000000003
273 2.25925
274 2.271
275 2.28085
276 2.2873
277 2.299
278 2.30345
279 2.3131
280 2.3206
281 2.3303000000000003
282 2.3367500000000003
283 2.3497
284 2.3550500000000003
285 2.3637
286 2.37445
287 2.3789000000000002
288 2.3885
289 2.4013500000000003
290 2.4067000000000003
291 2.4122500000000002
292 2.4219
293 2.42725
294 2.4370000000000003
295 2.44775
296 2.4541500000000003
297 2.4628
298 2.4692000000000003
299 2.4757000000000002
300 2.4865500000000003
301 2.4939
302 2.50035
303 2.5102
304 2.5177
305 2.53165
306 2.5391500000000002
307 2.5446
308 2.5532500000000002
309 2.5641000000000003
310 2.5705
311 2.5770500000000003
312 2.5888500000000003
313 2.5975
314 2.6018000000000003
315 2.6157
316 2.6233500000000003
317 2.6318
318 2.6393500000000003
319 2.6458
320 2.65335
321 2.6674
322 2.67285
323 2.6782500000000002
324 2.68685
325 2.6944500000000002
326 2.7018500000000003
327 2.71055
328 2.718
329 2.7256500000000004
330 2.7407500000000002
331 2.7482
332 2.75475
333 2.7600000000000002
334 2.76765
335 2.77725
336 2.78165
337 2.7934
338 2.8031
339 2.81175
340 2.8225000000000002
341 2.8268
342 2.83645
343 2.8473
344 2.85475
345 2.8645
346 2.8710500000000003
347 2.8796500000000003
348 2.8883
349 2.89365
350 2.9021500000000002
351 2.9087
352 2.91725
353 2.93345
354 2.9389000000000003
355 2.9442500000000003
356 2.955
357 2.9657500000000003
358 2.97325
359 2.9786
360 2.9840500000000003
361 2.99915
362 3.0035000000000003
363 3.0122
364 3.01965
365 3.0283
366 3.0369
367 3.04765
368 3.0551500000000003
369 3.0638
370 3.0692
371 3.07775
372 3.0865
373 3.09505
374 3.0993500000000003
375 3.1069500000000003
376 3.123
377 3.12745
378 3.1359500000000002
379 3.14665
380 3.15645
381 3.16495
382 3.1715
383 3.1781
384 3.1843500000000002
385 3.193
386 3.2027
387 3.2071
388 3.2199500000000003
389 3.2285000000000004
390 3.234
391 3.2426000000000004
392 3.2512000000000003
393 3.2586500000000003
394 3.2704500000000003
395 3.2759500000000004
396 3.28565
397 3.29115
398 3.3029
399 3.3104
400 3.3211500000000003
401 3.3287500000000003
402 3.33535
403 3.3449
404 3.3504
405 3.3600000000000003
406 3.3653
407 3.3750500000000003
408 3.3827000000000003
409 3.39445
410 3.3998000000000004
411 3.4148
412 3.4192
413 3.4311000000000003
414 3.4365
415 3.444
416 3.45155
417 3.4591000000000003
418 3.4676
419 3.4784
420 3.48605
421 3.4903500000000003
422 3.50535
423 3.51295
424 3.51825
425 3.5280500000000004
426 3.5398500000000004
427 3.54625
428 3.5540000000000003
429 3.56565
430 3.56995
431 3.5775
432 3.5829500000000003
433 3.5915000000000004
434 3.6044
435 3.6131
436 3.6237000000000004
437 3.63035
438 3.6388000000000003
439 3.64425
440 3.64975
441 3.66255
442 3.6701
443 3.67865
444 3.68305
445 3.6896
446 3.6993500000000004
447 3.7121500000000003
448 3.7175000000000002
449 3.7251000000000003
450 3.7315
451 3.74445
452 3.7499000000000002
453 3.7574
454 3.77035
455 3.7767500000000003
456 3.7832000000000003
457 3.79395
458 3.8017000000000003
459 3.8091000000000004
460 3.821
461 3.8275
462 3.8393
463 3.8478000000000003
464 3.85325
465 3.86085
466 3.8714000000000004
467 3.8748500000000003
468 3.891
469 3.89535
470 3.90395
471 3.91035
472 3.9190500000000004
473 3.9276
474 3.9350500000000004
475 3.94265
476 3.9566500000000002
477 3.9643
478 3.9728000000000003
479 3.9846000000000004
480 3.9901
481 3.9987000000000004
482 4.00515
483 4.0126
484 4.02125
485 4.0277
486 4.0417000000000005
487 4.0494
488 4.0568
489 4.0654
490 4.0729500000000005
491 4.0795
492 4.08805
493 4.0923
494 4.0977500000000004
495 4.1127
496 4.1183000000000005
497 4.12675
498 4.1365
499 4.143
500 4.1527
501 4.1635
502 4.16885
503 4.1764
504 4.1882
505 4.1948
506 4.20335
507 4.2109000000000005
508 4.21955
509 4.22605
510 4.23345
511 4.2441
512 4.25495
513 4.260400000000001
514 4.268
515 4.2756
516 4.2883000000000004
517 4.2949
518 4.30345
519 4.311
520 4.31755
521 4.3239
522 4.33255
523 4.33905
524 4.3509
525 4.35735
526 4.37025
527 4.3777
528 4.3832
529 4.39175
530 4.39935
531 4.4101
532 4.4197500000000005
533 4.426200000000001
534 4.4380500000000005
535 4.4436
536 4.45005
537 4.46185
538 4.46825
539 4.47795
540 4.4823
541 4.4899000000000004
542 4.4952000000000005
543 4.51015
544 4.5156
545 4.5200000000000005
546 4.53515
547 4.5416
548 4.5523
549 4.55665
550 4.564150000000001
551 4.571750000000001
552 4.5813500000000005
553 4.591
554 4.60285
555 4.608350000000001
556 4.61365
557 4.6201
558 4.6276
559 4.64055
560 4.64605
561 4.655600000000001
562 4.6622
563 4.67075
564 4.6847
565 4.69015
566 4.700950000000001
567 4.70525
568 4.7117
569 4.725750000000001
570 4.73115
571 4.7376000000000005
572 4.7536000000000005
573 4.762300000000001
574 4.7687
575 4.7742
576 4.78495
577 4.7935
578 4.7988
579 4.80965
580 4.81615
581 4.824800000000001
582 4.8355500000000005
583 4.8420000000000005
584 4.85065
585 4.856
586 4.8656500000000005
587 4.87115
588 4.88295
589 4.8958
590 4.9002
591 4.9066
592 4.9153
593 4.92285
594 4.93355
595 4.94325
596 4.95075
597 4.9583
598 4.9637
599 4.97125
600 4.97775
601 4.98315
602 4.996
603 5.0024500000000005
604 5.0133
605 5.02285
606 5.03155
607 5.0402000000000005
608 5.0477
609 5.05755
610 5.06715
611 5.0736
612 5.0821000000000005
613 5.08645
614 5.09305
615 5.10475
616 5.1135
617 5.1231
618 5.12755
619 5.1393
620 5.1479
621 5.15545
622 5.1661
623 5.1738
624 5.1813
625 5.1879
626 5.1965
627 5.20275
628 5.21035
629 5.2233
630 5.2308
631 5.2383500000000005
632 5.2449
633 5.252400000000001
634 5.2664
635 5.2717
636 5.27815
637 5.287850000000001
638 5.29445
639 5.29975
640 5.31165
641 5.321400000000001
642 5.3268
643 5.3375
644 5.34285
645 5.35475
646 5.36225
647 5.3687000000000005
648 5.37835
649 5.38375
650 5.3935
651 5.401000000000001
652 5.408650000000001
653 5.41495
654 5.4236
655 5.43325
656 5.44955
657 5.4538
658 5.461250000000001
659 5.4677500000000006
660 5.47865
661 5.4871
662 5.4937000000000005
663 5.50005
664 5.510750000000001
665 5.519550000000001
666 5.5281
667 5.53345
668 5.54215
669 5.556100000000001
670 5.560350000000001
671 5.569
672 5.57875
673 5.587350000000001
674 5.5969500000000005
675 5.603400000000001
676 5.6109
677 5.6197
678 5.6283
679 5.63685
680 5.6433
681 5.649900000000001
682 5.66165
683 5.6714
684 5.68205
685 5.68975
686 5.69615
687 5.7005
688 5.710100000000001
689 5.72085
690 5.729500000000001
691 5.736000000000001
692 5.7457
693 5.7533
694 5.764
695 5.7694
696 5.7758
697 5.7877
698 5.79525
699 5.8006
700 5.8167
701 5.8212
702 5.8340000000000005
703 5.8393500000000005
704 5.848
705 5.8534500000000005
706 5.85775
707 5.8759500000000005
708 5.8815
709 5.8868
710 5.8964
711 5.9019
712 5.9094500000000005
713 5.9169
714 5.92445
715 5.93625
716 5.948250000000001
717 5.9589
718 5.96445
719 5.96865
720 5.9762
721 5.9858
722 5.995550000000001
723 5.99985

View File

@ -1,722 +1,241 @@
,spikes
0,0.01025
1,0.019950000000000002
2,0.02545
3,0.034050000000000004
4,0.0405
5,0.050050000000000004
6,0.05775
7,0.06535
0,0.0028
1,0.0146
2,0.023100000000000002
3,0.03185
4,0.039400000000000004
5,0.049100000000000005
6,0.0577
7,0.06520000000000001
8,0.07390000000000001
9,0.08255
10,0.09125
11,0.09970000000000001
12,0.11045
13,0.11595000000000001
14,0.12555
15,0.13205
16,0.1385
17,0.15130000000000002
18,0.16
19,0.16765000000000002
20,0.1762
21,0.18475
22,0.19445
23,0.20095000000000002
24,0.2117
25,0.21815
26,0.22565000000000002
27,0.2354
28,0.24505000000000002
29,0.2516
30,0.26125000000000004
31,0.26775
32,0.27635000000000004
33,0.28600000000000003
34,0.29355000000000003
35,0.30445
36,0.3108
37,0.31725000000000003
38,0.3249
39,0.33135000000000003
40,0.3421
41,0.34850000000000003
42,0.35825
43,0.36685
44,0.3743
45,0.38405
46,0.3917
47,0.40130000000000005
48,0.40885000000000005
49,0.4152
50,0.42710000000000004
51,0.43575
52,0.4434
53,0.45295
54,0.45945
55,0.4681
56,0.47450000000000003
57,0.48315
58,0.49605000000000005
59,0.5016
60,0.50895
61,0.5187
62,0.5242
63,0.5316500000000001
64,0.5401
65,0.55215
66,0.55955
67,0.56715
68,0.5747
69,0.58225
70,0.5940500000000001
71,0.6006
72,0.6091
73,0.61565
74,0.6263500000000001
75,0.6328
76,0.6426000000000001
77,0.65225
78,0.6588
79,0.6663
80,0.67715
81,0.6835
82,0.6921
83,0.69865
84,0.70615
85,0.71475
86,0.7255
87,0.7341500000000001
88,0.7427
89,0.7512500000000001
90,0.7579
91,0.7676000000000001
92,0.77825
93,0.7847500000000001
94,0.7913
95,0.7998000000000001
96,0.80625
97,0.8181
98,0.82565
99,0.83535
100,0.84075
101,0.8482500000000001
102,0.859
103,0.8687
104,0.8753000000000001
105,0.8817
106,0.8924000000000001
107,0.9
108,0.9065500000000001
109,0.914
110,0.9236500000000001
111,0.9344
112,0.9420000000000001
113,0.9485
114,0.9559500000000001
115,0.96465
116,0.97545
117,0.98285
118,0.9893500000000001
119,1.00005
120,1.0097500000000001
121,1.01635
122,1.0239
123,1.03455
124,1.04325
125,1.04855
126,1.0572000000000001
127,1.06475
128,1.07665
129,1.08405
130,1.09385
131,1.10345
132,1.11005
133,1.1175000000000002
134,1.125
135,1.1346500000000002
136,1.1445
137,1.1519000000000001
138,1.1616
139,1.1671500000000001
140,1.17575
141,1.1811
142,1.19295
143,1.2004000000000001
144,1.2101
145,1.2155500000000001
146,1.2273500000000002
147,1.23395
148,1.24135
149,1.25
150,1.2576
151,1.26825
152,1.2758
153,1.28455
154,1.29095
155,1.2996
156,1.3071000000000002
157,1.3157
158,1.3234000000000001
159,1.32985
160,1.3426
161,1.35125
162,1.3577000000000001
163,1.36955
164,1.3749500000000001
165,1.3826
166,1.3922
167,1.4007500000000002
168,1.40835
169,1.4181000000000001
170,1.42655
171,1.4363000000000001
172,1.4417
173,1.4503000000000001
174,1.4589
175,1.4676500000000001
176,1.47515
177,1.48275
178,1.49025
179,1.502
180,1.50855
181,1.51715
182,1.5236500000000002
183,1.53325
184,1.54085
185,1.5483500000000001
186,1.5559500000000002
187,1.5678
188,1.57745
189,1.58385
190,1.5925
191,1.59995
192,1.6097000000000001
193,1.6183500000000002
194,1.6259000000000001
195,1.6334000000000002
196,1.6411
197,1.65175
198,1.6604
199,1.6668500000000002
200,1.6755
201,1.6841000000000002
202,1.69475
203,1.70025
204,1.70785
205,1.7164000000000001
206,1.72605
207,1.73265
208,1.7422000000000002
209,1.7519
210,1.76055
211,1.7680500000000001
212,1.7756500000000002
213,1.7821
214,1.7930000000000001
215,1.80155
216,1.8100500000000002
217,1.81965
218,1.8264
219,1.8328
220,1.84135
221,1.8521500000000002
222,1.8585500000000001
223,1.8671
224,1.8768
225,1.88325
226,1.8919000000000001
227,1.9017000000000002
228,1.9092500000000001
229,1.91985
230,1.9254
231,1.9340000000000002
232,1.94265
233,1.9502000000000002
234,1.96185
235,1.9672500000000002
236,1.97485
237,1.9835
238,1.98995
239,2.00075
240,2.00725
241,2.0158
242,2.02765
243,2.0351500000000002
244,2.04375
245,2.0524
246,2.0599000000000003
247,2.0685000000000002
248,2.07605
249,2.08255
250,2.088
251,2.1020000000000003
252,2.11055
253,2.1182000000000003
254,2.1247000000000003
255,2.1322
256,2.1429
257,2.1515
258,2.1581
259,2.1677
260,2.17415
261,2.18385
262,2.19465
263,2.20115
264,2.2097
265,2.21725
266,2.2258
267,2.2323500000000003
268,2.2441
269,2.2506
270,2.2560000000000002
271,2.26565
272,2.2742500000000003
273,2.2840000000000003
274,2.2904500000000003
275,2.3002000000000002
276,2.3087500000000003
277,2.3173500000000002
278,2.3291500000000003
279,2.33465
280,2.3432500000000003
281,2.34875
282,2.36045
283,2.3669000000000002
284,2.3755
285,2.38425
286,2.3916500000000003
287,2.4005
288,2.40795
289,2.4165
290,2.42505
291,2.4316
292,2.4402
293,2.4465500000000002
294,2.45635
295,2.46605
296,2.47465
297,2.4822
298,2.4897
299,2.4994
300,2.50585
301,2.5166500000000003
302,2.52415
303,2.53065
304,2.54145
305,2.5490500000000003
306,2.5586
307,2.5652500000000003
308,2.57375
309,2.58235
310,2.5888
311,2.5995500000000002
312,2.60815
313,2.6146000000000003
314,2.6242
315,2.63295
316,2.64045
317,2.6491000000000002
318,2.6577
319,2.6653000000000002
320,2.6728
321,2.6793500000000003
322,2.6900500000000003
323,2.69865
324,2.7051000000000003
325,2.71265
326,2.72235
327,2.73095
328,2.7407
329,2.74715
330,2.7567500000000003
331,2.76545
332,2.774
333,2.7826
334,2.79015
335,2.79775
336,2.8042000000000002
337,2.8129
338,2.82045
339,2.83005
340,2.8376
341,2.84735
342,2.857
343,2.8624
344,2.87205
345,2.8817
346,2.89155
347,2.89895
348,2.90885
349,2.9141000000000004
350,2.9205
351,2.9302
352,2.93885
353,2.9453
354,2.9539500000000003
355,2.9625000000000004
356,2.97335
357,2.9787500000000002
358,2.9873000000000003
359,2.996
360,3.0077000000000003
361,3.01425
362,3.0218000000000003
363,3.0325
364,3.0400500000000004
365,3.0477000000000003
366,3.0552
367,3.06175
368,3.07025
369,3.08
370,3.08745
371,3.09605
372,3.10575
373,3.11445
374,3.1218500000000002
375,3.1316
376,3.1371
377,3.14675
378,3.1553
379,3.1639
380,3.17045
381,3.177
382,3.1876
383,3.19415
384,3.20385
385,3.2155500000000004
386,3.22105
387,3.2275
388,3.2373000000000003
389,3.2458
390,3.25545
391,3.2630000000000003
392,3.27165
393,3.2782500000000003
394,3.2857000000000003
395,3.2953
396,3.3060500000000004
397,3.3114500000000002
398,3.3212
399,3.3287500000000003
400,3.3373000000000004
401,3.3481
402,3.3536
403,3.3632500000000003
404,3.3697000000000004
405,3.3815
406,3.39015
407,3.39765
408,3.4041
409,3.4127
410,3.4214
411,3.4321
412,3.4387000000000003
413,3.44505
414,3.4537500000000003
415,3.4644500000000003
416,3.471
417,3.47955
418,3.48705
419,3.4945500000000003
420,3.5043
421,3.51295
422,3.51945
423,3.5269500000000003
424,3.5344
425,3.54415
426,3.5518
427,3.5625500000000003
428,3.57215
429,3.5798
430,3.58515
431,3.5968500000000003
432,3.60245
433,3.61405
434,3.6207000000000003
435,3.6303
436,3.6368
437,3.6454
438,3.6531000000000002
439,3.6594
440,3.669
441,3.67775
442,3.68635
443,3.69285
444,3.7014500000000004
445,3.7089000000000003
446,3.7187
447,3.72725
448,3.7348500000000002
449,3.74235
450,3.7520000000000002
451,3.7595500000000004
452,3.7670000000000003
453,3.7746500000000003
454,3.7843500000000003
455,3.793
456,3.8027
457,3.8081500000000004
458,3.81985
459,3.8285500000000003
460,3.8339000000000003
461,3.8426500000000003
462,3.84905
463,3.8575500000000003
464,3.8705000000000003
465,3.8781000000000003
466,3.8855000000000004
467,3.89425
468,3.90065
469,3.9083
470,3.9168000000000003
471,3.92545
472,3.9362000000000004
473,3.94265
474,3.9524500000000002
475,3.9599
476,3.96965
477,3.9760500000000003
478,3.9837000000000002
479,3.9922
480,4.00195
481,4.0073
482,4.01475
483,4.02355
484,4.0343
485,4.0428500000000005
486,4.04945
487,4.058
488,4.06975
489,4.075200000000001
490,4.08165
491,4.0902
492,4.09895
493,4.10845
494,4.1182
495,4.12585
496,4.1333
497,4.1461500000000004
498,4.1516
499,4.15915
500,4.1668
501,4.173150000000001
502,4.1818
503,4.19255
504,4.20005
505,4.20665
506,4.21525
507,4.22495
508,4.2324
509,4.2421
510,4.2496
511,4.25825
512,4.26675
513,4.27675
514,4.28305
515,4.2906
516,4.30025
517,4.30565
518,4.31975
519,4.327100000000001
520,4.3336500000000004
521,4.3412500000000005
522,4.352
523,4.35845
524,4.3649000000000004
525,4.37455
526,4.3833
527,4.3896500000000005
528,4.40155
529,4.4101
530,4.41775
531,4.4251000000000005
532,4.436
533,4.4425
534,4.4511
535,4.4586500000000004
536,4.4673
537,4.4758000000000004
538,4.48345
539,4.49085
540,4.49845
541,4.5092
542,4.5157
543,4.5232
544,4.535
545,4.54145
546,4.54905
547,4.5556
548,4.566450000000001
549,4.57285
550,4.5803
551,4.5889500000000005
552,4.59865
553,4.606050000000001
554,4.61585
555,4.62445
556,4.63415
557,4.64165
558,4.6503000000000005
559,4.6589
560,4.6664
561,4.67605
562,4.68475
563,4.69025
564,4.69875
565,4.706300000000001
566,4.7203
567,4.725750000000001
568,4.731050000000001
569,4.73865
570,4.750500000000001
571,4.7579
572,4.76545
573,4.77195
574,4.78275
575,4.78925
576,4.800050000000001
577,4.806500000000001
578,4.81505
579,4.8259
580,4.831300000000001
581,4.8399
582,4.8473500000000005
583,4.8571
584,4.86465
585,4.87225
586,4.880850000000001
587,4.887300000000001
588,4.89905
589,4.90555
590,4.91415
591,4.926
592,4.93355
593,4.9411000000000005
594,4.9488
595,4.9573
596,4.96485
597,4.97335
598,4.97985
599,4.98655
600,5.0003
601,5.00685
602,5.0145
603,5.024
604,5.03375
605,5.041250000000001
606,5.0509
607,5.0585
608,5.0671
609,5.0757
610,5.08125
611,5.0898
612,5.1006
613,5.1081
614,5.1146
615,5.1221000000000005
616,5.13285
617,5.1393
618,5.149
619,5.1576
620,5.165150000000001
621,5.17375
622,5.18135
623,5.19095
624,5.19855
625,5.20505
626,5.215800000000001
627,5.22545
628,5.232950000000001
629,5.239450000000001
630,5.247
631,5.2566500000000005
632,5.26525
633,5.27175
634,5.28245
635,5.29115
636,5.29875
637,5.3083
638,5.31695
639,5.3268
640,5.3353
641,5.3428
642,5.35045
643,5.35905
644,5.36545
645,5.3719
646,5.38175
647,5.3903
648,5.39885
649,5.407500000000001
650,5.414000000000001
651,5.4226
652,5.4311
653,5.4398
654,5.449450000000001
655,5.45485
656,5.4636000000000005
657,5.475350000000001
658,5.481800000000001
659,5.4915
660,5.4969
661,5.5066500000000005
662,5.51415
663,5.523750000000001
664,5.5313
665,5.54105
666,5.5496
667,5.5572
668,5.5647
669,5.573300000000001
670,5.580900000000001
671,5.5874500000000005
672,5.598050000000001
673,5.6077
674,5.61535
675,5.6219
676,5.6316500000000005
677,5.6412
678,5.64665
679,5.6552500000000006
680,5.667000000000001
681,5.67565
682,5.685350000000001
683,5.69075
684,5.699400000000001
685,5.708
686,5.7145
687,5.7252
688,5.73175
689,5.7393
690,5.7468
691,5.7564
692,5.76405
693,5.772600000000001
694,5.780200000000001
695,5.79195
696,5.79835
697,5.807
698,5.81475
699,5.82315
700,5.83185
701,5.83945
702,5.846
703,5.85555
704,5.8621
705,5.8739
706,5.88565
707,5.89315
708,5.90075
709,5.90935
710,5.915850000000001
711,5.9234
712,5.9341
713,5.93965
714,5.945
715,5.95465
716,5.9611
717,5.974
718,5.9806
719,5.9879500000000005
720,5.9976
9,0.08025
10,0.08895
11,0.09755
12,0.10300000000000001
13,0.11475
14,0.12125000000000001
15,0.1341
16,0.14075000000000001
17,0.1481
18,0.15785000000000002
19,0.16435
20,0.16970000000000002
21,0.1826
22,0.18810000000000002
23,0.19555
24,0.20625000000000002
25,0.2129
26,0.21925
27,0.22895000000000001
28,0.23550000000000001
29,0.24505000000000002
30,0.25495
31,0.2635
32,0.26990000000000003
33,0.27965
34,0.2883
35,0.29575
36,0.30325
37,0.3108
38,0.3194
39,0.327
40,0.3377
41,0.34535
42,0.3551
43,0.3657
44,0.3733
45,0.38075000000000003
46,0.3874
47,0.39815
48,0.40765
49,0.41525
50,0.4207
51,0.42925
52,0.44005
53,0.4456
54,0.4541
55,0.46265
56,0.47015
57,0.47995000000000004
58,0.48850000000000005
59,0.49605000000000005
60,0.5057
61,0.5112
62,0.52195
63,0.52735
64,0.53585
65,0.5446
66,0.5553
67,0.5629500000000001
68,0.57035
69,0.5779000000000001
70,0.58855
71,0.5974
72,0.60485
73,0.6145
74,0.62205
75,0.6286
76,0.6372
77,0.6458
78,0.6534
79,0.66195
80,0.6683
81,0.67595
82,0.6855
83,0.6964
84,0.7060500000000001
85,0.71255
86,0.7211000000000001
87,0.7278
88,0.7383000000000001
89,0.74695
90,0.7534000000000001
91,0.75995
92,0.7697
93,0.7794500000000001
94,0.78685
95,0.7934
96,0.8019000000000001
97,0.8095
98,0.8159500000000001
99,0.8289000000000001
100,0.8365
101,0.8440000000000001
102,0.8515
103,0.8602000000000001
104,0.86975
105,0.8774000000000001
106,0.8838
107,0.8935500000000001
108,0.90315
109,0.9127500000000001
110,0.91835
111,0.9281
112,0.9344
113,0.9441
114,0.95165
115,0.9593
116,0.9678500000000001
117,0.9743
118,0.9819
119,0.9926
120,0.9991000000000001
121,1.0077
122,1.01955
123,1.0272000000000001
124,1.0336
125,1.0443
126,1.0530000000000002
127,1.0604
128,1.06695
129,1.0745500000000001
130,1.08525
131,1.0917000000000001
132,1.10135
133,1.11
134,1.1207500000000001
135,1.12625
136,1.1347
137,1.14445
138,1.15415
139,1.1606
140,1.1703000000000001
141,1.17685
142,1.1854500000000001
143,1.19295
144,1.1995500000000001
145,1.2102000000000002
146,1.21875
147,1.22625
148,1.2329
149,1.2435500000000002
150,1.25
151,1.26075
152,1.2673
153,1.276
154,1.2845
155,1.2930000000000001
156,1.30065
157,1.31135
158,1.3178
159,1.3264500000000001
160,1.3362
161,1.3427
162,1.3512
163,1.3577000000000001
164,1.3663
165,1.3749
166,1.3857000000000002
167,1.3933
168,1.3986
169,1.4083
170,1.4169
171,1.4244
172,1.4320000000000002
173,1.44075
174,1.4503000000000001
175,1.4611500000000002
176,1.4675500000000001
177,1.47615
178,1.4858500000000001
179,1.4924000000000002
180,1.50095
181,1.5074500000000002
182,1.5161
183,1.5258500000000002
184,1.5354
185,1.5409000000000002
186,1.54935
187,1.5581500000000001
188,1.5667
189,1.5742500000000001
190,1.58185
191,1.5925
192,1.59905
193,1.6087
194,1.6174000000000002
195,1.627
196,1.63345
197,1.6442
198,1.6528500000000002
199,1.6604
200,1.66805
201,1.67755
202,1.683
203,1.69265
204,1.7012500000000002
205,1.70775
206,1.7185000000000001
207,1.72835
208,1.7358
209,1.74435
210,1.7518500000000001
211,1.7615500000000002
212,1.76815
213,1.7746000000000002
214,1.78535
215,1.7939500000000002
216,1.80045
217,1.8078500000000002
218,1.8123
219,1.8251000000000002
220,1.8338
221,1.8414000000000001
222,1.8532000000000002
223,1.8586500000000001
224,1.8681500000000002
225,1.8746500000000001
226,1.8844
227,1.8920000000000001
228,1.90165
229,1.9092500000000001
230,1.9166500000000002
231,1.92645
232,1.93385
233,1.94035
234,1.9524000000000001
235,1.9629500000000002
236,1.9694500000000001
237,1.9760000000000002
238,1.9856
239,1.9944000000000002

1 spikes
2 0 0.01025 0.0028
3 1 0.019950000000000002 0.0146
4 2 0.02545 0.023100000000000002
5 3 0.034050000000000004 0.03185
6 4 0.0405 0.039400000000000004
7 5 0.050050000000000004 0.049100000000000005
8 6 0.05775 0.0577
9 7 0.06535 0.06520000000000001
10 8 0.07390000000000001
11 9 0.08255 0.08025
12 10 0.09125 0.08895
13 11 0.09970000000000001 0.09755
14 12 0.11045 0.10300000000000001
15 13 0.11595000000000001 0.11475
16 14 0.12555 0.12125000000000001
17 15 0.13205 0.1341
18 16 0.1385 0.14075000000000001
19 17 0.15130000000000002 0.1481
20 18 0.16 0.15785000000000002
21 19 0.16765000000000002 0.16435
22 20 0.1762 0.16970000000000002
23 21 0.18475 0.1826
24 22 0.19445 0.18810000000000002
25 23 0.20095000000000002 0.19555
26 24 0.2117 0.20625000000000002
27 25 0.21815 0.2129
28 26 0.22565000000000002 0.21925
29 27 0.2354 0.22895000000000001
30 28 0.24505000000000002 0.23550000000000001
31 29 0.2516 0.24505000000000002
32 30 0.26125000000000004 0.25495
33 31 0.26775 0.2635
34 32 0.27635000000000004 0.26990000000000003
35 33 0.28600000000000003 0.27965
36 34 0.29355000000000003 0.2883
37 35 0.30445 0.29575
38 36 0.3108 0.30325
39 37 0.31725000000000003 0.3108
40 38 0.3249 0.3194
41 39 0.33135000000000003 0.327
42 40 0.3421 0.3377
43 41 0.34850000000000003 0.34535
44 42 0.35825 0.3551
45 43 0.36685 0.3657
46 44 0.3743 0.3733
47 45 0.38405 0.38075000000000003
48 46 0.3917 0.3874
49 47 0.40130000000000005 0.39815
50 48 0.40885000000000005 0.40765
51 49 0.4152 0.41525
52 50 0.42710000000000004 0.4207
53 51 0.43575 0.42925
54 52 0.4434 0.44005
55 53 0.45295 0.4456
56 54 0.45945 0.4541
57 55 0.4681 0.46265
58 56 0.47450000000000003 0.47015
59 57 0.48315 0.47995000000000004
60 58 0.49605000000000005 0.48850000000000005
61 59 0.5016 0.49605000000000005
62 60 0.50895 0.5057
63 61 0.5187 0.5112
64 62 0.5242 0.52195
65 63 0.5316500000000001 0.52735
66 64 0.5401 0.53585
67 65 0.55215 0.5446
68 66 0.55955 0.5553
69 67 0.56715 0.5629500000000001
70 68 0.5747 0.57035
71 69 0.58225 0.5779000000000001
72 70 0.5940500000000001 0.58855
73 71 0.6006 0.5974
74 72 0.6091 0.60485
75 73 0.61565 0.6145
76 74 0.6263500000000001 0.62205
77 75 0.6328 0.6286
78 76 0.6426000000000001 0.6372
79 77 0.65225 0.6458
80 78 0.6588 0.6534
81 79 0.6663 0.66195
82 80 0.67715 0.6683
83 81 0.6835 0.67595
84 82 0.6921 0.6855
85 83 0.69865 0.6964
86 84 0.70615 0.7060500000000001
87 85 0.71475 0.71255
88 86 0.7255 0.7211000000000001
89 87 0.7341500000000001 0.7278
90 88 0.7427 0.7383000000000001
91 89 0.7512500000000001 0.74695
92 90 0.7579 0.7534000000000001
93 91 0.7676000000000001 0.75995
94 92 0.77825 0.7697
95 93 0.7847500000000001 0.7794500000000001
96 94 0.7913 0.78685
97 95 0.7998000000000001 0.7934
98 96 0.80625 0.8019000000000001
99 97 0.8181 0.8095
100 98 0.82565 0.8159500000000001
101 99 0.83535 0.8289000000000001
102 100 0.84075 0.8365
103 101 0.8482500000000001 0.8440000000000001
104 102 0.859 0.8515
105 103 0.8687 0.8602000000000001
106 104 0.8753000000000001 0.86975
107 105 0.8817 0.8774000000000001
108 106 0.8924000000000001 0.8838
109 107 0.9 0.8935500000000001
110 108 0.9065500000000001 0.90315
111 109 0.914 0.9127500000000001
112 110 0.9236500000000001 0.91835
113 111 0.9344 0.9281
114 112 0.9420000000000001 0.9344
115 113 0.9485 0.9441
116 114 0.9559500000000001 0.95165
117 115 0.96465 0.9593
118 116 0.97545 0.9678500000000001
119 117 0.98285 0.9743
120 118 0.9893500000000001 0.9819
121 119 1.00005 0.9926
122 120 1.0097500000000001 0.9991000000000001
123 121 1.01635 1.0077
124 122 1.0239 1.01955
125 123 1.03455 1.0272000000000001
126 124 1.04325 1.0336
127 125 1.04855 1.0443
128 126 1.0572000000000001 1.0530000000000002
129 127 1.06475 1.0604
130 128 1.07665 1.06695
131 129 1.08405 1.0745500000000001
132 130 1.09385 1.08525
133 131 1.10345 1.0917000000000001
134 132 1.11005 1.10135
135 133 1.1175000000000002 1.11
136 134 1.125 1.1207500000000001
137 135 1.1346500000000002 1.12625
138 136 1.1445 1.1347
139 137 1.1519000000000001 1.14445
140 138 1.1616 1.15415
141 139 1.1671500000000001 1.1606
142 140 1.17575 1.1703000000000001
143 141 1.1811 1.17685
144 142 1.19295 1.1854500000000001
145 143 1.2004000000000001 1.19295
146 144 1.2101 1.1995500000000001
147 145 1.2155500000000001 1.2102000000000002
148 146 1.2273500000000002 1.21875
149 147 1.23395 1.22625
150 148 1.24135 1.2329
151 149 1.25 1.2435500000000002
152 150 1.2576 1.25
153 151 1.26825 1.26075
154 152 1.2758 1.2673
155 153 1.28455 1.276
156 154 1.29095 1.2845
157 155 1.2996 1.2930000000000001
158 156 1.3071000000000002 1.30065
159 157 1.3157 1.31135
160 158 1.3234000000000001 1.3178
161 159 1.32985 1.3264500000000001
162 160 1.3426 1.3362
163 161 1.35125 1.3427
164 162 1.3577000000000001 1.3512
165 163 1.36955 1.3577000000000001
166 164 1.3749500000000001 1.3663
167 165 1.3826 1.3749
168 166 1.3922 1.3857000000000002
169 167 1.4007500000000002 1.3933
170 168 1.40835 1.3986
171 169 1.4181000000000001 1.4083
172 170 1.42655 1.4169
173 171 1.4363000000000001 1.4244
174 172 1.4417 1.4320000000000002
175 173 1.4503000000000001 1.44075
176 174 1.4589 1.4503000000000001
177 175 1.4676500000000001 1.4611500000000002
178 176 1.47515 1.4675500000000001
179 177 1.48275 1.47615
180 178 1.49025 1.4858500000000001
181 179 1.502 1.4924000000000002
182 180 1.50855 1.50095
183 181 1.51715 1.5074500000000002
184 182 1.5236500000000002 1.5161
185 183 1.53325 1.5258500000000002
186 184 1.54085 1.5354
187 185 1.5483500000000001 1.5409000000000002
188 186 1.5559500000000002 1.54935
189 187 1.5678 1.5581500000000001
190 188 1.57745 1.5667
191 189 1.58385 1.5742500000000001
192 190 1.5925 1.58185
193 191 1.59995 1.5925
194 192 1.6097000000000001 1.59905
195 193 1.6183500000000002 1.6087
196 194 1.6259000000000001 1.6174000000000002
197 195 1.6334000000000002 1.627
198 196 1.6411 1.63345
199 197 1.65175 1.6442
200 198 1.6604 1.6528500000000002
201 199 1.6668500000000002 1.6604
202 200 1.6755 1.66805
203 201 1.6841000000000002 1.67755
204 202 1.69475 1.683
205 203 1.70025 1.69265
206 204 1.70785 1.7012500000000002
207 205 1.7164000000000001 1.70775
208 206 1.72605 1.7185000000000001
209 207 1.73265 1.72835
210 208 1.7422000000000002 1.7358
211 209 1.7519 1.74435
212 210 1.76055 1.7518500000000001
213 211 1.7680500000000001 1.7615500000000002
214 212 1.7756500000000002 1.76815
215 213 1.7821 1.7746000000000002
216 214 1.7930000000000001 1.78535
217 215 1.80155 1.7939500000000002
218 216 1.8100500000000002 1.80045
219 217 1.81965 1.8078500000000002
220 218 1.8264 1.8123
221 219 1.8328 1.8251000000000002
222 220 1.84135 1.8338
223 221 1.8521500000000002 1.8414000000000001
224 222 1.8585500000000001 1.8532000000000002
225 223 1.8671 1.8586500000000001
226 224 1.8768 1.8681500000000002
227 225 1.88325 1.8746500000000001
228 226 1.8919000000000001 1.8844
229 227 1.9017000000000002 1.8920000000000001
230 228 1.9092500000000001 1.90165
231 229 1.91985 1.9092500000000001
232 230 1.9254 1.9166500000000002
233 231 1.9340000000000002 1.92645
234 232 1.94265 1.93385
235 233 1.9502000000000002 1.94035
236 234 1.96185 1.9524000000000001
237 235 1.9672500000000002 1.9629500000000002
238 236 1.97485 1.9694500000000001
239 237 1.9835 1.9760000000000002
240 238 1.98995 1.9856
241 239 2.00075 1.9944000000000002
240 2.00725
241 2.0158
242 2.02765
243 2.0351500000000002
244 2.04375
245 2.0524
246 2.0599000000000003
247 2.0685000000000002
248 2.07605
249 2.08255
250 2.088
251 2.1020000000000003
252 2.11055
253 2.1182000000000003
254 2.1247000000000003
255 2.1322
256 2.1429
257 2.1515
258 2.1581
259 2.1677
260 2.17415
261 2.18385
262 2.19465
263 2.20115
264 2.2097
265 2.21725
266 2.2258
267 2.2323500000000003
268 2.2441
269 2.2506
270 2.2560000000000002
271 2.26565
272 2.2742500000000003
273 2.2840000000000003
274 2.2904500000000003
275 2.3002000000000002
276 2.3087500000000003
277 2.3173500000000002
278 2.3291500000000003
279 2.33465
280 2.3432500000000003
281 2.34875
282 2.36045
283 2.3669000000000002
284 2.3755
285 2.38425
286 2.3916500000000003
287 2.4005
288 2.40795
289 2.4165
290 2.42505
291 2.4316
292 2.4402
293 2.4465500000000002
294 2.45635
295 2.46605
296 2.47465
297 2.4822
298 2.4897
299 2.4994
300 2.50585
301 2.5166500000000003
302 2.52415
303 2.53065
304 2.54145
305 2.5490500000000003
306 2.5586
307 2.5652500000000003
308 2.57375
309 2.58235
310 2.5888
311 2.5995500000000002
312 2.60815
313 2.6146000000000003
314 2.6242
315 2.63295
316 2.64045
317 2.6491000000000002
318 2.6577
319 2.6653000000000002
320 2.6728
321 2.6793500000000003
322 2.6900500000000003
323 2.69865
324 2.7051000000000003
325 2.71265
326 2.72235
327 2.73095
328 2.7407
329 2.74715
330 2.7567500000000003
331 2.76545
332 2.774
333 2.7826
334 2.79015
335 2.79775
336 2.8042000000000002
337 2.8129
338 2.82045
339 2.83005
340 2.8376
341 2.84735
342 2.857
343 2.8624
344 2.87205
345 2.8817
346 2.89155
347 2.89895
348 2.90885
349 2.9141000000000004
350 2.9205
351 2.9302
352 2.93885
353 2.9453
354 2.9539500000000003
355 2.9625000000000004
356 2.97335
357 2.9787500000000002
358 2.9873000000000003
359 2.996
360 3.0077000000000003
361 3.01425
362 3.0218000000000003
363 3.0325
364 3.0400500000000004
365 3.0477000000000003
366 3.0552
367 3.06175
368 3.07025
369 3.08
370 3.08745
371 3.09605
372 3.10575
373 3.11445
374 3.1218500000000002
375 3.1316
376 3.1371
377 3.14675
378 3.1553
379 3.1639
380 3.17045
381 3.177
382 3.1876
383 3.19415
384 3.20385
385 3.2155500000000004
386 3.22105
387 3.2275
388 3.2373000000000003
389 3.2458
390 3.25545
391 3.2630000000000003
392 3.27165
393 3.2782500000000003
394 3.2857000000000003
395 3.2953
396 3.3060500000000004
397 3.3114500000000002
398 3.3212
399 3.3287500000000003
400 3.3373000000000004
401 3.3481
402 3.3536
403 3.3632500000000003
404 3.3697000000000004
405 3.3815
406 3.39015
407 3.39765
408 3.4041
409 3.4127
410 3.4214
411 3.4321
412 3.4387000000000003
413 3.44505
414 3.4537500000000003
415 3.4644500000000003
416 3.471
417 3.47955
418 3.48705
419 3.4945500000000003
420 3.5043
421 3.51295
422 3.51945
423 3.5269500000000003
424 3.5344
425 3.54415
426 3.5518
427 3.5625500000000003
428 3.57215
429 3.5798
430 3.58515
431 3.5968500000000003
432 3.60245
433 3.61405
434 3.6207000000000003
435 3.6303
436 3.6368
437 3.6454
438 3.6531000000000002
439 3.6594
440 3.669
441 3.67775
442 3.68635
443 3.69285
444 3.7014500000000004
445 3.7089000000000003
446 3.7187
447 3.72725
448 3.7348500000000002
449 3.74235
450 3.7520000000000002
451 3.7595500000000004
452 3.7670000000000003
453 3.7746500000000003
454 3.7843500000000003
455 3.793
456 3.8027
457 3.8081500000000004
458 3.81985
459 3.8285500000000003
460 3.8339000000000003
461 3.8426500000000003
462 3.84905
463 3.8575500000000003
464 3.8705000000000003
465 3.8781000000000003
466 3.8855000000000004
467 3.89425
468 3.90065
469 3.9083
470 3.9168000000000003
471 3.92545
472 3.9362000000000004
473 3.94265
474 3.9524500000000002
475 3.9599
476 3.96965
477 3.9760500000000003
478 3.9837000000000002
479 3.9922
480 4.00195
481 4.0073
482 4.01475
483 4.02355
484 4.0343
485 4.0428500000000005
486 4.04945
487 4.058
488 4.06975
489 4.075200000000001
490 4.08165
491 4.0902
492 4.09895
493 4.10845
494 4.1182
495 4.12585
496 4.1333
497 4.1461500000000004
498 4.1516
499 4.15915
500 4.1668
501 4.173150000000001
502 4.1818
503 4.19255
504 4.20005
505 4.20665
506 4.21525
507 4.22495
508 4.2324
509 4.2421
510 4.2496
511 4.25825
512 4.26675
513 4.27675
514 4.28305
515 4.2906
516 4.30025
517 4.30565
518 4.31975
519 4.327100000000001
520 4.3336500000000004
521 4.3412500000000005
522 4.352
523 4.35845
524 4.3649000000000004
525 4.37455
526 4.3833
527 4.3896500000000005
528 4.40155
529 4.4101
530 4.41775
531 4.4251000000000005
532 4.436
533 4.4425
534 4.4511
535 4.4586500000000004
536 4.4673
537 4.4758000000000004
538 4.48345
539 4.49085
540 4.49845
541 4.5092
542 4.5157
543 4.5232
544 4.535
545 4.54145
546 4.54905
547 4.5556
548 4.566450000000001
549 4.57285
550 4.5803
551 4.5889500000000005
552 4.59865
553 4.606050000000001
554 4.61585
555 4.62445
556 4.63415
557 4.64165
558 4.6503000000000005
559 4.6589
560 4.6664
561 4.67605
562 4.68475
563 4.69025
564 4.69875
565 4.706300000000001
566 4.7203
567 4.725750000000001
568 4.731050000000001
569 4.73865
570 4.750500000000001
571 4.7579
572 4.76545
573 4.77195
574 4.78275
575 4.78925
576 4.800050000000001
577 4.806500000000001
578 4.81505
579 4.8259
580 4.831300000000001
581 4.8399
582 4.8473500000000005
583 4.8571
584 4.86465
585 4.87225
586 4.880850000000001
587 4.887300000000001
588 4.89905
589 4.90555
590 4.91415
591 4.926
592 4.93355
593 4.9411000000000005
594 4.9488
595 4.9573
596 4.96485
597 4.97335
598 4.97985
599 4.98655
600 5.0003
601 5.00685
602 5.0145
603 5.024
604 5.03375
605 5.041250000000001
606 5.0509
607 5.0585
608 5.0671
609 5.0757
610 5.08125
611 5.0898
612 5.1006
613 5.1081
614 5.1146
615 5.1221000000000005
616 5.13285
617 5.1393
618 5.149
619 5.1576
620 5.165150000000001
621 5.17375
622 5.18135
623 5.19095
624 5.19855
625 5.20505
626 5.215800000000001
627 5.22545
628 5.232950000000001
629 5.239450000000001
630 5.247
631 5.2566500000000005
632 5.26525
633 5.27175
634 5.28245
635 5.29115
636 5.29875
637 5.3083
638 5.31695
639 5.3268
640 5.3353
641 5.3428
642 5.35045
643 5.35905
644 5.36545
645 5.3719
646 5.38175
647 5.3903
648 5.39885
649 5.407500000000001
650 5.414000000000001
651 5.4226
652 5.4311
653 5.4398
654 5.449450000000001
655 5.45485
656 5.4636000000000005
657 5.475350000000001
658 5.481800000000001
659 5.4915
660 5.4969
661 5.5066500000000005
662 5.51415
663 5.523750000000001
664 5.5313
665 5.54105
666 5.5496
667 5.5572
668 5.5647
669 5.573300000000001
670 5.580900000000001
671 5.5874500000000005
672 5.598050000000001
673 5.6077
674 5.61535
675 5.6219
676 5.6316500000000005
677 5.6412
678 5.64665
679 5.6552500000000006
680 5.667000000000001
681 5.67565
682 5.685350000000001
683 5.69075
684 5.699400000000001
685 5.708
686 5.7145
687 5.7252
688 5.73175
689 5.7393
690 5.7468
691 5.7564
692 5.76405
693 5.772600000000001
694 5.780200000000001
695 5.79195
696 5.79835
697 5.807
698 5.81475
699 5.82315
700 5.83185
701 5.83945
702 5.846
703 5.85555
704 5.8621
705 5.8739
706 5.88565
707 5.89315
708 5.90075
709 5.90935
710 5.915850000000001
711 5.9234
712 5.9341
713 5.93965
714 5.945
715 5.95465
716 5.9611
717 5.974
718 5.9806
719 5.9879500000000005
720 5.9976

View File

@ -1,719 +1,240 @@
,spikes
0,0.0038
1,0.01685
2,0.0211
3,0.0286
4,0.03935
5,0.0458
6,0.05775
7,0.0641
8,0.07175000000000001
9,0.08030000000000001
10,0.0867
11,0.09435
12,0.10825
13,0.11805
14,0.1233
15,0.12665
16,0.13855
17,0.1492
18,0.1612
19,0.16435
20,0.17185
0,0.0028
1,0.0125
2,0.021050000000000003
3,0.0297
4,0.03835
5,0.04485
6,0.0524
7,0.062
8,0.06855
9,0.0782
10,0.0879
11,0.0954
12,0.10400000000000001
13,0.1159
14,0.1223
15,0.12885
16,0.1363
17,0.14495
18,0.15575
19,0.16215000000000002
20,0.1719
21,0.17830000000000001
22,0.19335000000000002
23,0.19875
24,0.2107
25,0.21495
26,0.22355
27,0.23115000000000002
28,0.23870000000000002
29,0.24835000000000002
30,0.25475000000000003
31,0.2645
32,0.272
33,0.28600000000000003
34,0.29035
35,0.2968
36,0.3044
37,0.3173
38,0.32375000000000004
39,0.33345
40,0.341
41,0.34745000000000004
42,0.3572
43,0.36250000000000004
44,0.37645
45,0.3819
46,0.39165
47,0.40030000000000004
48,0.41200000000000003
49,0.41745000000000004
50,0.42925
51,0.43360000000000004
52,0.4423
53,0.45195
54,0.45725000000000005
55,0.4671
56,0.47890000000000005
57,0.48210000000000003
58,0.48850000000000005
59,0.5025000000000001
60,0.50795
61,0.51975
62,0.5251
63,0.5305500000000001
64,0.5434
65,0.55325
66,0.5617
67,0.57355
68,0.5779000000000001
69,0.5854
70,0.5930500000000001
71,0.60485
72,0.6092000000000001
73,0.62095
74,0.6252
75,0.634
76,0.6435500000000001
77,0.65445
78,0.6608
79,0.6652
80,0.67595
81,0.68355
82,0.6898500000000001
83,0.69865
84,0.7083
85,0.7200500000000001
86,0.7266
87,0.7330500000000001
88,0.74045
89,0.74595
90,0.761
91,0.7685000000000001
92,0.7751
93,0.7826500000000001
94,0.7934
95,0.7997500000000001
96,0.8106
97,0.8159000000000001
98,0.8247
99,0.8354
100,0.84185
101,0.8482000000000001
102,0.85895
103,0.86875
104,0.8795000000000001
105,0.887
106,0.8935000000000001
107,0.8999
108,0.9097000000000001
109,0.91615
110,0.9258000000000001
111,0.9377500000000001
112,0.9420000000000001
113,0.94945
114,0.9614
115,0.9688500000000001
116,0.9797
117,0.9861500000000001
118,0.9905
119,1.0033
120,1.0076500000000002
121,1.01835
122,1.0280500000000001
123,1.0335
124,1.04115
125,1.04645
126,1.06145
127,1.0658
128,1.07875
129,1.083
130,1.0905500000000001
131,1.096
132,1.1089
133,1.1196000000000002
22,0.18910000000000002
23,0.19455
24,0.20205
25,0.2117
26,0.21930000000000002
27,0.22895000000000001
28,0.23550000000000001
29,0.24415
30,0.25485
31,0.26230000000000003
32,0.26990000000000003
33,0.27965
34,0.2882
35,0.29575
36,0.30435
37,0.31185
38,0.3216
39,0.3292
40,0.3377
41,0.3442
42,0.35495000000000004
43,0.36150000000000004
44,0.369
45,0.37970000000000004
46,0.3884
47,0.398
48,0.4035
49,0.4121
50,0.41955000000000003
51,0.4282
52,0.43470000000000003
53,0.44655
54,0.45515
55,0.46155
56,0.4713
57,0.48205000000000003
58,0.48855000000000004
59,0.49605000000000005
60,0.50465
61,0.5144500000000001
62,0.5219
63,0.52945
64,0.53705
65,0.5446
66,0.55855
67,0.5639500000000001
68,0.5704
69,0.58115
70,0.58765
71,0.5984
72,0.6038
73,0.61775
74,0.6232500000000001
75,0.6286
76,0.6393500000000001
77,0.64585
78,0.6554
79,0.66515
80,0.67055
81,0.6856
82,0.6899500000000001
83,0.6975
84,0.7039500000000001
85,0.7115
86,0.7200500000000001
87,0.7299
88,0.7395
89,0.747
90,0.75675
91,0.7632
92,0.77075
93,0.7793
94,0.7859
95,0.7955500000000001
96,0.80525
97,0.8148500000000001
98,0.8214
99,0.8289000000000001
100,0.8397
101,0.8461500000000001
102,0.85695
103,0.8633500000000001
104,0.87095
105,0.88165
106,0.88705
107,0.89895
108,0.9075000000000001
109,0.91715
110,0.9247500000000001
111,0.93225
112,0.9387500000000001
113,0.94735
114,0.9549500000000001
115,0.9646
116,0.9721000000000001
117,0.9818
118,0.99045
119,1.0001
120,1.0088000000000001
121,1.01425
122,1.0239
123,1.03135
124,1.0421500000000001
125,1.04865
126,1.0561500000000001
127,1.06485
128,1.0712000000000002
129,1.08305
130,1.0906
131,1.0971
132,1.109
133,1.1175000000000002
134,1.12405
135,1.1337000000000002
136,1.1402
137,1.14985
138,1.16175
139,1.16605
140,1.1725
141,1.1833
142,1.19395
143,1.1993500000000001
144,1.21235
145,1.21875
146,1.2295
147,1.236
148,1.2478500000000001
149,1.2532
150,1.26295
151,1.2705
152,1.2748000000000002
153,1.2877500000000002
154,1.2941500000000001
155,1.30175
156,1.31465
157,1.3211000000000002
158,1.3297
159,1.3361500000000002
135,1.1326500000000002
136,1.14015
137,1.1467
138,1.15735
139,1.1660000000000001
140,1.1735
141,1.1811500000000001
142,1.1908
143,1.20045
144,1.20805
145,1.2166000000000001
146,1.2231
147,1.23065
148,1.2414
149,1.2501
150,1.2586000000000002
151,1.2683
152,1.2737
153,1.28345
154,1.2931000000000001
155,1.2996
156,1.3103500000000001
157,1.31565
158,1.3276000000000001
159,1.33305
160,1.3426
161,1.3566
162,1.361
163,1.375
164,1.38035
165,1.3912
166,1.39975
167,1.4115
168,1.4169
169,1.4224
170,1.4308500000000002
171,1.4385000000000001
172,1.4460000000000002
173,1.45465
174,1.4654500000000001
175,1.474
176,1.4805000000000001
177,1.48705
178,1.4977500000000001
179,1.50525
180,1.5107000000000002
181,1.52045
182,1.5268000000000002
183,1.5322500000000001
184,1.5451000000000001
185,1.5559500000000002
186,1.5623500000000001
187,1.5742
188,1.5805500000000001
189,1.5860500000000002
190,1.5967500000000001
191,1.60755
192,1.612
193,1.6215000000000002
194,1.62585
195,1.6366500000000002
196,1.6486
197,1.65605
198,1.66145
199,1.6668500000000002
200,1.67655
201,1.68835
202,1.69265
203,1.70015
204,1.71205
205,1.72075
206,1.7314500000000002
207,1.73895
208,1.7443000000000002
209,1.7519
210,1.7616500000000002
211,1.77445
212,1.7788000000000002
213,1.78645
214,1.7971000000000001
215,1.8058500000000002
216,1.81125
217,1.8177
218,1.8295000000000001
219,1.8359500000000002
220,1.8466500000000001
221,1.85535
222,1.8607500000000001
223,1.8704
224,1.8822500000000002
225,1.88975
226,1.89625
227,1.90155
228,1.91135
229,1.9231500000000001
230,1.9285
231,1.94035
232,1.9447500000000002
233,1.9511500000000002
234,1.9641000000000002
235,1.9706000000000001
236,1.9813
237,1.98885
238,1.9975500000000002
239,2.0039000000000002
240,2.00935
241,2.0234
242,2.03195
243,2.0372500000000002
244,2.04165
245,2.05245
246,2.0621
247,2.07175
248,2.0793
249,2.0879000000000003
250,2.09545
251,2.10305
252,2.11275
253,2.11925
254,2.13315
255,2.1386000000000003
256,2.1461
257,2.15265
258,2.1633
259,2.1698500000000003
260,2.17525
261,2.18275
262,2.1978500000000003
263,2.20535
264,2.21185
265,2.21935
266,2.2259
267,2.2377000000000002
268,2.2419000000000002
269,2.25175
270,2.2581
271,2.2689500000000002
272,2.2807500000000003
273,2.28625
274,2.2916000000000003
275,2.2990500000000003
276,2.3120000000000003
277,2.3174
278,2.3313
279,2.3379000000000003
280,2.3453500000000003
281,2.35395
282,2.36375
283,2.3701000000000003
284,2.3766000000000003
285,2.3830500000000003
286,2.3982
287,2.4111000000000002
288,2.41535
289,2.42395
290,2.4283
291,2.43915
292,2.44455
293,2.44985
294,2.4627000000000003
295,2.46925
296,2.47565
297,2.4821500000000003
298,2.4928500000000002
299,2.5037000000000003
300,2.5102
301,2.5209
302,2.52955
303,2.535
304,2.5479000000000003
305,2.55425
306,2.5619
307,2.5769
308,2.58115
309,2.58875
310,2.59625
311,2.60285
312,2.6125000000000003
313,2.6201000000000003
314,2.6286
315,2.6351500000000003
316,2.6416
317,2.6545
318,2.6631
319,2.6738500000000003
320,2.67925
321,2.6836
322,2.69115
323,2.7052
324,2.7104500000000002
325,2.72125
326,2.7331000000000003
327,2.74065
328,2.7460500000000003
329,2.7525500000000003
330,2.7644
331,2.7784500000000003
332,2.7849
333,2.7923
334,2.79875
335,2.8053000000000003
336,2.81185
337,2.81815
338,2.83
339,2.8365500000000003
340,2.8505000000000003
341,2.8548
342,2.86455
343,2.8699000000000003
344,2.87865
345,2.8839
346,2.898
347,2.9034
348,2.9130000000000003
349,2.9217
350,2.9301500000000003
351,2.93555
352,2.9497
353,2.9571
354,2.9636
355,2.9722
356,2.98305
357,2.98835
358,2.9937
359,3.0012000000000003
360,3.0109500000000002
361,3.01635
362,3.0261500000000003
363,3.04115
364,3.0454000000000003
365,3.05295
366,3.06165
367,3.0745500000000003
368,3.0789
369,3.0885000000000002
370,3.095
371,3.10575
372,3.1154
373,3.1251
374,3.1295
375,3.1370500000000003
376,3.1478
377,3.1532500000000003
378,3.1629
379,3.1681500000000002
380,3.1801500000000003
381,3.1909
382,3.1952000000000003
383,3.2006
384,3.2134500000000004
385,3.2178500000000003
386,3.2243500000000003
387,3.2415000000000003
388,3.2468500000000002
389,3.25115
390,3.26195
391,3.2716000000000003
392,3.27815
393,3.2868500000000003
394,3.29755
395,3.30395
396,3.3105
397,3.31895
398,3.3298
399,3.3352
400,3.3406000000000002
401,3.3492
402,3.3578
403,3.3718500000000002
404,3.3784
405,3.39005
406,3.39765
407,3.40525
408,3.4106
409,3.4160500000000003
410,3.4257
411,3.4407
412,3.4472500000000004
413,3.45475
414,3.4634
415,3.4730000000000003
416,3.48055
417,3.48815
418,3.49675
419,3.5043
420,3.5107500000000003
421,3.5204
422,3.5269500000000003
423,3.5345
424,3.5463
425,3.5507
426,3.5560500000000004
427,3.5679000000000003
428,3.5754
429,3.5883000000000003
430,3.5947500000000003
431,3.60345
432,3.60995
433,3.6195500000000003
434,3.6270000000000002
435,3.6346000000000003
436,3.6475
437,3.6550000000000002
438,3.6626000000000003
439,3.67125
440,3.6788000000000003
441,3.68845
442,3.6950000000000003
443,3.7046
444,3.7121000000000004
445,3.7197
446,3.7283500000000003
447,3.7358000000000002
448,3.7424000000000004
449,3.7509
450,3.76275
451,3.77355
452,3.7822
453,3.7929500000000003
454,3.7984
455,3.80165
456,3.81015
457,3.8200000000000003
458,3.82425
459,3.83395
460,3.84145
461,3.85115
462,3.8619000000000003
463,3.8683500000000004
464,3.8737000000000004
465,3.88235
466,3.8877
467,3.9017500000000003
468,3.9104
469,3.91575
470,3.92865
471,3.934
472,3.9395000000000002
473,3.9492000000000003
474,3.9588
475,3.9663000000000004
476,3.9771500000000004
477,3.9825000000000004
478,3.99005
479,3.99975
480,4.0095
481,4.01905
482,4.0245500000000005
483,4.0321
484,4.038600000000001
485,4.0526
486,4.059
487,4.0698
488,4.07625
489,4.08695
490,4.09565
491,4.10085
492,4.1117
493,4.1171500000000005
494,4.1268
495,4.13765
496,4.1474
497,4.1527
498,4.1592
499,4.16675
500,4.1753
501,4.1850000000000005
502,4.19685
503,4.204400000000001
504,4.21305
505,4.2248
506,4.2313
507,4.235650000000001
508,4.25075
509,4.25715
510,4.26365
511,4.2679
512,4.2808
513,4.285200000000001
514,4.2991
515,4.304600000000001
516,4.3154
517,4.3239
518,4.33045
519,4.34015
520,4.34765
521,4.35625
522,4.36275
523,4.37345
524,4.3811
525,4.3874
526,4.3972500000000005
527,4.4058
528,4.41335
529,4.4219
530,4.43485
531,4.439150000000001
532,4.44665
533,4.4532
534,4.4628000000000005
535,4.471550000000001
536,4.4780500000000005
537,4.48445
538,4.4973
539,4.50495
540,4.5113
541,4.519950000000001
542,4.527550000000001
543,4.538250000000001
544,4.55025
545,4.55555
546,4.56095
547,4.5738
548,4.57915
549,4.58685
550,4.59435
551,4.60295
552,4.6115
553,4.62115
554,4.6256
555,4.63945
556,4.64485
557,4.6493
558,4.6633000000000004
559,4.66765
560,4.67935
561,4.6880500000000005
562,4.6945500000000004
563,4.70195
564,4.71605
565,4.72035
566,4.729
567,4.74185
568,4.7495
569,4.7538
570,4.7591
571,4.7676
572,4.774150000000001
573,4.785
574,4.79575
575,4.8021
576,4.8193
577,4.8237000000000005
578,4.83235
579,4.83875
580,4.8474
581,4.85165
582,4.8647
583,4.8712
584,4.87645
585,4.88625
586,4.8959
587,4.9045000000000005
588,4.916300000000001
589,4.9238
590,4.928100000000001
591,4.939
592,4.946400000000001
593,4.9552000000000005
594,4.96155
595,4.9723500000000005
596,4.978750000000001
597,4.986400000000001
598,4.99605
599,5.0058
600,5.0155
601,5.0219000000000005
602,5.0283500000000005
603,5.0337000000000005
604,5.04655
605,5.053100000000001
606,5.0649500000000005
607,5.0736
608,5.079000000000001
609,5.08755
610,5.09725
611,5.10385
612,5.114450000000001
613,5.122
614,5.1285
615,5.1361
616,5.1425
617,5.1532
618,5.163
619,5.1726
620,5.1823500000000005
621,5.191050000000001
622,5.196350000000001
623,5.2039
624,5.214700000000001
625,5.2254000000000005
626,5.2308
627,5.23725
628,5.24695
629,5.25455
630,5.2642500000000005
631,5.2717
632,5.277150000000001
633,5.289000000000001
634,5.295450000000001
635,5.30625
636,5.3117
637,5.3181
638,5.3288
639,5.3354
640,5.3471
641,5.3558
642,5.36225
643,5.37295
644,5.37845
645,5.3848
646,5.39555
647,5.4054
648,5.4129000000000005
649,5.4172
650,5.4259
651,5.4354000000000005
652,5.44725
653,5.45375
654,5.46455
655,5.4721
656,5.48385
657,5.4882
658,5.49575
659,5.5109
660,5.51735
661,5.52165
662,5.52695
663,5.536700000000001
664,5.5485500000000005
665,5.55395
666,5.5615000000000006
667,5.57115
668,5.57765
669,5.5863000000000005
670,5.5981000000000005
671,5.6067
672,5.6143
673,5.6197
674,5.63145
675,5.6412
676,5.6466
677,5.6530000000000005
678,5.660550000000001
679,5.67025
680,5.6757
681,5.69395
682,5.70145
683,5.70685
684,5.7134
685,5.72625
686,5.73165
687,5.740200000000001
688,5.746700000000001
689,5.7543500000000005
690,5.7618
691,5.7705
692,5.776800000000001
693,5.78455
694,5.79835
695,5.81135
696,5.815650000000001
697,5.8222000000000005
698,5.8286500000000006
699,5.83615
700,5.8512
701,5.8556
702,5.86625
703,5.875900000000001
704,5.8825
705,5.888850000000001
706,5.89435
707,5.9061
708,5.915900000000001
709,5.9202
710,5.9278
711,5.9417
712,5.952450000000001
713,5.9579
714,5.9643500000000005
715,5.9718
716,5.978350000000001
717,5.9935
161,1.35125
162,1.3588
163,1.36625
164,1.37505
165,1.3814
166,1.3900000000000001
167,1.3987
168,1.40625
169,1.4180000000000001
170,1.42455
171,1.4309
172,1.43855
173,1.44825
174,1.45785
175,1.4654500000000001
176,1.4762000000000002
177,1.4837500000000001
178,1.4902
179,1.50205
180,1.5074500000000002
181,1.5171000000000001
182,1.5235500000000002
183,1.5323
184,1.5398
185,1.5484
186,1.55915
187,1.56665
188,1.5775000000000001
189,1.5828
190,1.5915000000000001
191,1.60005
192,1.6098000000000001
193,1.6184
194,1.62595
195,1.6335000000000002
196,1.6421000000000001
197,1.6485
198,1.6571
199,1.66585
200,1.6776
201,1.6863000000000001
202,1.6917
203,1.7013
204,1.7078
205,1.7153500000000002
206,1.7229
207,1.7336500000000001
208,1.7433
209,1.7508000000000001
210,1.75845
211,1.7638
212,1.7713
213,1.78315
214,1.7918
215,1.7994
216,1.8101
217,1.81665
218,1.824
219,1.83385
220,1.84135
221,1.85
222,1.85955
223,1.8672000000000002
224,1.8737000000000001
225,1.8843500000000002
226,1.89405
227,1.90165
228,1.9103
229,1.91785
230,1.92645
231,1.93395
232,1.94045
233,1.949
234,1.9587
235,1.9673500000000002
236,1.9781000000000002
237,1.98465
238,1.9921000000000002

1 spikes
2 0 0.0038 0.0028
3 1 0.01685 0.0125
4 2 0.0211 0.021050000000000003
5 3 0.0286 0.0297
6 4 0.03935 0.03835
7 5 0.0458 0.04485
8 6 0.05775 0.0524
9 7 0.0641 0.062
10 8 0.07175000000000001 0.06855
11 9 0.08030000000000001 0.0782
12 10 0.0867 0.0879
13 11 0.09435 0.0954
14 12 0.10825 0.10400000000000001
15 13 0.11805 0.1159
16 14 0.1233 0.1223
17 15 0.12665 0.12885
18 16 0.13855 0.1363
19 17 0.1492 0.14495
20 18 0.1612 0.15575
21 19 0.16435 0.16215000000000002
22 20 0.17185 0.1719
23 21 0.17830000000000001
24 22 0.19335000000000002 0.18910000000000002
25 23 0.19875 0.19455
26 24 0.2107 0.20205
27 25 0.21495 0.2117
28 26 0.22355 0.21930000000000002
29 27 0.23115000000000002 0.22895000000000001
30 28 0.23870000000000002 0.23550000000000001
31 29 0.24835000000000002 0.24415
32 30 0.25475000000000003 0.25485
33 31 0.2645 0.26230000000000003
34 32 0.272 0.26990000000000003
35 33 0.28600000000000003 0.27965
36 34 0.29035 0.2882
37 35 0.2968 0.29575
38 36 0.3044 0.30435
39 37 0.3173 0.31185
40 38 0.32375000000000004 0.3216
41 39 0.33345 0.3292
42 40 0.341 0.3377
43 41 0.34745000000000004 0.3442
44 42 0.3572 0.35495000000000004
45 43 0.36250000000000004 0.36150000000000004
46 44 0.37645 0.369
47 45 0.3819 0.37970000000000004
48 46 0.39165 0.3884
49 47 0.40030000000000004 0.398
50 48 0.41200000000000003 0.4035
51 49 0.41745000000000004 0.4121
52 50 0.42925 0.41955000000000003
53 51 0.43360000000000004 0.4282
54 52 0.4423 0.43470000000000003
55 53 0.45195 0.44655
56 54 0.45725000000000005 0.45515
57 55 0.4671 0.46155
58 56 0.47890000000000005 0.4713
59 57 0.48210000000000003 0.48205000000000003
60 58 0.48850000000000005 0.48855000000000004
61 59 0.5025000000000001 0.49605000000000005
62 60 0.50795 0.50465
63 61 0.51975 0.5144500000000001
64 62 0.5251 0.5219
65 63 0.5305500000000001 0.52945
66 64 0.5434 0.53705
67 65 0.55325 0.5446
68 66 0.5617 0.55855
69 67 0.57355 0.5639500000000001
70 68 0.5779000000000001 0.5704
71 69 0.5854 0.58115
72 70 0.5930500000000001 0.58765
73 71 0.60485 0.5984
74 72 0.6092000000000001 0.6038
75 73 0.62095 0.61775
76 74 0.6252 0.6232500000000001
77 75 0.634 0.6286
78 76 0.6435500000000001 0.6393500000000001
79 77 0.65445 0.64585
80 78 0.6608 0.6554
81 79 0.6652 0.66515
82 80 0.67595 0.67055
83 81 0.68355 0.6856
84 82 0.6898500000000001 0.6899500000000001
85 83 0.69865 0.6975
86 84 0.7083 0.7039500000000001
87 85 0.7200500000000001 0.7115
88 86 0.7266 0.7200500000000001
89 87 0.7330500000000001 0.7299
90 88 0.74045 0.7395
91 89 0.74595 0.747
92 90 0.761 0.75675
93 91 0.7685000000000001 0.7632
94 92 0.7751 0.77075
95 93 0.7826500000000001 0.7793
96 94 0.7934 0.7859
97 95 0.7997500000000001 0.7955500000000001
98 96 0.8106 0.80525
99 97 0.8159000000000001 0.8148500000000001
100 98 0.8247 0.8214
101 99 0.8354 0.8289000000000001
102 100 0.84185 0.8397
103 101 0.8482000000000001 0.8461500000000001
104 102 0.85895 0.85695
105 103 0.86875 0.8633500000000001
106 104 0.8795000000000001 0.87095
107 105 0.887 0.88165
108 106 0.8935000000000001 0.88705
109 107 0.8999 0.89895
110 108 0.9097000000000001 0.9075000000000001
111 109 0.91615 0.91715
112 110 0.9258000000000001 0.9247500000000001
113 111 0.9377500000000001 0.93225
114 112 0.9420000000000001 0.9387500000000001
115 113 0.94945 0.94735
116 114 0.9614 0.9549500000000001
117 115 0.9688500000000001 0.9646
118 116 0.9797 0.9721000000000001
119 117 0.9861500000000001 0.9818
120 118 0.9905 0.99045
121 119 1.0033 1.0001
122 120 1.0076500000000002 1.0088000000000001
123 121 1.01835 1.01425
124 122 1.0280500000000001 1.0239
125 123 1.0335 1.03135
126 124 1.04115 1.0421500000000001
127 125 1.04645 1.04865
128 126 1.06145 1.0561500000000001
129 127 1.0658 1.06485
130 128 1.07875 1.0712000000000002
131 129 1.083 1.08305
132 130 1.0905500000000001 1.0906
133 131 1.096 1.0971
134 132 1.1089 1.109
135 133 1.1196000000000002 1.1175000000000002
136 134 1.12405
137 135 1.1337000000000002 1.1326500000000002
138 136 1.1402 1.14015
139 137 1.14985 1.1467
140 138 1.16175 1.15735
141 139 1.16605 1.1660000000000001
142 140 1.1725 1.1735
143 141 1.1833 1.1811500000000001
144 142 1.19395 1.1908
145 143 1.1993500000000001 1.20045
146 144 1.21235 1.20805
147 145 1.21875 1.2166000000000001
148 146 1.2295 1.2231
149 147 1.236 1.23065
150 148 1.2478500000000001 1.2414
151 149 1.2532 1.2501
152 150 1.26295 1.2586000000000002
153 151 1.2705 1.2683
154 152 1.2748000000000002 1.2737
155 153 1.2877500000000002 1.28345
156 154 1.2941500000000001 1.2931000000000001
157 155 1.30175 1.2996
158 156 1.31465 1.3103500000000001
159 157 1.3211000000000002 1.31565
160 158 1.3297 1.3276000000000001
161 159 1.3361500000000002 1.33305
162 160 1.3426
163 161 1.3566 1.35125
164 162 1.361 1.3588
165 163 1.375 1.36625
166 164 1.38035 1.37505
167 165 1.3912 1.3814
168 166 1.39975 1.3900000000000001
169 167 1.4115 1.3987
170 168 1.4169 1.40625
171 169 1.4224 1.4180000000000001
172 170 1.4308500000000002 1.42455
173 171 1.4385000000000001 1.4309
174 172 1.4460000000000002 1.43855
175 173 1.45465 1.44825
176 174 1.4654500000000001 1.45785
177 175 1.474 1.4654500000000001
178 176 1.4805000000000001 1.4762000000000002
179 177 1.48705 1.4837500000000001
180 178 1.4977500000000001 1.4902
181 179 1.50525 1.50205
182 180 1.5107000000000002 1.5074500000000002
183 181 1.52045 1.5171000000000001
184 182 1.5268000000000002 1.5235500000000002
185 183 1.5322500000000001 1.5323
186 184 1.5451000000000001 1.5398
187 185 1.5559500000000002 1.5484
188 186 1.5623500000000001 1.55915
189 187 1.5742 1.56665
190 188 1.5805500000000001 1.5775000000000001
191 189 1.5860500000000002 1.5828
192 190 1.5967500000000001 1.5915000000000001
193 191 1.60755 1.60005
194 192 1.612 1.6098000000000001
195 193 1.6215000000000002 1.6184
196 194 1.62585 1.62595
197 195 1.6366500000000002 1.6335000000000002
198 196 1.6486 1.6421000000000001
199 197 1.65605 1.6485
200 198 1.66145 1.6571
201 199 1.6668500000000002 1.66585
202 200 1.67655 1.6776
203 201 1.68835 1.6863000000000001
204 202 1.69265 1.6917
205 203 1.70015 1.7013
206 204 1.71205 1.7078
207 205 1.72075 1.7153500000000002
208 206 1.7314500000000002 1.7229
209 207 1.73895 1.7336500000000001
210 208 1.7443000000000002 1.7433
211 209 1.7519 1.7508000000000001
212 210 1.7616500000000002 1.75845
213 211 1.77445 1.7638
214 212 1.7788000000000002 1.7713
215 213 1.78645 1.78315
216 214 1.7971000000000001 1.7918
217 215 1.8058500000000002 1.7994
218 216 1.81125 1.8101
219 217 1.8177 1.81665
220 218 1.8295000000000001 1.824
221 219 1.8359500000000002 1.83385
222 220 1.8466500000000001 1.84135
223 221 1.85535 1.85
224 222 1.8607500000000001 1.85955
225 223 1.8704 1.8672000000000002
226 224 1.8822500000000002 1.8737000000000001
227 225 1.88975 1.8843500000000002
228 226 1.89625 1.89405
229 227 1.90155 1.90165
230 228 1.91135 1.9103
231 229 1.9231500000000001 1.91785
232 230 1.9285 1.92645
233 231 1.94035 1.93395
234 232 1.9447500000000002 1.94045
235 233 1.9511500000000002 1.949
236 234 1.9641000000000002 1.9587
237 235 1.9706000000000001 1.9673500000000002
238 236 1.9813 1.9781000000000002
239 237 1.98885 1.98465
240 238 1.9975500000000002 1.9921000000000002
239 2.0039000000000002
240 2.00935
241 2.0234
242 2.03195
243 2.0372500000000002
244 2.04165
245 2.05245
246 2.0621
247 2.07175
248 2.0793
249 2.0879000000000003
250 2.09545
251 2.10305
252 2.11275
253 2.11925
254 2.13315
255 2.1386000000000003
256 2.1461
257 2.15265
258 2.1633
259 2.1698500000000003
260 2.17525
261 2.18275
262 2.1978500000000003
263 2.20535
264 2.21185
265 2.21935
266 2.2259
267 2.2377000000000002
268 2.2419000000000002
269 2.25175
270 2.2581
271 2.2689500000000002
272 2.2807500000000003
273 2.28625
274 2.2916000000000003
275 2.2990500000000003
276 2.3120000000000003
277 2.3174
278 2.3313
279 2.3379000000000003
280 2.3453500000000003
281 2.35395
282 2.36375
283 2.3701000000000003
284 2.3766000000000003
285 2.3830500000000003
286 2.3982
287 2.4111000000000002
288 2.41535
289 2.42395
290 2.4283
291 2.43915
292 2.44455
293 2.44985
294 2.4627000000000003
295 2.46925
296 2.47565
297 2.4821500000000003
298 2.4928500000000002
299 2.5037000000000003
300 2.5102
301 2.5209
302 2.52955
303 2.535
304 2.5479000000000003
305 2.55425
306 2.5619
307 2.5769
308 2.58115
309 2.58875
310 2.59625
311 2.60285
312 2.6125000000000003
313 2.6201000000000003
314 2.6286
315 2.6351500000000003
316 2.6416
317 2.6545
318 2.6631
319 2.6738500000000003
320 2.67925
321 2.6836
322 2.69115
323 2.7052
324 2.7104500000000002
325 2.72125
326 2.7331000000000003
327 2.74065
328 2.7460500000000003
329 2.7525500000000003
330 2.7644
331 2.7784500000000003
332 2.7849
333 2.7923
334 2.79875
335 2.8053000000000003
336 2.81185
337 2.81815
338 2.83
339 2.8365500000000003
340 2.8505000000000003
341 2.8548
342 2.86455
343 2.8699000000000003
344 2.87865
345 2.8839
346 2.898
347 2.9034
348 2.9130000000000003
349 2.9217
350 2.9301500000000003
351 2.93555
352 2.9497
353 2.9571
354 2.9636
355 2.9722
356 2.98305
357 2.98835
358 2.9937
359 3.0012000000000003
360 3.0109500000000002
361 3.01635
362 3.0261500000000003
363 3.04115
364 3.0454000000000003
365 3.05295
366 3.06165
367 3.0745500000000003
368 3.0789
369 3.0885000000000002
370 3.095
371 3.10575
372 3.1154
373 3.1251
374 3.1295
375 3.1370500000000003
376 3.1478
377 3.1532500000000003
378 3.1629
379 3.1681500000000002
380 3.1801500000000003
381 3.1909
382 3.1952000000000003
383 3.2006
384 3.2134500000000004
385 3.2178500000000003
386 3.2243500000000003
387 3.2415000000000003
388 3.2468500000000002
389 3.25115
390 3.26195
391 3.2716000000000003
392 3.27815
393 3.2868500000000003
394 3.29755
395 3.30395
396 3.3105
397 3.31895
398 3.3298
399 3.3352
400 3.3406000000000002
401 3.3492
402 3.3578
403 3.3718500000000002
404 3.3784
405 3.39005
406 3.39765
407 3.40525
408 3.4106
409 3.4160500000000003
410 3.4257
411 3.4407
412 3.4472500000000004
413 3.45475
414 3.4634
415 3.4730000000000003
416 3.48055
417 3.48815
418 3.49675
419 3.5043
420 3.5107500000000003
421 3.5204
422 3.5269500000000003
423 3.5345
424 3.5463
425 3.5507
426 3.5560500000000004
427 3.5679000000000003
428 3.5754
429 3.5883000000000003
430 3.5947500000000003
431 3.60345
432 3.60995
433 3.6195500000000003
434 3.6270000000000002
435 3.6346000000000003
436 3.6475
437 3.6550000000000002
438 3.6626000000000003
439 3.67125
440 3.6788000000000003
441 3.68845
442 3.6950000000000003
443 3.7046
444 3.7121000000000004
445 3.7197
446 3.7283500000000003
447 3.7358000000000002
448 3.7424000000000004
449 3.7509
450 3.76275
451 3.77355
452 3.7822
453 3.7929500000000003
454 3.7984
455 3.80165
456 3.81015
457 3.8200000000000003
458 3.82425
459 3.83395
460 3.84145
461 3.85115
462 3.8619000000000003
463 3.8683500000000004
464 3.8737000000000004
465 3.88235
466 3.8877
467 3.9017500000000003
468 3.9104
469 3.91575
470 3.92865
471 3.934
472 3.9395000000000002
473 3.9492000000000003
474 3.9588
475 3.9663000000000004
476 3.9771500000000004
477 3.9825000000000004
478 3.99005
479 3.99975
480 4.0095
481 4.01905
482 4.0245500000000005
483 4.0321
484 4.038600000000001
485 4.0526
486 4.059
487 4.0698
488 4.07625
489 4.08695
490 4.09565
491 4.10085
492 4.1117
493 4.1171500000000005
494 4.1268
495 4.13765
496 4.1474
497 4.1527
498 4.1592
499 4.16675
500 4.1753
501 4.1850000000000005
502 4.19685
503 4.204400000000001
504 4.21305
505 4.2248
506 4.2313
507 4.235650000000001
508 4.25075
509 4.25715
510 4.26365
511 4.2679
512 4.2808
513 4.285200000000001
514 4.2991
515 4.304600000000001
516 4.3154
517 4.3239
518 4.33045
519 4.34015
520 4.34765
521 4.35625
522 4.36275
523 4.37345
524 4.3811
525 4.3874
526 4.3972500000000005
527 4.4058
528 4.41335
529 4.4219
530 4.43485
531 4.439150000000001
532 4.44665
533 4.4532
534 4.4628000000000005
535 4.471550000000001
536 4.4780500000000005
537 4.48445
538 4.4973
539 4.50495
540 4.5113
541 4.519950000000001
542 4.527550000000001
543 4.538250000000001
544 4.55025
545 4.55555
546 4.56095
547 4.5738
548 4.57915
549 4.58685
550 4.59435
551 4.60295
552 4.6115
553 4.62115
554 4.6256
555 4.63945
556 4.64485
557 4.6493
558 4.6633000000000004
559 4.66765
560 4.67935
561 4.6880500000000005
562 4.6945500000000004
563 4.70195
564 4.71605
565 4.72035
566 4.729
567 4.74185
568 4.7495
569 4.7538
570 4.7591
571 4.7676
572 4.774150000000001
573 4.785
574 4.79575
575 4.8021
576 4.8193
577 4.8237000000000005
578 4.83235
579 4.83875
580 4.8474
581 4.85165
582 4.8647
583 4.8712
584 4.87645
585 4.88625
586 4.8959
587 4.9045000000000005
588 4.916300000000001
589 4.9238
590 4.928100000000001
591 4.939
592 4.946400000000001
593 4.9552000000000005
594 4.96155
595 4.9723500000000005
596 4.978750000000001
597 4.986400000000001
598 4.99605
599 5.0058
600 5.0155
601 5.0219000000000005
602 5.0283500000000005
603 5.0337000000000005
604 5.04655
605 5.053100000000001
606 5.0649500000000005
607 5.0736
608 5.079000000000001
609 5.08755
610 5.09725
611 5.10385
612 5.114450000000001
613 5.122
614 5.1285
615 5.1361
616 5.1425
617 5.1532
618 5.163
619 5.1726
620 5.1823500000000005
621 5.191050000000001
622 5.196350000000001
623 5.2039
624 5.214700000000001
625 5.2254000000000005
626 5.2308
627 5.23725
628 5.24695
629 5.25455
630 5.2642500000000005
631 5.2717
632 5.277150000000001
633 5.289000000000001
634 5.295450000000001
635 5.30625
636 5.3117
637 5.3181
638 5.3288
639 5.3354
640 5.3471
641 5.3558
642 5.36225
643 5.37295
644 5.37845
645 5.3848
646 5.39555
647 5.4054
648 5.4129000000000005
649 5.4172
650 5.4259
651 5.4354000000000005
652 5.44725
653 5.45375
654 5.46455
655 5.4721
656 5.48385
657 5.4882
658 5.49575
659 5.5109
660 5.51735
661 5.52165
662 5.52695
663 5.536700000000001
664 5.5485500000000005
665 5.55395
666 5.5615000000000006
667 5.57115
668 5.57765
669 5.5863000000000005
670 5.5981000000000005
671 5.6067
672 5.6143
673 5.6197
674 5.63145
675 5.6412
676 5.6466
677 5.6530000000000005
678 5.660550000000001
679 5.67025
680 5.6757
681 5.69395
682 5.70145
683 5.70685
684 5.7134
685 5.72625
686 5.73165
687 5.740200000000001
688 5.746700000000001
689 5.7543500000000005
690 5.7618
691 5.7705
692 5.776800000000001
693 5.78455
694 5.79835
695 5.81135
696 5.815650000000001
697 5.8222000000000005
698 5.8286500000000006
699 5.83615
700 5.8512
701 5.8556
702 5.86625
703 5.875900000000001
704 5.8825
705 5.888850000000001
706 5.89435
707 5.9061
708 5.915900000000001
709 5.9202
710 5.9278
711 5.9417
712 5.952450000000001
713 5.9579
714 5.9643500000000005
715 5.9718
716 5.978350000000001
717 5.9935

Binary file not shown.

View File

@ -12,7 +12,7 @@ from threefish.core_load import save_visualization
from threefish.core_bursts import setting_overview_score
from threefish.core_plot_labels import basename_small, label_NLI_scorename2_small, label_pearson, label_stimname_small, \
make_log_ticks
from threefish.utils1_suscept import plt_specific_cells, start_name
from threefish.utils1_RAM import plt_specific_cells, start_name
from scipy import stats
try:
from plotstyle import plot_style, spines_params

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 53 KiB

After

Width:  |  Height:  |  Size: 54 KiB

View File

@ -5,7 +5,7 @@
# from threefish.utils0 import default_settings, resave_small_files
# from plt_RAM import model_and_data, model_and_data_sheme, model_and_data_vertical2
from threefish.plot_suscept import model_sheme_split2
from threefish.plot_suscept import flowchart_core
# from threefish.utils0 import default_settings, resave_small_files
# from plt_RAM import model_and_data, model_and_data_sheme, model_and_data_vertical2
# from threefish.utils0 import default_settings, resave_small_files
@ -14,21 +14,19 @@ import matplotlib.gridspec as gridspec
from plotstyle import plot_style
from threefish.core_load import save_visualization
from threefish.plot_suscept import model_sheme_split2
from threefish.plot_suscept import flowchart_core
from threefish.defaults import default_figsize
def flowchart():
#fig = plt.figure(figsize=(6.8, 5.5))
plot_style()
default_figsize(column=2, length=4.7) #5.3 5.8
grid_orig = gridspec.GridSpec(1, 1, wspace=0.15, bottom=0.07,
hspace=0.1, left=0.05, right=0.96,
top=0.9) # , height_ratios = [0.4,3]
model_sheme_split2(grid_orig[0]) # grid_sheme grid_lower[3]
# model_sheme_only(grid[2])
flowchart_core(grid_orig[0]) # grid_sheme grid_lower[3]
save_visualization()
#fig.savefig()
if __name__ == '__main__':

Binary file not shown.

View File

@ -10,9 +10,8 @@ from plotstyle import plot_style
from threefish.core_plot_subplots import plot_lowpass2, plt_single_square_modl, plt_time_arrays
from threefish.core_plot_suscept import perc_model_full, plt_data_susept
from threefish.core_filenames import overlap_cells
from threefish.core_load import save_visualization
from threefish.core_reformat import get_flowchart_params, load_model_susept
from threefish.core_calc_model import resave_small_files
from threefish.core_load import resave_small_files, save_visualization
from threefish.core_reformat_RAM import get_flowchart_params, load_model_susept
from threefish.core import find_folder_name
from threefish.core_plot_labels import label_noise_name, nonlin_title, remove_xticks, remove_yticks, set_xlabel_arrow, \
set_ylabel_arrow, title_find_cell_add, xlabel_xpos_y_modelanddata

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 83 KiB

After

Width:  |  Height:  |  Size: 205 KiB

View File

@ -3,9 +3,11 @@ import numpy as np
from matplotlib import gridspec, pyplot as plt
from threefish.core_calc_fft import create_full_matrix2
from threefish.core_reformat import chose_mat_max_value, convert_csv_str_to_float, get_axis_on_full_matrix, get_psds_ROC, get_transfer_from_model, \
from threefish.core_reformat import chose_mat_max_value, get_axis_on_full_matrix, get_psds_ROC, get_transfer_from_model, \
load_b_public, load_stack_data_susept
from threefish.core_plot_subplots import colors_suscept_paper_dots, plt_model_full_model2, plt_psds_ROC, plt_RAM_perc
from threefish.core_reformat_RAM import convert_csv_str_to_float
from threefish.core_plot_subplots import colors_suscept_paper_dots, plt_model_full_model2, plt_model_letters, \
plt_psds_ROC, plt_RAM_perc
from threefish.core_load import save_visualization
from threefish.core_values import vals_model_full
from threefish.core_cell_choice import find_all_dir_cells
@ -16,7 +18,7 @@ from plotstyle import plot_style
import time
from threefish.defaults import default_diagonal_points, default_figsize
from threefish.core_plot_colorbar import colorbar_outside, rescale_colorbar_and_values
from threefish.utils1_suscept import check_var_substract_method, chose_certain_group, \
from threefish.utils1_RAM import check_var_substract_method, chose_certain_group, \
extract_waves, load_cells_three, predefine_grouping_frame, restrict_cell_type, \
save_arrays_susept
from threefish.core_plot_labels import label_deltaf1, label_deltaf2, label_diff, label_sum, \
@ -34,7 +36,7 @@ def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], end='all', chose_s
plot_style()
default_figsize(column=2, length=3.5)#2.7
grid = gridspec.GridSpec(2, 4, wspace=0.15, bottom = 0.2, width_ratios = [3,1, 1.5,1.5], height_ratios = [1, 5], hspace=0.55, top=0.85, left=0.095, right=0.98)#hspace=0.25,
grid = gridspec.GridSpec(2, 2, wspace=0.55, bottom = 0.15, height_ratios = [2, 5], width_ratios = [1.2, 1], hspace=1, top=0.92, left=0.06, right=0.98)#hspace=0.25,
@ -48,7 +50,7 @@ def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], end='all', chose_s
# model part
ls = '--'
lw = 0.5
axm = plt.subplot(grid[1,0])
axm = plt.subplot(grid[:,0])
axes.append(axm)
@ -62,7 +64,7 @@ def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], end='all', chose_s
#############################################
# plot coherence
cross = get_transfer_from_model(stack_saved)
axc = plt.subplot(grid[0, 0])
axc = plt.subplot(grid[0, 1])
axc.plot(stack_saved.index, cross, color = 'black')
axc.set_xlabel('Frequency [Hz]')
axc.set_ylabel(xlabel_transfer_hz())
@ -78,7 +80,7 @@ def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], end='all', chose_s
#################
# power spectra data
log = 'log'#'log'#'log'#'log'#'log'
log = ''#'log'#'log'#'log'#'log'#'log'
ylim_log = (-14.2, 3)#(-14.2, 3)
nfft = 20000#2 ** 13
xlim_psd = [0, 300]
@ -105,7 +107,7 @@ def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], end='all', chose_s
DF1_frmult, DF2_frmult = vals_model_full(val = 0.30833333333333335)
#0.16666666666666666
grid0 = gridspec.GridSpecFromSubplotSpec(2, 2, wspace=0.15, hspace=0.4,
subplot_spec=grid[:,2::])
subplot_spec=grid[1,1])
@ -120,18 +122,19 @@ def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], end='all', chose_s
diagonal = 'diagonal1'
diagonal = ''
plus_q = 'plus' # 'minus'#'plus'##'minus'
length = 2*40 # 5
length = 1#2*40 # 5
reshuffled = '' # ,
alphas = [1,0.5]
#a_size = 0.0065#0.0125#25#0.04#0.015
a_size = 0.0005#und 0.0005 für das lineare das ist vielleicht für das nichtlienare 0.0065#0.0085#0.01#0.0085#125 # 0.0025# 0.01 0.005 und davor 0.025, funktioniert gut 0.0085
a_size = 0.0065#und 0.0005 für das lineare das ist vielleicht für das nichtlienare 0.0065#0.0085#0.01#0.0085#125 # 0.0025# 0.01 0.005 und davor 0.025, funktioniert gut 0.0085
# ATTENTION: Diese Zelle ('2012-07-03-ak-invivo-1') braucht längere Abschnitte, mindsetesn 5 Sekunden damit das Powerspectrum nicht so niosy ist!
fr_noise, eod_fr_mm, axes2 = plt_model_full_model2(grid0, stack_final = stack_final, reshuffled=reshuffled, dev=0.0005, a_f1s=[a_size], af_2 = a_size,
stimulus_length=length, plus_q=plus_q, stack_saved = stack_saved,
diagonal=diagonal, runs=1, nfft = nfft, xlim_psd = xlim_psd, ylim_log = ylim_log,
cells=[cell], dev_spikes = 'original', markers = markers, DF1_frmult = DF1_frmult, DF2_frmult = DF2_frmult,
log = log, ms = ms, clip_on = False, array_len = [1,1,1,1,1]) #arrays_len a_f1s=[0.02]"2012-12-13-an-invivo-1"'2013-01-08-aa-invivo-1'
diagonal=diagonal, runs=1, nfft = nfft, xlim_psd = xlim_psd,
cells=[cell], dev_spikes ='original', markers = markers, DF1_frmult = DF1_frmult, DF2_frmult = DF2_frmult,
log = log, ms = ms, clip_on = False, trials_nr_all= [1, 1, 1, 1, 1]) #arrays_len a_f1s=[0.02]"2012-12-13-an-invivo-1"'2013-01-08-aa-invivo-1'
@ -145,32 +148,11 @@ def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], end='all', chose_s
plt_model_letters(DF1_frmult, DF2_frmult, axm, color012, color01_2, fr_noise, markers)
fig = plt.gcf()#[axes[0], axes[3], axes[4]]
fig.tag([axes[0], axes2[0], axes2[1], axes2[2], axes2[3]], xoffs=-4.5, yoffs=1.2) # ax_ams[3],
fig.tag([axes[0], axc, axes2[0], axes2[1], axes2[2], axes2[3]], xoffs=-4.5, yoffs=1.2) # ax_ams[3],
#plt.show()
save_visualization()
def plt_model_letters(DF1_frmult, DF2_frmult, ax, color012, color01_2, fr_noise, markers):
letters_plot = True
if letters_plot:
letters = ['B', 'C', 'D', 'E']
for f in range(len(DF1_frmult)):
ax.text((fr_noise * DF1_frmult[f]), (fr_noise * DF2_frmult[f] - 1), letters[f], color=color012, ha='center',
va='center') # , alpha = alphas[f]
ax.text((fr_noise * DF1_frmult[f] - 1), -(fr_noise * DF2_frmult[f] - 1), letters[f], color=color01_2,
ha='center', va='center') # , alpha = alphas[f]
else:
for f in range(len(DF1_frmult)):
ax.plot((fr_noise * DF1_frmult[f]), (fr_noise * DF2_frmult[f] - 1), markers[f], ms=5,
markeredgecolor=color012,
markerfacecolor="None") # , alpha = alphas[f]
ax.plot(-(fr_noise * DF1_frmult[f] - 1), (fr_noise * DF2_frmult[f] - 1), markers[f], ms=5,
markeredgecolor=color01_2,
markerfacecolor="None") # , alpha = alphas[f]
#embed()
def plt_data_matrix(ax, axes, cell, grid, ls, lw, perc, stack_final):
ax = plt.subplot(grid[0])
axes.append(ax)
@ -551,7 +533,7 @@ def plt_data_full_model(c1, chose_score, detections, devs, dfs, end, grid, mult_
#embed()
ax00, fr_isi = plt_psds_ROC(arrays, ax00, ax_ps, cell, colors_p, f, grid0,
group_mean, nfft, p_means, p_means_all, ps, 4,
spikes_pure, time_array, range_plot=[3], names=names,
spikes_pure, range_plot=[3], names=names,
ax01=ax00, ms = ms, clip_on = clip_on, xlim_psd=xlim_psd, alphas = alphas, marker = markers[gg], choice = choice, labels = labels, ylim_log=ylim_log, log=log, text_extra=False)
# [arrays[-1]]arrays, ax00, ax_ps, cell, colors_p, f, [-1]grid0, group_mean, nfft, p_means, p_means_all, ps, row,spikes_pure, time_array,
ax00.show_spines('b')

Binary file not shown.

View File

@ -8,7 +8,7 @@ from threefish.defaults import default_figsize
from threefish.core_time import cr_spikes_mat
from threefish.core import find_code_vs_not
import time
from threefish.utils1_suscept import check_var_substract_method, chose_certain_group, circle_plot, extract_waves, load_cells_three, predefine_grouping_frame, restrict_cell_type, save_arrays_susept, ws_nonlin_systems
from threefish.utils1_RAM import check_var_substract_method, chose_certain_group, circle_plot, extract_waves, load_cells_three, predefine_grouping_frame, restrict_cell_type, save_arrays_susept, ws_nonlin_systems
from threefish.core_plot_labels import title_motivation
from threefish.core_plot_subplots import colors_suscept_paper_dots, plot_arrays_ROC_psd_single3, plot_shemes4
from threefish.core_load import save_visualization

View File

@ -543,7 +543,7 @@ Nonlinear encoding as quantified by the second-order susceptibility is expected
\begin{figure*}[t]
\includegraphics[width=\columnwidth]{cells_suscept}
\caption{\label{fig:cells_suscept} Estimation of linear and nonlinear stimulus encoding in a low-CV P-unit. \figitem{A} Interspike interval (ISI) distribution of the cell's baseline activity, i.e. the cell is driven only by the unperturbed own electric field. The low CV of the ISIs indicates quite regular firing. \figitem{B} Power spectral density of the baseline response with peaks at the cell's baseline firing rate \fbase{} and the fish's EOD frequency \feod{}. \figitem{C} Random amplitude modulation stimulus (top, \notejb{cutoff frequency?}) and evoked responses (spike raster, bottom) of the same P-unit. The stimulus contrast (right) reflects the strength of the AM. \figitem{D} Gain of the transfer function (first-order susceptibility), \Eqnref{linearencoding_methods}, of the responses to 10\,\% (light purple) and 20\,\% contrast (dark purple) RAM stimulation. \figitem{E, F} Absolute value of the second-order susceptibility, \Eqnref{eq:susceptibility}, for both the low and high stimulus contrast. Pink triangles mark vertical, horizontal, and diagonal lines where \fone, \ftwo{} or \fsum{} are equal to \fbase{}. \figitem{G} Second-order susceptibilities projected onto the diagonal (means of all anti-diagonals of the matrices shown in \panel{E, F}). Dots mark \fbase{}, horizontal dashed lines mark medians of the projected susceptibilities. \notejb{``Calculated based on the first frozen noise repeat.'' Really? Only one trial has been used for computing the susceptibilities?}}
\caption{\label{fig:cells_suscept} Estimation of linear and nonlinear stimulus encoding in a low-CV P-unit. \figitem{A} Interspike interval (ISI) distribution of the cell's baseline activity, i.e. the cell is driven only by the unperturbed own electric field. The low CV of the ISIs indicates quite regular firing. \figitem{B} Power spectral density of the baseline response with peaks at the cell's baseline firing rate \fbase{} and the fish's EOD frequency \feod{}. \figitem{C} Random amplitude modulation stimulus (top, \notejb{cutoff frequency?}) and evoked responses (spike raster, bottom) of the same P-unit. The stimulus contrast (right) reflects the strength of the AM. \figitem{D} Gain of the transfer function (first-order susceptibility), \Eqnref{linearencoding_methods}, of the responses to 10\,\% (light purple) and 20\,\% contrast (dark purple) RAM stimulation. \figitem{E, F} Absolute value of the second-order susceptibility, \Eqnref{eq:susceptibility}, for both the low and high stimulus contrast. Pink triangles mark vertical, horizontal, and diagonal lines where \fone, \ftwo{} or \fsum{} are equal to \fbase{}. \figitem{G} Second-order susceptibilities projected onto the diagonal (means of all anti-diagonals of the matrices shown in \panel{E, F}). Dots mark \fbase{}, horizontal dashed lines mark medians of the projected susceptibilities. \notejb{``Calculated based on the first frozen noise repeat.'' Really? Only one trial has been used for computing the susceptibilities?} \noteab{Yes. In the population statistics of the last 20 years I was trying to maximize the number cells and maximize the duration. In the end the susceptibility is calculated based on 10 seconds. The susceptibility has always to be calculated with newly initiated noise, with 10 seconds and 0.5 nfft durations this results in 20 trials. For the overview figure the mean of all NLI values for each frozen noise was calculated. It is not possible to take the mean over several frozen noise matrices since the baseline properties sometimes change and this disrupts the second order susceptibility.}}
\end{figure*}
Noise stimuli, here random amplitude modulations (RAM) of the EOD (\subfigref{fig:cells_suscept}{C}, top trace, red line), are commonly used to characterize stimulus driven responses of sensory neurons by means of transfer functions (first-order susceptibility), spike-triggered averages, or stimulus-response coherences. Here, we additionally estimate the second-order susceptibility to quantify nonlinear encoding. P-unit spikes align more or less clearly to fluctuations in the RAM stimulus. A higher stimulus intensity, here a higher contrast of the RAM relative to the EOD amplitude (see methods), entrains the P-unit response more clearly (light and dark purple for low and high contrast stimuli, \subfigrefb{fig:cells_suscept}{C}). Linear encoding, quantified by the transfer function \Eqnref{linearencoding_methods}, is similar for the two RAM contrasts in this low-CV P-unit (\subfigrefb{fig:cells_suscept}{D}), as expected for a linear system. The first-order susceptibility is low for low frequencies, peaks in the range below 100\,Hz and then falls off again \notejb{Cite Moe paper?}.
@ -577,7 +577,7 @@ In the example recordings shown above (\figsrefb{fig:cells_suscept} and \fref{fi
\begin{figure*}[t]
\includegraphics[width=\columnwidth]{model_and_data}
\caption{\label{model_and_data} Estimating second-order susceptibilities in the limit of weak stimuli. \figitem{A} \suscept{} estimated from $N=11$ trials of an electrophysiological recording of the\notejb{same as in Fig 2?} low-CV P-unit \notejb{``(cell 2012-07-03-ak)'' werden cell Nummern irgendwo noch verwendet? Am besten sollten die cell Nummern in jeder Abbildung genannt werden.} driven with a weak RAM stimulus with 2.5\,\% contrast. Pink edges mark baseline firing rate where enhanced nonlinear responses are expected. \figitem[i]{B} \textit{Standard condition} of model simulations with intrinsic noise (bottom) and a RAM stimulus (top). \figitem[ii]{B} \suscept{} estimated from simulations of the cell's LIF model counterpart (cell 2012-07-03-ak, table~\ref{modelparams}) based on the same number of trials as in the electrophysiological recording. \figitem[iii]{B} Same as \panel[ii]{B} but using $10^6$ stimulus repetitions. \figitem[i-iii]{C} Same as in \panel[i-iii]{B} but in the \textit{noise split} condition: there is no external RAM signal driving the model. Instead, a large part (90\,\%) of the total intrinsic noise is treated as signal and is presented as an equivalent amplitude modulation (\signalnoise, center), while the intrinsic noise is reduced to 10\,\% of its original strength (see methods for details). In addition to one million trials, this reveals the full expected structure of the second-order susceptibility. \notejb{to methods: ``Note that the signal component \signalnoise{} is added as an amplitude modulation and is thus limited with respect to its spectral content by the Nyquist frequency of the carrier, half the EOD frequency. It thus has a reduced high frequency content as compared to the intrinsic noise. Adding this discarded high frequency components to the intrinsic noise does not affect the results here (not shown).''}
\caption{\label{model_and_data} Estimating second-order susceptibilities in the limit of weak stimuli. \figitem{A} \suscept{} estimated from $N=11$ trials of an electrophysiological recording of the\notejb{same as in Fig 2?} \noteab{No it is a different cell. In this cell we do not have several contrasts recorded, but a model.} low-CV P-unit (cell 2012-07-03-ak, see table~\ref{modelparams} for model parameters) \noteab{auch für die Datenzellen die identifier raussuchen?} driven with a weak RAM stimulus. The stimulus strength was with 2.5\,\% contrast in the electrophysiologically recorded P-unit. The contrast for the P-unit model was with 0.009\,\%, thus reproducing the CV of the electrophysiolgoical recorded P-unit during the 2.5\,\% contrast stimulation. Pink edges mark baseline firing rate where enhanced nonlinear responses are expected. \figitem[i]{B} \textit{Standard condition} of model simulations with intrinsic noise (bottom) and a RAM stimulus (top). \figitem[ii]{B} \suscept{} estimated from simulations of the cell's LIF model counterpart (cell 2012-07-03-ak, table~\ref{modelparams}) based on the same number of trials as in the electrophysiological recording. \figitem[iii]{B} Same as \panel[ii]{B} but using $10^6$ stimulus repetitions. \figitem[i-iii]{C} Same as in \panel[i-iii]{B} but in the \textit{noise split} condition: there is no external RAM signal driving the model. Instead, a large part (90\,\%) of the total intrinsic noise is treated as signal and is presented as an equivalent amplitude modulation (\signalnoise, center), while the intrinsic noise is reduced to 10\,\% of its original strength (see methods for details). In addition to one million trials, this reveals the full expected structure of the second-order susceptibility. \notejb{to methods: ``Note that the signal component \signalnoise{} is added as an amplitude modulation and is thus limited with respect to its spectral content by the Nyquist frequency of the carrier, half the EOD frequency. It thus has a reduced high frequency content as compared to the intrinsic noise. Adding this discarded high frequency components to the intrinsic noise does not affect the results here (not shown).''}
}
\end{figure*}
@ -597,7 +597,7 @@ We estimated the second-order susceptibility of P-unit responses using RAM stimu
\begin{figure*}[t]
\includegraphics[width=\columnwidth]{model_full}
\caption{\label{fig:model_full} Using second-order susceptibility to predict responses to sine-wave stimuli. \figitem[]{A} Absolute value of the second-order susceptibility, \Eqnref{eq:susceptibility}, for both positive and negative frequencies. \susceptf{} was estimated from $N=10^6$ trials of model simulations in the noise-split condition (cell 2012-07-03-ak, see table~\ref{modelparams} for model parameters). White lines indicate zero frequencies. Nonlinear responses at \fsum{} are quantified in the upper right and lower left quadrants. Nonlinear responses at \fdiff{} are quantified in the upper left and lower right quadrants. Baseline firing rate of this cell was at $\fbase=120$\,Hz. The position of the orange/red letters correspond to the beat frequencies used for the stimulation with pure sine-waves in the subsequent panels and indicate the sum/difference of those beat frequencies. \figitem{B--E} Power spectral density of model simulations in response to stimulation with two pure sine waves, \fone{} and \ftwo, in addition to the receiving fish's own EOD (three fish scenario). \figitem{B} The sum of the two beat frequencies match \fbase{}. \figitem{C} The difference of \fone{} and \ftwo{} match \fbase{}. \figitem{D} Only the first beat frequency matches \fbase{}. \figitem{C} None of the two beat frequencies matches \fbase{}.}
\caption{\label{fig:model_full} Using second-order susceptibility to predict responses to sine-wave stimuli. \figitem[]{A} Absolute value of the second-order susceptibility, \Eqnref{eq:susceptibility}, for both positive and negative frequencies. \susceptf{} was estimated from $N=10^6$ trials of model simulations in the noise-split condition (cell 2012-07-03-ak, see table~\ref{modelparams} for model parameters). White lines indicate zero frequencies. Nonlinear responses at \fsum{} are quantified in the upper right and lower left quadrants. Nonlinear responses at \fdiff{} are quantified in the upper left and lower right quadrants. Baseline firing rate of this cell was at $\fbase=120$\,Hz. The position of the orange/red letters correspond to the beat frequencies used for the stimulation with pure sine-waves in the subsequent panels and indicate the sum/difference of those beat frequencies. \figitem{B--E} Power spectral density of model simulations in response to stimulation with two pure sine waves, \fone{} and \ftwo, in addition to the receiving fish's own EOD (three fish scenario). \figitem{B} The sum of the two beat frequencies match \fbase{}. \figitem{C} The difference of \fone{} and \ftwo{} match \fbase{}. \figitem{D} Only the first beat frequency matches \fbase{}. \figitem{C} None of the two beat frequencies matches \fbase{}.}
\end{figure*}
However, the second-order susceptibility \Eqnref{eq:susceptibility} is a spectral measure that is based on Fourier transforms and thus is also defined for negative stimulus frequencies. The full \susceptf{} matrix is symmetric with respect to the origin. In the upper-right and lower-left quadrants of \susceptf{}, stimulus-evoked responses at \fsum{} are shown, whereas in the lower-right and upper-left quadrants nonlinear responses at the difference \fdiff{} are shown (\figref{fig:model_full}). The vertical and horizontal lines at \foneb{} and \ftwob{} are very pronounced in the upper-right quadrant of \subfigrefb{fig:model_full}{A} for nonlinear responses at \fsum{} and extend into the upper-left quadrant (representing \fdiff) where they fade out towards more negative $f_1$ frequencies. The peak in the response power-spectrum at \fdiff{} evoked by pure sine-wave stimulation (\subfigrefb{fig:motivation}{D}) is predicted by the horizontal line in the upper-left quadrant (\subfigrefb{fig:model_full}{A}, \cite{Schlungbaum2023}).

View File

@ -543,31 +543,31 @@ Nonlinear encoding as quantified by the second-order susceptibility is expected
\begin{figure*}[t]
\includegraphics[width=\columnwidth]{cells_suscept}
\caption{\label{fig:cells_suscept} Estimation of linear and nonlinear stimulus encoding in a low-CV P-unit. Calculated based on the first frozen noise repeat. \figitem{A} Interspike interval (ISI) distribution of the cell's baseline activity, i.e. the cell is driven only by the unperturbed own field. The CV of the ISIs is a dimensionless measure quantifying the response regularity. Zero CV would indicate perfect regularity. \figitem{B} Power-spectrum of the baseline response. \figitem{C} Random amplitude modulation stimulus (top) and responses (spike raster in the lower traces) of the same P-unit. The stimulus contrast reflects the strength of the AM. \figitem{D} Transfer function (first-order susceptibility, \Eqnref{linearencoding_methods}) of the responses to 10\% (light purple) and 20\% contrast (dark purple) RAM stimulation. \figitem{E, F} Absolute value of the second-order susceptibility, \Eqnref{eq:susceptibility}, for the low, and high stimulus contrasts. Pink angles -- edges of the structure when \fone, \ftwo{} or \fsum{} are equal to \fbase{}. \figitem{G} Projected diagonals, calculated as the mean of the anti-diagonals of the matrices in \panel{E, F}. Gray dots mark \fbase{}. Horizontal dashed lines: medians of the projected diagonals.}
\caption{\label{fig:cells_suscept} Estimation of linear and nonlinear stimulus encoding in a low-CV P-unit. \figitem{A} Interspike interval (ISI) distribution of the cell's baseline activity, i.e. the cell is driven only by the unperturbed own electric field. The low CV of the ISIs indicates quite regular firing. \figitem{B} Power spectral density of the baseline response with peaks at the cell's baseline firing rate \fbase{} and the fish's EOD frequency \feod{}. \figitem{C} Random amplitude modulation stimulus (top, \notejb{cutoff frequency?}) and evoked responses (spike raster, bottom) of the same P-unit. The stimulus contrast (right) reflects the strength of the AM. \figitem{D} Gain of the transfer function (first-order susceptibility), \Eqnref{linearencoding_methods}, of the responses to 10\,\% (light purple) and 20\,\% contrast (dark purple) RAM stimulation. \figitem{E, F} Absolute value of the second-order susceptibility, \Eqnref{eq:susceptibility}, for both the low and high stimulus contrast. Pink triangles mark vertical, horizontal, and diagonal lines where \fone, \ftwo{} or \fsum{} are equal to \fbase{}. \figitem{G} Second-order susceptibilities projected onto the diagonal (means of all anti-diagonals of the matrices shown in \panel{E, F}). Dots mark \fbase{}, horizontal dashed lines mark medians of the projected susceptibilities. \notejb{``Calculated based on the first frozen noise repeat.'' Really? Only one trial has been used for computing the susceptibilities?} \noteab{Yes. In the population statistics of the last 20 years I was trying to maximize the number cells and maximize the duration. In the end the susceptibility is calculated based on 10 seconds. The susceptibility has always to be calculated with newly initiated noise, with 10 seconds and 0.5 nfft durations this results in 20 trials. For the overview figure the mean of all NLI values for each frozen noise was calculated. It is not possible to take the mean over several frozen noise matrices since the baseline properties sometimes change and this disrupts the second order susceptibility.}}
\end{figure*}
Noise stimuli, here random amplitude modulations (RAM) of the EOD (\subfigref{fig:cells_suscept}{C}, top trace, red line), are commonly used to characterize stimulus driven responses of sensory neurons by means of transfer functions (first-order susceptibility), spike-triggered averages, or stimulus-response coherences. Here, we additionally estimate the second-order susceptibility to quantify nonlinear encoding. P-unit spikes align more or less clearly to fluctuations in the RAM stimulus. A higher stimulus intensity, here a higher contrast of the RAM relative to the EOD amplitude (see methods), entrains the P-unit response more clearly (light and dark purple for low and high contrast stimuli, \subfigrefb{fig:cells_suscept}{C}). Linear encoding, quantified by the transfer function \Eqnref{linearencoding_methods}, is similar for the two RAM contrasts in this low-CV P-unit (\subfigrefb{fig:cells_suscept}{D}), as expected for a linear system. The first-order susceptibility is low for low frequencies, peaks in the range below 100\,Hz and then falls off again \notejb{Cite Moe paper?}.
The second-order susceptibility, \Eqnref{eq:susceptibility}, quantifies for each combination of two stimulus frequencies \fone{} and \ftwo{} amplitude and phase of the stimulus-evoked response at the sum \fsum{} of these two frequencies. Large values of the second-order susceptibility indicate stimulus-evoked peaks in the response spectrum at the summed frequency that cannot be explained by linear response theory. Similar to the first-order susceptibility, the second-order susceptibility can be estimated directly from the response evoked by a RAM stimulus that simulates the neuron with a whole range of frequencies simultaneously (\subfigsref{fig:cells_suscept}{E, F}). For a LIF driven in the super-threshold regime with two sinewave stimuli, theory predicts nonlinear interactions between the two stimulus frequencies, when the two frequencies \fone{} and \ftwo{} or their sum \fsum{} excatly match the neuron's baseline firing rate \fbase{} \cite{Voronenko2017}. Only then additional stimulus-evoked peaks appear in the spectrum of the spiking response that would show up in the second-order susceptibility as a horizontal, a vertical, and an anti-diagonal line (pink triangle in \subfigsref{fig:cells_suscept}{E, F}).
The second-order susceptibility, \Eqnref{eq:susceptibility}, quantifies amplitude and phase of the stimulus-evoked response at the sum \fsum{} for each combination of two stimulus frequencies \fone{} and \ftwo{}. Large values of the second-order susceptibility indicate stimulus-evoked peaks in the response spectrum at the summed frequency that cannot be explained by linear response theory. Similar to the first-order susceptibility, the second-order susceptibility can be estimated directly from the response evoked by a RAM stimulus that simulates the neuron with a whole range of frequencies simultaneously (\subfigsref{fig:cells_suscept}{E, F}). For a LIF driven in the super-threshold regime with two sinewave stimuli, theory predicts nonlinear interactions between the two stimulus frequencies, when the two frequencies \fone{} and \ftwo{} or their sum \fsum{} excatly match the neuron's baseline firing rate \fbase{} \cite{Voronenko2017}. Only then, additional stimulus-evoked peaks appear in the spectrum of the spiking response that would show up in the second-order susceptibility as a horizontal, a vertical, and an anti-diagonal line (pink triangle in \subfigsref{fig:cells_suscept}{E, F}).
% DAS GEHOERT IN DIE DISKUSSION:
% To estimate the second-order susceptibility from the P-unit responses to RAM stimuli, the noise stimulus was set in relation to the corresponding neuronal response in the Fourier domain, resulting in a matrix in which the nonlinearity at the sum frequency \fsum{} in the firing rate is depicted for two noise frequencies \fone{} and \ftwo{} (\Eqnref{eq:susceptibility}, \subfigrefb{fig:cells_suscept}{E--F}). The decomposition of the RAM stimulus into the frequency components allows us to approximate the beat frequencies $\Delta f$, occurring in case of pure sine-wave stimulation (\subfigrefb{fig:motivation}{D}). Thus, the nonlinearity accessed with the RAM stimulation at \fsum{} (\subfigrefb{fig:cells_suscept}{E}) is similar to the nonlinearity appearing during pure sine-wave stimulation at \bsum{} (orange peak, \subfigrefb{fig:motivation}{D}).
For the low-CV P-unit we observe a band of slightly elevated second-order susceptibility for the low RAM contrast at \fsumb{} (yellowish anti-diagonal between pink edges, \subfigrefb{fig:cells_suscept}{E}). This structure vanishes for the stronger stimulus (\subfigref{fig:cells_suscept}{F}). Further, the overall level of the second-order susceptibility is reduced with increasing stimulus strength. To quantify the structural changes in the susceptibility matrices we projected susceptibility values onto the diagonal by taking the mean over all anti-diagonals (\subfigrefb{fig:cells_suscept}{G}). For the low RAM contrast this projected second-order susceptibility indeed has a small peak at \fbase{} (\subfigrefb{fig:cells_suscept}{G}, dot on top line). For the higher RAM contrast, however, this peak vanishes and the overall level of the second-order susceptibility is reduced (\subfigrefb{fig:cells_suscept}{G}). The reason behind this reduction is that a RAM with a higher contrast is not only a stimulus with an increased amplitude but also increases the total noise in the system. Increased noise is known to linearize signal transmission \cite{Longtin1993, Chialvo1997, Roddey2000, Voronenko2017} and thus the second-order susceptibility is expected to decrease.
For the low-CV P-unit we observe a band of slightly elevated second-order susceptibility for the low RAM contrast at \fsumb{} (yellowish anti-diagonal between pink edges, \subfigrefb{fig:cells_suscept}{E}). This structure vanishes for the stronger stimulus (\subfigref{fig:cells_suscept}{F}). Further, the overall level of the second-order susceptibility is reduced with increasing stimulus strength. To quantify the structural changes in the susceptibility matrices we projected susceptibility values onto the diagonal by taking the mean over all anti-diagonals (\subfigrefb{fig:cells_suscept}{G}). For the low RAM contrast this projected second-order susceptibility indeed has a small peak at \fbase{} (\subfigrefb{fig:cells_suscept}{G}, dot on top line). For the higher RAM contrast, however, this peak vanishes and the overall level of the second-order susceptibility is reduced (\subfigrefb{fig:cells_suscept}{G}). The reason behind this reduction is that a RAM with a higher contrast is not only a stimulus with an increased amplitude, but also increases the total noise in the system. Increased noise is known to linearize signal transmission \cite{Longtin1993, Chialvo1997, Roddey2000, Voronenko2017} and thus the second-order susceptibility is expected to decrease.
In contrast, a high-CV P-unit (CV$_{\text{base}}=0.4$) does not exhibit pronounced nonlinearities even at low stimulus contrasts (\figrefb{fig:cells_suscept_high_CV}).
\begin{figure*}[t]
\includegraphics[width=\columnwidth]{ampullary}
\caption{\label{fig:ampullary} Estimation of linear and nonlinear stimulus encoding in an ampullary afferent. Calculated based on the first frozen noise repeat. \figitem{A} Interspike interval (ISI) distribution of the cell's baseline activity. The CV of the ISIs is a dimensionless measure quantifying the response regularity. Zero CV would indicate perfect regularity. \figitem{B} Power-spectrum of the baseline response. \figitem{C} White noise stimulus (top) added to the fish's self-generated electric field and responses (spike raster in the lower traces). The stimulus contrast reflects the strength of the stimulus in relation to the own electric field amplitude. \figitem{D} Transfer function (first-order susceptibility, \Eqnref{linearencoding_methods}) of the responses to 2\% (light green) and 20\% contrast (dark green) stimulation. \figitem{E, F} Absolute value of the second-order susceptibility, \Eqnref{eq:susceptibility}, for the low, and high stimulus contrasts. Pink angles -- edges of the structure when \fone, \ftwo{} or \fsum{} are equal to \fbase{}. \figitem{G} Projected diagonals, calculated as the mean of the anti-diagonals of the matrices in \panel{E, F}. Gray dots mark \fbase{}. Horizontal dashed lines: medians of the projected diagonals.
\caption{\label{fig:ampullary} Estimation of linear and nonlinear stimulus encoding in an ampullary afferent. \figitem{A} Interspike interval (ISI) distribution of the cell's baseline activity. The very low CV of the ISIs indicates almost perfect periodic spiking. \figitem{B} Power spectral density of baseline activity with peaks at the cell's baseline firing rate and its harmonics. \figitem{C} Bad-limited white noise stimulus (top, \notejb{cutoff frequency?}) added to the fish's self-generated electric field and spike raster of the evoked responses (bottom) for two stimulus contrasts as indicated (right). \figitem{D} Gain of the transfer function, \Eqnref{linearencoding_methods}, of the responses to stimulation with 2\,\% (light green) and 20\,\% contrast (dark green). \figitem{E, F} Absolute value of the second-order susceptibility, \Eqnref{eq:susceptibility}, for both stimulus contrasts as indicated. Pink triangles indicate baseline firing rate. \figitem{G} Projections of the second-order susceptibilities in \panel{E, F} onto the diagonal. \notejb{`` Calculated based on the first frozen noise repeat.''}
}
\end{figure*}
\subsection*{Ampullary afferents exhibit strong nonlinear interactions}
Irrespective of the CV, neither of the two example P-units shows the complete expected structure of nonlinear interactions. Electric fish posses an additional electrosensory system, the passive or ampullary electrosensory system, that responds to low-frequency exogeneous electric stimuli. The population of ampullary afferents is much less heterogeneous, and known for the much lower CVs of their baseline ISIs (CV$_{\text{base}}=0.08$--$0.22$)\notejb{in the figure the CV is 0.07, below this range!}\cite{Grewe2017}. Ampullary cells do not phase-lock to the EOD and the ISIs are unimodally distributed (\subfigrefb{fig:ampullary}{A}). As a consequence of the high regularity of their baseline spiking activity, the corresponding power spectrum shows distinct peaks at the baseline firing rate \fbase{} and harmonics of it. Since the cells do not fire phase locked to the EOD, there is no peak at \feod{} (\subfigrefb{fig:ampullary}{B}). When driven by a low-contrast noise stimulus (note: this is not an AM but a stimulus that is added to the self-generated EOD, \subfigref{fig:ampullary}{C}), ampullary cells exhibit very pronounced bands in the second-order susceptibility where \fsum{} is equal to \fbase{} or its harmonic (yellow diagonals in \subfigrefb{fig:ampullary}{E}), implying strong nonlinear response components at these frequency combinations (\subfigrefb{fig:ampullary}{G}, top). With higher stimulus contrasts these bands disappear (\subfigrefb{fig:ampullary}{F}) and the projection onto the diagonal looses its distinct peak at \fsum{} and its overal level is reduced (\subfigrefb{fig:ampullary}{G}, bottom).
Irrespective of the CV, neither of the two example P-units shows the complete expected structure of nonlinear interactions. Electric fish posses an additional electrosensory system, the passive or ampullary electrosensory system, that responds to low-frequency exogeneous electric stimuli. The population of ampullary afferents is much less heterogeneous, and known for the much lower CVs of their baseline ISIs (CV$_{\text{base}}=0.08$--$0.22$)\notejb{in the figure the CV is 0.07, below this range!}\cite{Grewe2017}. Ampullary cells do not phase-lock to the EOD and the ISIs are unimodally distributed (\subfigrefb{fig:ampullary}{A}). As a consequence of the high regularity of their baseline spiking activity, the corresponding power spectrum shows distinct peaks at the baseline firing rate \fbase{} and harmonics of it. Since the cells do not fire phase locked to the EOD, there is no peak at \feod{} (\subfigrefb{fig:ampullary}{B}). When driven by a low-contrast noise stimulus (note: this is not an AM but a stimulus that is added to the self-generated EOD, \subfigref{fig:ampullary}{C}), ampullary cells exhibit very pronounced bands in the second-order susceptibility, where \fsum{} is equal to \fbase{} or its harmonic (yellow diagonals in \subfigrefb{fig:ampullary}{E}), implying strong nonlinear response components at these frequency combinations (\subfigrefb{fig:ampullary}{G}, top). With higher stimulus contrasts these bands disappear (\subfigrefb{fig:ampullary}{F}), the projection onto the diagonal looses its distinct peak at \fsum{} and its overal level is reduced (\subfigrefb{fig:ampullary}{G}, bottom).
@ -577,31 +577,28 @@ In the example recordings shown above (\figsrefb{fig:cells_suscept} and \fref{fi
\begin{figure*}[t]
\includegraphics[width=\columnwidth]{model_and_data}
\caption{\label{model_and_data} High trial numbers and a reduced internal noise reveal the nonlinear structure in a LIF model with carrier. \figitem{A} \suscept{} surface of the electrophysiologically recorded low-CV P-unit (cell 2012-07-03-ak) driven with a weak stimulus with 2.5\% contrast. The plot shows that \suscept{} surface for $N=11$. Pink edges mark the expected structure of enhanced nonlinearity. \figitem[i]{B} \textit{Standard condition} of the model simulation. The model is driven by a RAM stimulus (red trace). The signal noise component \signalnoise{} and the intrinsic noise are shown in the center and bottom. \figitem[ii]{B} \suscept{} surface of the cell's LIF model counterpart (cell 2012-07-03-ak, table~\ref{modelparams}) averaged over the same number of stimulus repetitions. \figitem[iii]{B} Same as \panel[ii]{B} but $10^6$ stimulus repetitions. \figitem[i - iii]{C} Same as in \panel[i - iii]{B} but in the \textit{noise split} condition: there is no external RAM signal driving the model. Parts (90\%) of the total intrinsic noise are treated as signal (center trace, \signalnoise) while the intrinsic noise is reduced (see methods for details). Note that the signal component \signalnoise{} is added as an amplitude modulation and is thus limited with respect to its spectral content by the Nyquist frequency of the carrier, half the EOD frequency. It thus has a reduced high frequency content as compared to the intrinsic noise. Adding this discarded high frequency components to the intrinsic noise does not affect the results here (not shown).
\caption{\label{model_and_data} Estimating second-order susceptibilities in the limit of weak stimuli. \figitem{A} \suscept{} estimated from $N=11$ trials of an electrophysiological recording of the\notejb{same as in Fig 2?} \noteab{No it is a different cell. In this cell we do not have several contrasts recorded, but a model.} low-CV P-unit (cell 2012-07-03-ak, see table~\ref{modelparams} for model parameters) \notesr{auch für die Datenzellen die identifier raussuchen?} driven with a weak RAM stimulus. The stimulus strength was with 2.5\,\% contrast in the electrophysiologically recorded P-unit. The contrast for the P-unit model was with 0.009\,\%, thus reproducing the CV of the electrophysiolgoical recorded P-unit during the 2.5\,\% contrast stimulation. Pink edges mark baseline firing rate where enhanced nonlinear responses are expected. \figitem[i]{B} \textit{Standard condition} of model simulations with intrinsic noise (bottom) and a RAM stimulus (top). \figitem[ii]{B} \suscept{} estimated from simulations of the cell's LIF model counterpart (cell 2012-07-03-ak, table~\ref{modelparams}) based on the same number of trials as in the electrophysiological recording. \figitem[iii]{B} Same as \panel[ii]{B} but using $10^6$ stimulus repetitions. \figitem[i-iii]{C} Same as in \panel[i-iii]{B} but in the \textit{noise split} condition: there is no external RAM signal driving the model. Instead, a large part (90\,\%) of the total intrinsic noise is treated as signal and is presented as an equivalent amplitude modulation (\signalnoise, center), while the intrinsic noise is reduced to 10\,\% of its original strength (see methods for details). In addition to one million trials, this reveals the full expected structure of the second-order susceptibility. \notejb{to methods: ``Note that the signal component \signalnoise{} is added as an amplitude modulation and is thus limited with respect to its spectral content by the Nyquist frequency of the carrier, half the EOD frequency. It thus has a reduced high frequency content as compared to the intrinsic noise. Adding this discarded high frequency components to the intrinsic noise does not affect the results here (not shown).''}
}
\end{figure*}
One reason could be simply too little data for a good estimate of the second-order susceptibility. Electrophysiological recordings are limited in time, and therefore responses to only a limited number of trials, repetitions of the same RAM stimulus, are available. As a consequence, the cross-spectra, \Eqnref{eq:crosshigh}, are insufficiently averaged and the full structure of the second-order susceptibility might be hidden in finite-data noise. This experimental limitation can be overcome by using a computational model for the P-unit, a stochastic leaky integrate-and-fire model with adaptation current and dendritic preprocessing, and parameters fitted to the experimentally recorded P-unit (\figrefb{flowchart}) \cite{Barayeu2023}. The model faithfully reproduces the second-order susceptibility of a low-CV cell estimated from the same low number of repetitions as in the experiment ($\n{}=11$, compare \panel{A} and \panel[ii]{B} in \figrefb{model_and_data}).
One reason could be simply too little data for a good estimate of the second-order susceptibility. Electrophysiological recordings are limited in time, and therefore responses to only a limited number of trials, i.e. repetitions of the same RAM stimulus, are available. As a consequence, the cross-spectra, \Eqnref{eq:crosshigh}, are insufficiently averaged and the full structure of the second-order susceptibility might be hidden in finite-data noise. This experimental limitation can be overcome by using a computational model for the P-unit, a stochastic leaky integrate-and-fire model with adaptation current and dendritic preprocessing, and parameters fitted to the experimentally recorded P-unit (\figrefb{flowchart}) \cite{Barayeu2023}. The model faithfully reproduces the second-order susceptibility of a low-CV cell estimated from the same low number of trials as in the experiment ($\n{}=11$, compare \panel{A} and \panel[ii]{B} in \figrefb{model_and_data}).
In simulations of the model we can increase the number of repetitions beyond what would be experimentally possible, here to one million (\subfigrefb{model_and_data}\,\panel[iii]{B}). The estimate of the second-order susceptibility indeed improves. It gets less noisy and the diagonal at \fsum{} is emphasized. However, the expected vertical and horizontal lines at \foneb{} and \ftwob{} are still missing.
In simulations of the model we can increase the number of trials beyond what would be experimentally possible, here to one million (\subfigrefb{model_and_data}\,\panel[iii]{B}). The estimate of the second-order susceptibility indeed improves. It gets less noisy and the diagonal at \fsum{} is emphasized. However, the expected vertical and horizontal lines at \foneb{} and \ftwob{} are still missing.
Using a broadband stimulus increases the effective input-noise level and this may linearize signal transmission and suppress potential nonlinear responses \cite{Longtin1993, Chialvo1997, Roddey2000, Voronenko2017}. Assuming that the intrinsic noise level in this P-unit is small enough, the full expected structure of the second-order susceptibility should appear in the limit of weak AMs. Again, this cannot be done experimentally, because the problem of insufficient averaging becomes even more severe for weak AMs (low contrast). In the model, however, we know the time course of the intrinsic noise and can use this knowledge to determine the susceptibilities by input-output correlations via the Furutsu-Novikov theorem \cite{Furutsu1963, Novikov1965}. This theorem, in its simplest form, states that the cross-spectrum $S_{x\eta}(\omega)$ of a Gaussian noise $\eta(t)$ driving a nonlinear system and the system's output $x(t)$ is proportional to the linear susceptibility according to $S_{x\eta}(\omega)=\chi(\omega)S_{\eta\eta}(\omega)$. Here $\chi(\omega)$ characterizes the linear response to an infinitely weak signal $s(t)$ in the presence of the background noise $\eta(t)$. Likewise, the nonlinear susceptibility can be determined in an analogous fashion from higher-order input-output cross-spectra (see methods, equations \eqref{eq:crosshigh} and \eqref{eq:susceptibility}) \cite{Egerland2020}. In line with an alternative derivation of the Furutsu-Novikov theorem \cite{Lindner2022}, we can split the total noise and consider a fraction of it as stimulus. This allows to calculate the susceptibility from the cross-spectrum between the output and this stimulus fraction of the noise. Adapting this approach to our P-unit model (see methods), we replace the intrinsic noise by an approximately equivalent RAM stimulus $s_\xi(t)$ and a weak remaining intrinsic noise $\sqrt{2D \, c_{\rm{noise}}} \cdot \xi(t)$ with $c_\text{noise} = 0.1$ (see methods, equations \eqref{eq:ram_split}, \eqref{eq:Noise_split_intrinsic}, \eqref{eq:Noise_split_intrinsic_dendrite}, \subfigrefb{model_and_data}\,\panel[i]{C}). We tune the amplitude of the RAM stimulus $s_\xi(t)$ such that the output firing rate and variability (CV) are the same as in the baseline activity (i.e. full intrinsic noise $\sqrt{2D}\xi(t)$ in the voltage equation but no RAM) and compute the cross-spectra between the RAM part of the noise $s_\xi(t)$ and the output spike train. This procedure has two consequences: (i) by means of the cross-spectrum between the output and \signalnoise, which is a large fraction of the noise, the signal-to-noise ratio of the measured susceptibilities is drastically improved; (ii) the total noise in the system has been reduced (by what was before the external RAM stimulus $s(t)$), which makes the system more nonlinear. For both reasons we now see the expected nonlinear features in the second-order susceptibility for a sufficient number of trials (\subfigrefb{model_and_data}\,\panel[iii]{C}), but not for a number of trials comparable to the experiment (\subfigrefb{model_and_data}\,\panel[ii]{C}). In addition to the strong response for \fsumb{}, we now also observe pronounced nonlinear responses at \foneb{} and \ftwob{} (vertical and horizontal lines, \subfigrefb{model_and_data}\,\panel[iii]{C}).
Note, that the increased number of repetitions goes along with a substantial reduction of second-order susceptibility values (\subfigrefb{model_and_data}\,\panel[iii]{C}), that saturate in its peak values for $N>10^5$ (\figrefb{fig:trialnr}). This demonstrates the limited reliability of a statistical estimate that is based on 11 trials only. However, we would like to point out that already the limited number of trials as used in the experiments reveals key features of the nonlinear response.
Note, that the increased number of trials goes along with a substantial reduction of second-order susceptibility values (\subfigrefb{model_and_data}\,\panel[iii]{C}), that saturate in its peak values for $N>10^5$ (\figrefb{fig:trialnr}). This demonstrates the limited reliability of an estimate of the second-order susceptibility that is based on 11 trials only. However, we would like to point out that already the limited number of trials as used in the experiments reveals key features of the nonlinear response.
With high levels of intrinsic noise, we would not expect the nonlinear response features to survive. Indeed, we do not find these features in a high-CV P-unit and its corresponding model (not shown).
\subsection*{Second-order susceptibility can explain nonlinear peaks in pure sinewave stimulation}
We estimated the second-order susceptibility of P-unit responses using RAM stimuli. In particular, we found pronounced nonlinear responses in the limit of weak stimulus amplitudes. How do these findings relate to the situation of two pure sinewave stimuli with finite amplitudes that approximates the interference of EODs of real animals? For the P-units the relevant signals are the beat frequencies \bone{} and \btwo{} that arise from the interference of either of the two foreign EODs with the receiving fish's own EOD (\figref{fig:motivation}). In the introductory example, the response power spectrum showed peaks from nonlinear interactions at the sum of the two beat frequencies (orange marker, \subfigrefb{fig:motivation}{D}) and at the difference between the two beat frequencies (red marker, \subfigrefb{fig:motivation}{D}). In this example, $\Delta f_{2}$ was similar to \fbase{}, corresponding to the horizontal line of the second-order susceptibility estimated for a vanishing external RAM stimulus (\subfigrefb{model_and_data}\,\panel[iii]{C}). In the three-fish example, there was a second nonlinearity at the difference between the two beat frequencies (red dot, \subfigrefb{fig:motivation}{D}), that is not covered by the so-far shown part of the second-order susceptibility (\subfigrefb{model_and_data}\,\panel[iii]{C}), in which only the response at the sum of the two stimulus frequencies is addressed. % less prominent,
\begin{figure*}[t]
\includegraphics[width=\columnwidth]{model_full}
\caption{\label{fig:model_full} \figitem[]{A} Full second-order susceptibility of the model of an electrophysiologically recorded P-unit (see table~\ref{modelparams} for model parameters of 2012-07-03-ak). White lines -- coordinate axis. The nonlinearity at \fsum{} in the firing rate is quantified in the upper right and lower left quadrants (\Eqnref{eq:susceptibility}). The nonlinearity at \fdiff{} in the firing rate is quantified in the upper left and lower right quadrants. Baseline firing rate $\fbase{}=120$\,Hz. Absolute value of the model second-order susceptibility, with $N=10^6$ stimulus realizations and the intrinsic noise split (see methods). The position of the orange letters corresponds to the beat frequencies used for the pure sinewave stimulation in the subsequent panels. The position of the red letters correspond to the difference of those beat frequencies. \figitem{B--E} Power spectral density of model responses under pure sinewave stimulation. \figitem{B} The two beat frequencies are in sum equal to \fbase{}. \figitem{C} The difference of the two beat frequencies is equal to \fbase{}. \figitem{D} Only one beat frequency is equal to \fbase{}. \figitem{C} No beat frequencies is equal to \fbase{}.}
\caption{\label{fig:model_full} Using second-order susceptibility to predict responses to sine-wave stimuli. \figitem[]{A} Absolute value of the second-order susceptibility, \Eqnref{eq:susceptibility}, for both positive and negative frequencies. \susceptf{} was estimated from $N=10^6$ trials of model simulations in the noise-split condition (cell 2012-07-03-ak, see table~\ref{modelparams} for model parameters). White lines indicate zero frequencies. Nonlinear responses at \fsum{} are quantified in the upper right and lower left quadrants. Nonlinear responses at \fdiff{} are quantified in the upper left and lower right quadrants. Baseline firing rate of this cell was at $\fbase=120$\,Hz. The position of the orange/red letters correspond to the beat frequencies used for the stimulation with pure sine-waves in the subsequent panels and indicate the sum/difference of those beat frequencies. \figitem{B--E} Power spectral density of model simulations in response to stimulation with two pure sine waves, \fone{} and \ftwo, in addition to the receiving fish's own EOD (three fish scenario). \figitem{B} The sum of the two beat frequencies match \fbase{}. \figitem{C} The difference of \fone{} and \ftwo{} match \fbase{}. \figitem{D} Only the first beat frequency matches \fbase{}. \figitem{C} None of the two beat frequencies matches \fbase{}.}
\end{figure*}
%section \ref{intrinsicsplit_methods}).\figitem{A} Absolute value of the second-order susceptibility of an electrophysiologically recorded P-unit. RAM stimulus realizations $N=11$. Diagonal bands appear when the sum of the frequencies \fsum{} or the difference \fdiff{} is equal to \fbase{}. \figitem{B} The diagonals, that were present in \panel{A}, are complemented by vertical and horizontal lines when \fone{} or \ftwo{} are equal to \fbase{}. Note that the different scale of the second-order susceptibility is associated with the higher signal-to-ratio in case of 1 million repeats in \panel{B}.
However, the second-order susceptibility \Eqnref{eq:susceptibility} is a spectral measure that is based on Fourier transforms and thus is also defined for negative stimulus frequencies. The full \susceptf{} matrix is symmetric with respect to the origin. In the upper-right and lower-left quadrants of \susceptf{}, stimulus-evoked responses at \fsum{} are shown, whereas in the lower-right and upper-left quadrants nonlinear responses at the difference \fdiff{} are shown (\figref{fig:model_full}). The vertical and horizontal lines at \foneb{} and \ftwob{} are very pronounced in the upper-right quadrant of \subfigrefb{fig:model_full}{A} for nonlinear responses at \fsum{} and extend into the upper-left quadrant (representing \fdiff) where they fade out towards more negative $f_1$ frequencies. The peak in the response power-spectrum at \fdiff{} evoked by pure sine-wave stimulation (\subfigrefb{fig:motivation}{D}) is predicted by the horizontal line in the upper-left quadrant (\subfigrefb{fig:model_full}{A}, \cite{Schlungbaum2023}).
Is it possible based on the second-order susceptibility estimated by means of RAM stimuli (\subfigrefb{fig:model_full}{A}) to predict nonlinear responses in a three-fish setting? We can test this by stimulating the same model with two beats with weak amplitudes \notejb{specify the contrast at least in the figure legend!} (\subfigrefb{fig:model_full}{B--E}). If we choose a frequency combination where the sum of the two beat frequencies is equal to the model's baseline firing rate \fbase{}, a peak at the sum of the two beat frequencies appears in the power spectrum of the response (\subfigrefb{fig:model_full}{B}), as expected from \suscept. If instead we choose two beat frequencies that differ by \fbase{}, a peak is present at the difference frequency (\subfigrefb{fig:model_full}{C}). If only one beat frequency is equal to \fbase{}, both a peak at the sum and at the difference frequency is present in the P-unit response (\subfigrefb{fig:model_full}{D}). And if none of these conditions are met, neither a peak at the sum nor at the difference of the two beat frequencies appears (\subfigrefb{fig:model_full}{E}).
@ -611,24 +608,24 @@ Is it possible based on the second-order susceptibility estimated by means of RA
% TO DISCUSSION:
%Even though the second-order susceptibilities here were estimated from data and models with an modulated (EOD) carrier (\figrefb{fig:model_full}) they are in good accordance with the second-order susceptibilities found in LIF models without a carrier\cite{Voronenko2017, Schlungbaum2023}.
\begin{figure*}[!ht]
\begin{figure*}[tp]
\includegraphics[width=\columnwidth]{data_overview_mod}
\caption{\label{fig:data_overview_mod} Nonlinearity for a population of P-units (\panel{A, C, E}) and ampullary cells (\panel{B, D, F}). The peakedness of the nonlinearity \nli{} is calculated as the maximal value in the range $\fbase{} \pm 5$\,Hz of the projected diagonal divided by its median (see \Eqnref{eq:nli_equation}). Each recorded neuron contributes at maximum with two stimulus contrasts. Black squares and circles highlight recordings conducted in a single cell. Squares in \panel{A, C, E} correspond to the cell in \figrefb{fig:cells_suscept} and circles to the cell in \figrefb{fig:cells_suscept_high_CV}. Squares in \panel{B, D, F} correspond to the cell in \figrefb{fig:ampullary}. \figitem{A, B} There is a negative correlation between the CV during baseline and \nli. \figitem{C, D} There is a negative correlation between the CV during stimulation and \nli. \figitem{E, F} \nli{} is plotted against the response modulation, (see methods), an indicator of the subjective stimulus strength for a cell. There is a negative correlation between response modulation and \nli. Restricting the analysis to the weakest stimulus that was presented to each unique neuron, does not change the results. The number of unique neurons is 221 for P-units and 45 for ampullary cells.
% The two example P-units shown before are highlighted with dark markers in \subfigrefb{fig:data_overview_mod}{A, C, E} (squares -- \figrefb{fig:cells_suscept}, circles -- \figrefb{fig:cells_suscept_high_CV}).
% Several of the recorded neurons contribute with two samples to the population analysis as their responses have been recorded to two different contrast of the same RAM stimulus. Higher stimulus contrasts lead to a stronger drive and thus stronger response modulations (see color code bar in \subfigref{fig:data_overview_mod}{A}, see methods).
\caption{\label{fig:data_overview} Nonlinear responses in P-units and ampullary cells. The second-order susceptibility is condensed into the peakedness of the nonlinearity, \nli{} \Eqnref{eq:nli_equation}, that relates the amplitude of the projected susceptibility at a cell's baseline firing rate to its median (see \subfigrefb{fig:cells_suscept}{G}). Each of the recorded neurons contributes at maximum with two stimulus contrasts. Black squares and circles highlight recordings conducted in a single cell. Squares in \panel{A, C, E} correspond to the cell in \figrefb{fig:cells_suscept} and circles to the cell in \figrefb{fig:cells_suscept_high_CV}. Squares in \panel{B, D, F} correspond to the cell in \figrefb{fig:ampullary}. \figitem{A, B} There is a negative correlation between the CV during baseline and \nli. \figitem{C, D} There is a negative correlation between the CV during stimulation and \nli. \figitem{E, F} \nli{} is plotted against the response modulation, (see methods), an indicator of the subjective stimulus strength for a cell. There is a negative correlation between response modulation and \nli. Restricting the analysis to the weakest stimulus that was presented to each unique neuron, does not change the results. The number of unique neurons is 221 for P-units and 45 for ampullary cells.
% The two example P-units shown before are highlighted with dark markers in \subfigrefb{fig:data_overview}{A, C, E} (squares -- \figrefb{fig:cells_suscept}, circles -- \figrefb{fig:cells_suscept_high_CV}).
% Several of the recorded neurons contribute with two samples to the population analysis as their responses have been recorded to two different contrast of the same RAM stimulus. Higher stimulus contrasts lead to a stronger drive and thus stronger response modulations (see color code bar in \subfigref{fig:data_overview}{A}, see methods).
% The example cell shown above (\figref{fig:ampullary}) was recorded at two different stimulus intensities and the \nli{} values are highlighted with black squares.
}
\end{figure*}
%\Eqnref{response_modulation}
\subsection*{Low CVs and weak stimuli are associated with strong nonlinearity}
All the statements about nonlinear encoding in p-type and ampullary electroreceptor afferents based on single cell examples shown above are supported by the analysis of our pool of 221 P-units and 47 ampullary afferents recorded in 71 specimen. For a comparison across cells we summarize the structure of the second-order susceptibilities in a single number, the peakedness of the nonlinearity \nli{} \Eqnref{eq:nli_equation}, that characterizes the size of the expected peak of the projections of a \suscept{} matrix onto its diagonal at the baseline firing rate (e.g. \subfigref{fig:cells_suscept}{G}). \nli{} assumes high values when the peak at \fbase{} is pronounced relative to the median of projections onto the diagonal and is small when there is no distinct peak. The \nli{} values of the P-unit population depend weakly on the CV of the baseline ISI distribution. Cells with lower baseline CVs tend to have more pronounced peaks in their projections than those that have high baseline CVs (\subfigrefb{fig:data_overview_mod}{A}). This negative correlation is more pronounced against the CV measured during stimulation (\subfigrefb{fig:data_overview_mod}{C}).
All the statements about nonlinear encoding in p-type and ampullary electroreceptor afferents based on single cell examples shown above are supported by the analysis of our pool of 221 P-units and 47 ampullary afferents recorded in 71 specimen. For a comparison across cells we summarize the structure of the second-order susceptibilities in a single number, the peakedness of the nonlinearity \nli{} \Eqnref{eq:nli_equation}, that characterizes the size of the expected peak of the projections of a \suscept{} matrix onto its diagonal at the baseline firing rate (e.g. \subfigref{fig:cells_suscept}{G}). \nli{} assumes high values when the peak at \fbase{} is pronounced relative to the median of projections onto the diagonal and is small when there is no distinct peak. The \nli{} values of the P-unit population depend weakly on the CV of the baseline ISI distribution. Cells with lower baseline CVs tend to have more pronounced peaks in their projections than those that have high baseline CVs (\subfigrefb{fig:data_overview}{A}). This negative correlation is more pronounced against the CV measured during stimulation (\subfigrefb{fig:data_overview}{C}).
The effective stimulus strength also plays an important role. We quantify the effect a stimulus has on a cell's response by the response modulation --- the standard deviation of a cell's firing rate in response to a RAM stimulus. P-units are heterogeneous in their sensitivity, their response modulations to the same stimulus contrast vary a lot \cite{Grewe2017}. Cells with weak responses to a stimulus, be it an insensitive cell or a weak stimulus, have higher \nli{} values and thus a more pronounced ridge in the second-order susceptibility at \fsumb{} in comparison to strongly responding cells that basically have flat second-order susceptibilities (\subfigrefb{fig:data_overview_mod}{E}). How pronounced nonlinear response components are in P-units thus depends on the baseline CV (a proxy for the internal noise level), and both the CV and response strength during stimulation (effective output noise).
The effective stimulus strength also plays an important role. We quantify the effect a stimulus has on a cell's response by the response modulation --- the standard deviation of a cell's firing rate in response to a RAM stimulus. P-units are heterogeneous in their sensitivity, their response modulations to the same stimulus contrast vary a lot \cite{Grewe2017}. Cells with weak responses to a stimulus, be it an insensitive cell or a weak stimulus, have higher \nli{} values and thus a more pronounced ridge in the second-order susceptibility at \fsumb{} in comparison to strongly responding cells that basically have flat second-order susceptibilities (\subfigrefb{fig:data_overview}{E}). How pronounced nonlinear response components are in P-units thus depends on the baseline CV (a proxy for the internal noise level), and both the CV and response strength during stimulation (effective output noise).
%(Pearson's $r=-0.35$, $p<0.001$)221 P-units and 47 (Pearson's $r=-0.16$, $p<0.01$)
%In a P-unit population where each cell is represented not by several contrasts but by the lowest recorded contrast, \nli{} significantly correlates with the CV during baseline ($r=-0.17$, $p=0.01$), the response modulation ($r=-0.35$, $p<0.001$) and \fbase{} ($r=-0.32$, $p<0.001$).%, $\n{}=221$*, $\n{}=221$******, $\n{}=221$
The population of ampullary cells is generally more homogeneous, with lower baseline CVs than P-units. Accordingly, \nli{} values of ampullary cells are indeed much higher than in P-units by about a factor of ten. Ampullary cells also show a negative correlation with baseline CV. Again, sensitive cells with strong response modulations are at the bottom of the distribution and have \nli{} values close to one (\subfigrefb{fig:data_overview_mod}{B, D}). The weaker the response modulation because of less sensitive cells or weaker stimulus amplitudes the stronger the nonlinear component of a cell's response (\subfigrefb{fig:data_overview_mod}{F}).
The population of ampullary cells is generally more homogeneous, with lower baseline CVs than P-units. Accordingly, \nli{} values of ampullary cells are indeed much higher than in P-units by about a factor of ten. Ampullary cells also show a negative correlation with baseline CV. Again, sensitive cells with strong response modulations are at the bottom of the distribution and have \nli{} values close to one (\subfigrefb{fig:data_overview}{B, D}). The weaker the response modulation, because of less sensitive cells or weaker stimulus amplitudes, the stronger the nonlinear component of a cell's response (\subfigrefb{fig:data_overview}{F}).
%(Pearson's $r=-0.35$, $p < 0.01$) (Pearson's $r=-0.59$, $p < 0.0001$)
\section*{Discussion}
@ -641,9 +638,9 @@ Nonlinearities are ubiquitous in nervous systems, they are essential to extract
Theoretical work\cite{Voronenko2017} explained analytically the occurrence of nonlinear products when a LIF model neuron is stimulated with pure sine-waves. To investigate whether the same mechanisms occur in electroreceptor afferents which are driven by AMs of a carrier and not by pure sine-waves, we followed the previous approach and quantified the second-order susceptibility from responses to white-noise stimuli \cite{Voronenko2017, Egerland2020, Neiman2011fish,Nikias1993}. We expected to see elevated second-order susceptibility where either of the foreign signals matches the baseline firing rate ($f_1=f_{base}$ or $f_2=f_{base}$) or when the sum equals the baseline firing rate of the neuron (\fsumb{}) creating a triangular pattern of elevated \suscept{} e.g.\,\subfigref{model_and_data}\,\panel[iii]{C}. Indeed, we find traces of the same nonlinearities in the neuronal responses of p-type electroreceptor afferents. The nonlinear pattern observed in the experimental data, however, matches to the expectations only partially and only in a subset of neurons (\figsref{fig:cells_suscept} and\,\ref{fig:ampullary}). Nevertheless, the theory holds also for systems that are driven by AMs of a carrier and is thus more widely applicable.
\subsection*{Intrinsic noise limits nonlinear responses}
Only those P-units that exhibit low coefficients of variation (CV) of the interspike-interval distribution (\subfigref{fig:cells_suscept}{A}) in their unperturbed baseline response show the expected nonlinerities (\subfigref{fig:data_overview_mod}{A}). Such low-CV cells are rare among the 221 P-units that we used in this study. The afferents of the passive electrosensory system, the ampullary cells, however have generally lower CVs and show a much clearer nonlinearity pattern than the low-CV P-unit exemplified here (compare \figsref{fig:cells_suscept} and \ref{fig:ampullary}). The single ampullary cell featured in \figref{fig:ampullary} is a representative of the majority of ampullary cells analyzed here. All ampullary cells have CVs below 0.4 with a median around 0.12 and the observed \nli{}s are 10-fold higher than in P-units.
Only those P-units that exhibit low coefficients of variation (CV) of the interspike-interval distribution (\subfigref{fig:cells_suscept}{A}) in their unperturbed baseline response show the expected nonlinerities (\subfigref{fig:data_overview}{A}). Such low-CV cells are rare among the 221 P-units that we used in this study. The afferents of the passive electrosensory system, the ampullary cells, however have generally lower CVs and show a much clearer nonlinearity pattern than the low-CV P-unit exemplified here (compare \figsref{fig:cells_suscept} and \ref{fig:ampullary}). The single ampullary cell featured in \figref{fig:ampullary} is a representative of the majority of ampullary cells analyzed here. All ampullary cells have CVs below 0.4 with a median around 0.12 and the observed \nli{}s are 10-fold higher than in P-units.
The CV serves as a proxy for the intrinsic noise in the cells. In both cell types, we observe a negative correlation between \nli{} and the CV, indicating that it is the level of intrinsic noise that plays a role here. These findings are in line with previous studies that propose that noise linearizes the system\cite{Roddey2000, Chialvo1997, Voronenko2017}. More intrinsic noise has been demonstrated to increase the CV and reduce nonlinear phase-locking in vestibular afferents\cite{Schneider2011}. Reduced noise, on the other hand, has been associated with stronger nonlinearity in pyramidal cells of the ELL\cite{Chacron2006}. Further support for the notion of noise limiting the nonlinearity comes from our P-unit LIF model that faithfully reproduces P-unit activity\cite{Barayeu2023}. We can use this model and apply a noise-split \cite{Lindner2022} based on the to the Furutsu-Novikov theorem\cite{Novikov1965,Furutsu1963}, to increase the signal-to-noise ratio in the cell while keeping the overall response variability constant (see methods). Treating 90\% of the total noise as signal and simulating large numbers of trial uncovers the full nonlinear structure (\figref{model_and_data}) seen in LIF neurons and the analytical derivations when driven with sine-wave stimuli\cite{Voronenko2017}.
The CV serves as a proxy for the intrinsic noise in the cells. In both cell types, we observe a negative correlation between \nli{} and the CV, indicating that it is the level of intrinsic noise that plays a role here. These findings are in line with previous studies that propose that noise linearizes the system\cite{Roddey2000, Chialvo1997, Voronenko2017}. More intrinsic noise has been demonstrated to increase the CV and reduce nonlinear phase-locking in vestibular afferents\cite{Schneider2011}. Reduced noise, on the other hand, has been associated with stronger nonlinearity in pyramidal cells of the ELL\cite{Chacron2006}. Further support for the notion of noise limiting the nonlinearity comes from our P-unit LIF model that faithfully reproduces P-unit activity\cite{Barayeu2023}. We can use this model and apply a noise-split \cite{Lindner2022} based on the to the Furutsu-Novikov theorem\cite{Novikov1965,Furutsu1963}, to increase the signal-to-noise ratio in the cell while keeping the overall response variability constant (see methods). Treating 90\,\% of the total noise as signal and simulating large numbers of trial uncovers the full nonlinear structure (\figref{model_and_data}) seen in LIF neurons and the analytical derivations when driven with sine-wave stimuli\cite{Voronenko2017}.
%
\subsection*{Noise stimulation approximates the real three-fish interaction}
@ -664,7 +661,7 @@ In contrast to the situation with individual frequencies (direct sine-waves or s
The observed nonlinear effects might facilitate the detectability of faint signals during a three fish setting, the electrosensory cocktail party. These nonlinear effects are, however, very specific with respect to the relation of stimulus frequencies and the P-unit baseline frequency. The EOD frequencies of the interacting fish would be drawn from the distributions of EOD frequencies found in male and female fish\cite{Hopkins1974Eigen, Meyer1987, Henninger2018, Henninger2020}. To be behaviorally relevant the faint signal detection would require reliable neuronal signaling irrespective of the individual EOD frequencies.
P-units, however are very heterogeneous in their baseline firing properties\cite{Grewe2017, Hladnik2023}. The baseline firing rates vary in wide ranges (50--450\,Hz). This range covers substantial parts of the beat frequencies that may occur during animal interactions which is limited to frequencies below the Nyquist frequency (0 -- \feod/2)\cite{Barayeu2023}. It is thus likely that there are P-units which match approximately to the specificities of the different encounters.
On the other hand, the nonlinearity was found only in low-CV P-units (with white noise stimulation). The CVs are also very heterogeneous (0.1--1.4, \figref{fig:data_overview_mod}\panel{A}) in our sample. Only a small fraction of the P-units has a sufficiently low level of intrinsic noise and will exhibit nonlinear responses. The P-units project to the ELL\cite{Krahe2014} and the integrating pyramidal cells in the different segments receive inputs in the range of 10s to 1000s of neurons\cite{Maler2009a}. Since the receptive fields of the pyramidal neurons are patches of adjacent receptors on the fish's body surface \cite{Bastian2002, Maler2009a, Haggard2023} and the input heterogeneity does not depend on the location of the receptor on the fish body \cite{Hladnik2023} the pyramidal cell input population will be heterogeneous. Heterogeneity was shown to be generally advantageous for the encoding in this\cite{Hladnik2023} and other systems\cite{Padmanabhan2010, Beiran2018}. At the same time it contradicts the apparent need for a selective readout of low-CV cells to maintain information arising through nonlinear interactions.
On the other hand, the nonlinearity was found only in low-CV P-units (with white noise stimulation). The CVs are also very heterogeneous (0.1--1.4, \figref{fig:data_overview}\panel{A}) in our sample. Only a small fraction of the P-units has a sufficiently low level of intrinsic noise and will exhibit nonlinear responses. The P-units project to the ELL\cite{Krahe2014} and the integrating pyramidal cells in the different segments receive inputs in the range of 10s to 1000s of neurons\cite{Maler2009a}. Since the receptive fields of the pyramidal neurons are patches of adjacent receptors on the fish's body surface \cite{Bastian2002, Maler2009a, Haggard2023} and the input heterogeneity does not depend on the location of the receptor on the fish body \cite{Hladnik2023} the pyramidal cell input population will be heterogeneous. Heterogeneity was shown to be generally advantageous for the encoding in this\cite{Hladnik2023} and other systems\cite{Padmanabhan2010, Beiran2018}. At the same time it contradicts the apparent need for a selective readout of low-CV cells to maintain information arising through nonlinear interactions.
A possible readout mechanism should be the topic of future studies that need to take into account that the nonlinearities are stronger in pure sine-wave stimulation and the fraction of cells that show it under naturalistic stimulation might be larger than expected from the distribution of CVs.
\subsection*{Behavioral relevance of nonlinear interactions}
@ -672,7 +669,7 @@ The behavioral relevance of the weak signal detection in P-units is evident from
Sinusoidal AMs are relevant in interactions with a few fish. We can understand the noise as the presence of many animals with individual EOD frequencies at the same time. Under noise stimulation, nonlinearities were demonstrated to be strong for weak stimuli but were shown to decrease for stronger noise stimuli (\figrefb{fig:cells_suscept}). As long as the noise signal is weak, those fish are distant and the nonlinearity is maintained. An increasing stimulus amplitude would indicate that many fish are close to the receiver and a decrease of nonlinear effects can be observed. These findings imply that the nonlinear effects arising in the presence of three fish decline the more fish join. \lepto{} usually prefers small groups of fish\cite{Stamper2010}. Thus, the described second-order susceptibility might still be behaviorally relevant under natural conditions. The decline of nonlinear effects when several fish are present might be an adaptive process reducing the number of frequencies represented in its primary sensory afferents to a minimum. Such representation would still leave room to create nonlinear effects at later processing steps in higher-order neurons.
The afferents of the passive electrosensory system, the ampullary cells, were found to exhibit much stronger nonlinearities than P-units (\figref{fig:data_overview_mod}). The adequate stimulus for this system is a direct stimulation not an amplitude modulation. In this sense the ampullary cells are closer to the LIF models used by Voroneko and colleagues\cite{Voronenko2017} and we can thus expect that the same nonlinear mechanisms are at work here. For the ampullary system, the sinewave stimulation is not as relevant as for the P-unit system. Ampullary cells encode low-frequency exogenous electric signals such as muscle potentials induced by prey movement\cite{Kalmijn1974, Engelmann2010, Neiman2011fish}. The simultaneous muscle activity of a swarm of prey (such as \textit{Daphnia}) resembles Gaussian white noise\cite{Neiman2011fish}, similar to the stimuli used here. Our results show some similarities with the analyses by Neiman and Russel\cite{Neiman2011fish} who study the encoding in ampullary afferents in the paddlefish. There, the power spectrum of the spontaneous activity also shows a peak at the baseline frequency (internal oscillator) but also at the oscillation frequency measured at the epithelium and interactions of both. Most of the latter disappear in the case of external stimulation, though. Here we find only peaks at the baseline frequency of the neuron and its harmonics. There are interesting similarities and dissimilarities; stimulus encoding in the paddlefish as well as in the brown ghost is very linear for low frequencies and there are nonlinearities in both systems. Linear encoding in the paddlefish shows a gap in the spectrum at the frequency of the epitheliar oscillation, instead the nonlinear response is very pronounced there. In \lepto{}, the dominating frequency under baseline conditions is the baseline firing rate, and we do see increased nonlinearity in this frequency range. The baseline frequency, however, is outside the linear coding range\cite{Grewe2017} while it is within the linear coding range in paddlefish\cite{Neiman2011fish}. Interestingly, the nonlinear response in the paddlefish ampullaries increases with stimulus intensity while it disappears in our case (\subfigrefb{fig:data_overview_mod}{F}). The population of ampullary cells is much more homogeneous with respect to the baseline rate (131$\pm$29\,Hz) and stimulus encoding properties than the P-units\cite{Grewe2017}. This implies that, if the stimulus contains the appropriate frequency components that sum up to the baseline rate, there should be a nonlinear response at a frequency that is similar for the full population of ampullary cells (the baseline frequency) that is outside the linear coding range. Postsynaptic cells integrating ampullary input might be able to extract this nonlinear response from the input population. How such nonlinear effects in ampullary cells might influence prey detection should be addressed in further studies.
The afferents of the passive electrosensory system, the ampullary cells, were found to exhibit much stronger nonlinearities than P-units (\figref{fig:data_overview}). The adequate stimulus for this system is a direct stimulation not an amplitude modulation. In this sense the ampullary cells are closer to the LIF models used by Voroneko and colleagues\cite{Voronenko2017} and we can thus expect that the same nonlinear mechanisms are at work here. For the ampullary system, the sinewave stimulation is not as relevant as for the P-unit system. Ampullary cells encode low-frequency exogenous electric signals such as muscle potentials induced by prey movement\cite{Kalmijn1974, Engelmann2010, Neiman2011fish}. The simultaneous muscle activity of a swarm of prey (such as \textit{Daphnia}) resembles Gaussian white noise\cite{Neiman2011fish}, similar to the stimuli used here. Our results show some similarities with the analyses by Neiman and Russel\cite{Neiman2011fish} who study the encoding in ampullary afferents in the paddlefish. There, the power spectrum of the spontaneous activity also shows a peak at the baseline frequency (internal oscillator) but also at the oscillation frequency measured at the epithelium and interactions of both. Most of the latter disappear in the case of external stimulation, though. Here we find only peaks at the baseline frequency of the neuron and its harmonics. There are interesting similarities and dissimilarities; stimulus encoding in the paddlefish as well as in the brown ghost is very linear for low frequencies and there are nonlinearities in both systems. Linear encoding in the paddlefish shows a gap in the spectrum at the frequency of the epitheliar oscillation, instead the nonlinear response is very pronounced there. In \lepto{}, the dominating frequency under baseline conditions is the baseline firing rate, and we do see increased nonlinearity in this frequency range. The baseline frequency, however, is outside the linear coding range\cite{Grewe2017} while it is within the linear coding range in paddlefish\cite{Neiman2011fish}. Interestingly, the nonlinear response in the paddlefish ampullaries increases with stimulus intensity while it disappears in our case (\subfigrefb{fig:data_overview}{F}). The population of ampullary cells is much more homogeneous with respect to the baseline rate (131$\pm$29\,Hz) and stimulus encoding properties than the P-units\cite{Grewe2017}. This implies that, if the stimulus contains the appropriate frequency components that sum up to the baseline rate, there should be a nonlinear response at a frequency that is similar for the full population of ampullary cells (the baseline frequency) that is outside the linear coding range. Postsynaptic cells integrating ampullary input might be able to extract this nonlinear response from the input population. How such nonlinear effects in ampullary cells might influence prey detection should be addressed in further studies.
\subsection*{Conclusion}
We have demonstrated that there are pronounced nonlinear responses in the primary electrosensory afferences of the weakly electric fish \lepto{}, systems that are very often characterized using linear methods. The observed nonlinearities match the expectations from previous theoretical studies\cite{Voronenko2017}. We can confirm that the theory applies also to systems that are encoding amplitude modulations of a carrier signal. Comparisons of P-units and ampullary cells showed that it is the level of intrinsic noise that determines how strongly nonlinear the system acts. Using the second-oder susceptibility estimated from the responses to white noise stimuli provides an easy way to determine the nonlinearity of the system under study. P-units share several features with mammalian
@ -707,9 +704,9 @@ The stimulus was isolated from the ground (ISO-02V, npi-electronics, Tamm, Germa
\end{figure*}
\subsection*{White noise stimulation}\label{rammethods}
The fish were stimulated with band-limited white noise stimuli with a cut-off frequency of 150, 300 or 400\,Hz. The stimulus intensity is given as the contrast, i.e. the standard deviation of the white noise stimulus in relation to the fish's EOD amplitude. The contrast varied between 1 and 20\,$\%$. Only cell recordings with at least 10\,s of white noise stimulation were included for the analysis. When ampullary cells were recorded, the white noise was directly applied as the stimulus. To create random amplitude modulations (RAM) for P-unit recordings, the EOD of the fish was multiplied with the desired random amplitude modulation profile (MXS-01M; npi electronics).
The fish were stimulated with band-limited white noise stimuli with a cut-off frequency of 150, 300 or 400\,Hz. The stimulus intensity is given as the contrast, i.e. the standard deviation of the white noise stimulus in relation to the fish's EOD amplitude. The contrast varied between 1 and 20\,\%. Only cell recordings with at least 10\,s of white noise stimulation were included for the analysis. When ampullary cells were recorded, the white noise was directly applied as the stimulus. To create random amplitude modulations (RAM) for P-unit recordings, the EOD of the fish was multiplied with the desired random amplitude modulation profile (MXS-01M; npi electronics).
% and between 2.5 and 40\,$\%$ for \eigen
% and between 2.5 and 40\,\% for \eigen
\subsection*{Data analysis} Data analysis was performed with Python 3 using the packages matplotlib\cite{Hunter2007}, numpy\cite{Walt2011}, scipy\cite{scipy2020}, pandas\cite{Mckinney2010}, nixio\cite{Stoewer2014}, and thunderfish (\url{https://github.com/bendalab/thunderfish}).
@ -794,7 +791,7 @@ We expect to see nonlinear susceptibility when $\omega_1 + \omega_2 = \fbase{}$.
\end{equation}
For this index, the second-order susceptibility matrix was projected onto the diagonal $D(f)$, by taking the mean of the anti-diagonals. The peakedness at the frequency $\fbase{}$ in $D(f)$ was quantified by finding the maximum of $D(f)$ in the range $\fbase{} \pm 5$\,Hz (\subfigrefb{fig:cells_suscept}{G}) and dividing it by the median of $D(f)$.
If the same frozen noise was recorded several times in a cell, each noise repetition resulted in a separate second-order susceptibility matrix. The mean of the corresponding \nli{} values was used for the population statistics in \figref{fig:data_overview_mod}.
If the same frozen noise was recorded several times in a cell, each noise repetition resulted in a separate second-order susceptibility matrix. The mean of the corresponding \nli{} values was used for the population statistics in \figref{fig:data_overview}.
\subsection*{Leaky integrate-and-fire models}\label{lifmethods}
@ -850,7 +847,7 @@ Whenever the membrane voltage $V_m(t)$ crossed the spiking threshold $\theta=1$
\begin{figure*}[!ht]
\includegraphics[width=\columnwidth]{flowchart}
\caption{\label{flowchart}
Flowchart of a LIF P-unit model with EOD carrier. The main steps of the model are depicted in the left model column (Model cell identifier 2012-07-03-ak, see table~\ref{modelparams} for model parameters). The three other columns show the relevant signals in three different settings. (i) the baseline situation, no external stimulus, only the animal's self-generated EOD (i.e. the carrier) is present (ii) RAM stimulation, the carrier is amplitude modulated with a weak (2\% contrast) stimulus, (iii) Noise split condition in which 90\% of the internal noise is used as a driving stimulus scaled with the correction factor $\rho$ (see text). Note: that the firing rate and the CV of the ISI distribution is the same in this and the baseline condition. \figitem{A} Thresholding: a simple linear threshold was applied to the EOD carrier, \Eqnref{eq:eod}. The red line on top depicts the amplitude modulation (AM). \figitem{B} Dendritic low-pass filtering attenuates the carrier. \figitem{C} A Gaussian noise is added to the signal in B. Note the reduced internal noise amplitude in the noise split (iii) condition. \figitem{D} Spiking output of the LIF model in response to the addition of B and C. \figitem{E} Power spectra of the LIF neuron's spiking activity. Under the baseline condition (\panel[i]{E}) there are several peaks, from left to right, at the baseline firing rate $\fbase{}$, $f_{EOD} - \fbase{}$ $f_{EOD}$, and $f_{EOD} + \fbase{}$. In the stimulus driven regime (\panel[ii]{E}), there is only a peak at \feod, while under the noise split condition (\panel[iii]{E}) again all peaks are present.}
Flowchart of a LIF P-unit model with EOD carrier. The main steps of the model are depicted in the left model column (Model cell identifier 2012-07-03-ak, see table~\ref{modelparams} for model parameters). The three other columns show the relevant signals in three different settings. (i) the baseline situation, no external stimulus, only the animal's self-generated EOD (i.e. the carrier) is present (ii) RAM stimulation, the carrier is amplitude modulated with a weak (2\,\% contrast) stimulus, (iii) Noise split condition in which 90\,\% of the internal noise is used as a driving stimulus scaled with the correction factor $\rho$ (see text). Note: that the firing rate and the CV of the ISI distribution is the same in this and the baseline condition. \figitem{A} Thresholding: a simple linear threshold was applied to the EOD carrier, \Eqnref{eq:eod}. The red line on top depicts the amplitude modulation (AM). \figitem{B} Dendritic low-pass filtering attenuates the carrier. \figitem{C} A Gaussian noise is added to the signal in B. Note the reduced internal noise amplitude in the noise split (iii) condition. \figitem{D} Spiking output of the LIF model in response to the addition of B and C. \figitem{E} Power spectra of the LIF neuron's spiking activity. Under the baseline condition (\panel[i]{E}) there are several peaks, from left to right, at the baseline firing rate $\fbase{}$, $f_{EOD} - \fbase{}$ $f_{EOD}$, and $f_{EOD} + \fbase{}$. In the stimulus driven regime (\panel[ii]{E}), there is only a peak at \feod, while under the noise split condition (\panel[iii]{E}) again all peaks are present.}
\end{figure*}
\subsection*{Numerical implementation}
@ -907,7 +904,7 @@ According to previous works \cite{Lindner2022} the total noise of a LIF model ($
In the here used model a small portion of the original noise was assigned to the noise component ($c_{\rm{noise}} = 0.1$, \subfigrefb{flowchart}\,\panel[iii]{C}) and a big portion used as the signal component ($c_{\rm{signal}} = 0.9$, \subfigrefb{flowchart}\,\panel[iii]{A}). For the noise split to be valid \cite{Lindner2022} it is critical that both components add up to the initial 100\,$\%$ of the total noise and the baseline properties as the firing rate and the CV of the model are maintained. This is easily achieved in a model without a carrier if the condition $c_{\rm{signal}}+c_{\rm{noise}}=1$ is satisfied. The situation here is more complicated. After the original noise was split into a signal component with $c_{\rm{signal}}$, the frequencies above 300\,Hz were discarded and the signal strength was reduced after the dendritic low pass filtering. To compensate for these transformations the initial signal component was multiplying with the factor $\rho$, keeping the baseline CV (only carrier) and the CV during the noise split comparable, and resulting in $s_\xi(t)$. $\rho$ was found by bisecting the plane of possible factors and minimizing the error between the CV during baseline and stimulation.
In the here used model a small portion of the original noise was assigned to the noise component ($c_{\rm{noise}} = 0.1$, \subfigrefb{flowchart}\,\panel[iii]{C}) and a big portion used as the signal component ($c_{\rm{signal}} = 0.9$, \subfigrefb{flowchart}\,\panel[iii]{A}). For the noise split to be valid \cite{Lindner2022} it is critical that both components add up to the initial 100\,\% of the total noise and the baseline properties as the firing rate and the CV of the model are maintained. This is easily achieved in a model without a carrier if the condition $c_{\rm{signal}}+c_{\rm{noise}}=1$ is satisfied. The situation here is more complicated. After the original noise was split into a signal component with $c_{\rm{signal}}$, the frequencies above 300\,Hz were discarded and the signal strength was reduced after the dendritic low pass filtering. To compensate for these transformations the initial signal component was multiplying with the factor $\rho$, keeping the baseline CV (only carrier) and the CV during the noise split comparable, and resulting in $s_\xi(t)$. $\rho$ was found by bisecting the plane of possible factors and minimizing the error between the CV during baseline and stimulation.
%that was found by minimizing the error between the
%Furutsu-Novikov Theorem \cite{Novikov1965, Furutsu1963}\Eqnref{eq:ram_split}, (red in \subfigrefb{flowchart}\,\panel[iii]{A}) bisecting the space of possible $\rho$ scaling factors

Binary file not shown.

View File

@ -7,11 +7,10 @@ from plotstyle import plot_style
from threefish.core_plot_labels import title_find_cell_add
from threefish.defaults import default_figsize, default_settings
from threefish.core_filenames import overlap_cells
from threefish.core_load import save_visualization
from threefish.core_reformat import get_stack, load_model_susept
from threefish.core_calc_model import resave_small_files
from threefish.core_load import resave_small_files, save_visualization
from threefish.core_reformat_RAM import get_stack, load_model_susept
from threefish.core import find_folder_name
from threefish.utils1_suscept import trial_nrs_ram_model
from threefish.utils1_RAM import trial_nrs_ram_model
import itertools as it
##from update_project import *