This commit is contained in:
saschuta 2024-03-07 14:52:43 +01:00
parent 7a916adbb4
commit ad1bf43cb5
33 changed files with 58029 additions and 80000 deletions

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

After

Width:  |  Height:  |  Size: 60 KiB

View File

@ -29,7 +29,7 @@ def data_overview3():
row = 2 # sharex=True,
plot_style()
default_figsize(column=2, length=4.2) #65.5
default_figsize(column=2, length=6.2) #65.5
#fig, ax = plt.subplots(4, 2) # , figsize=(14, 7.5) constrained_layout=True,
var_it = 'Response Modulation [Hz]'
var_it2 = ''
@ -45,8 +45,8 @@ def data_overview3():
right = 0.85
ws = 0.75
print(right)
grid0 = gridspec.GridSpec(2, 2, wspace=ws, bottom=0.13,
hspace=0.3, left=0.1, right=right, top=0.95)
grid0 = gridspec.GridSpec(3, 2, wspace=ws, bottom=0.13,
hspace=0.45, left=0.1, right=right, top=0.95)
###################################
###############################
@ -86,9 +86,7 @@ def data_overview3():
scores = ['max(diag5Hz)/med_diagonal_proj_fr','max(diag5Hz)/med_diagonal_proj_fr',
] # + '_diagonal_proj'
max_xs = [[5,5,[]],[[],[],[]]]
for c, cell_type_here in enumerate(cell_types):
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species)
@ -111,17 +109,18 @@ def data_overview3():
colorbar = False
#if colorbar:
x_axis = ['cv_base','response_modulation']#,'fr_base']#
var_item_names = [var_it,var_it2]#,var_it2]#['Response Modulation [Hz]',]
var_types = ['response_modulation','']#,'']#'response_modulation'
x_axis_names = ['CV','Response Modulation [Hz]']#$_{Base}$,'Fr$_{Base}$',]
x_axis = ['cv_base','cv_stim','response_modulation']#,'fr_base']#
var_item_names = [var_it,var_it,var_it2]#,var_it2]#['Response Modulation [Hz]',]
var_types = ['response_modulation','response_modulation','']#,'']#'response_modulation'
max_x = max_xs[c]
x_axis_names = ['CV$_{Base}$','CV$_{stim}$','Response Modulation [Hz]']#$_{Base}$,'Fr$_{Base}$',]
#score = scores[0]
score_n = ['Perc99/Med', 'Perc99/Med']
score_n = ['Perc99/Med', 'Perc99/Med', 'Perc99/Med']
score = scores[c]
scores_here = [score,score]#,score]
scores_here = [score,score,score]#,score]
score_name = ['max(diag5Hz)/med_diagonal_proj_fr','max(diag5Hz)/med_diagonal_proj_fr']#,'max(diag5Hz)/med_diagonal_proj_fr']#'Perc99/Med'
score_name = ['Fr/Med', 'Fr/Med']#'Fr/Med'] # 'Perc99/Med'
score_name = [NLI_scorename(), NLI_scorename()]#NLI_scorename()] # 'Fr/Med''Perc99/Med'
score_name = [NLI_scorename(), NLI_scorename(), NLI_scorename()]#NLI_scorename()] # 'Fr/Med''Perc99/Med'
ax_j = []
axls = []
axss = []
@ -132,6 +131,7 @@ def data_overview3():
log = False
marker = ['o']
for v, var_type in enumerate(var_types):
# ax = plt.subplot(grid0[1+v])#grid_lower[0, v]
@ -149,9 +149,11 @@ def data_overview3():
else:
xlimk = None
cmap, _, y_axis = plt_burst_modulation_hists(axk, axl, var_item_names[v], axs, cell_type_here,
x_axis[v], frame_file, max_val, scores_here[v],
burst_fraction=burst_fraction[c],xlim = xlimk, ha = 'right', x_pos = 1, xmin = xmin, ymin = ymin, burst_fraction_reset = burst_corr_reset,var_item=var_type)
cmap, _, y_axis = plt_burst_modulation_hists(axk, axl, var_item_names[v], axs, cell_type_here, x_axis[v],
frame_file, scores_here[v], ymin=ymin, xmin=xmin,
burst_fraction_reset=burst_corr_reset, var_item=var_type,
max_x=max_x[v], xlim=xlimk, x_pos=1,
burst_fraction=burst_fraction[c], ha='right')
if v == 0:
colors = colors_overview()
@ -161,10 +163,12 @@ def data_overview3():
axl.show_spines('')
axs.set_ylabel(score_name[v])
axs.set_xlabel(x_axis_names[v])
if (' P-unit' in cell_type_here) & (x_axis[v] == 'cv_base' ):
axs.set_xlim(xlimk)
axk.set_xlim(xlimk)
#embed()
extra_lim = False
if extra_lim:
if (' P-unit' in cell_type_here) & ('cv' in x_axis[v]):
axs.set_xlim(xlimk)
axk.set_xlim(xlimk)
#embed()
#remove_yticks(axl)
if log:
@ -174,7 +178,7 @@ def data_overview3():
axl.minorticks_off()
axl.set_yticks_blank()
plt_specific_cells(axs, cell_type_here, x_axis[v], frame_file, scores_here[v])
plt_specific_cells(axs, cell_type_here, x_axis[v], frame_file, scores_here[v], marker = ['o',"s"])
tags.append(axk)
counter += 1
#plt.show()
@ -400,7 +404,7 @@ def start_name(cell_type_here, species):
return species[0:7] + ' ' + cell_type_here[0:7]
def plt_specific_cells(axs, cell_type_here, cv_name, frame_file, score):
def plt_specific_cells(axs, cell_type_here, cv_name, frame_file, score, marker = []):
######################################################
# hier kommen die kontrast Punkte dazu
# für die Zellen spielt Burst correctin ja keine Rolle
@ -414,9 +418,16 @@ def plt_specific_cells(axs, cell_type_here, cv_name, frame_file, score):
# ax = plt.subplot(grid[1, cv_n])
# todo: hier nur noch die kleinste und größte Amplitude nehmen
# embed()
axs.scatter(frame_file[cv_name].loc[cells_extra], frame_file[score].loc[cells_extra],
s=9, facecolor="None", edgecolor='black', alpha=0.7, clip_on=False) # colors[str(cell_type_here)]
#embed()
if not marker:
axs.scatter(frame_file[cv_name].loc[cells_extra], frame_file[score].loc[cells_extra],
s=9, facecolor="None", edgecolor='black', alpha=0.7, clip_on=False) # colors[str(cell_type_here)]
else:
#embed()
axs.scatter(frame_file[cv_name].loc[cells_extra][0:2], frame_file[score].loc[cells_extra][0:2],
s=9, facecolor="None", marker = marker[1], edgecolor='black', alpha=0.7, clip_on=False) # colors[str(cell_type_here)]
axs.scatter(frame_file[cv_name].loc[cells_extra][2:4], frame_file[score].loc[cells_extra][2:4],
s=9, facecolor="None", marker = marker[0], edgecolor='black', alpha=0.7, clip_on=False) # colors[str(cell_type_here)]
def plt_var_axis(ax_j, axls, axss,score_name, burst_fraction, cell_type_here, counter, cv_name, frame_file, grid0, max_val, score,
scores_here, var_item_names, var_types, x_axis, x_axis_names, log = False):
@ -425,9 +436,9 @@ def plt_var_axis(ax_j, axls, axss,score_name, burst_fraction, cell_type_here, co
axk, axl, axs, axls, axss, ax_j = get_grid_4(ax_j, axls, axss, grid0[counter])
counter += 1
cmap, _, y_axis = plt_burst_modulation_hists(axk, axl, var_item_names[v], axs, cell_type_here,
x_axis[v], frame_file, max_val, scores_here[v],
burst_fraction=burst_fraction[v], var_item=var_type)
cmap, _, y_axis = plt_burst_modulation_hists(axk, axl, var_item_names[v], axs, cell_type_here, x_axis[v],
frame_file, scores_here[v], var_item=var_type,
burst_fraction=burst_fraction[v])
axs.set_ylabel(score_name[v])
axs.set_xlabel(x_axis_names[v])
if v in [0, 1]:

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

After

Width:  |  Height:  |  Size: 47 KiB

View File

@ -171,7 +171,7 @@ def motivation_all_small(dev_desired = '1',ylim=[-1.25, 1.25], c1=10, dfs=['m1',
# load plotting arrays
arrays, arrays_original, spikes_pure = save_arrays_susept(
data_dir, cell, c, b, chirps, devs, extract, group_mean, mean_type, plot_group=0,
rocextra=False, sorted_on=sorted_on, dev_desired = dev_desired)
rocextra=False, sorted_on=sorted_on, base_several = True, dev_desired = dev_desired)
####################################################
####################################################
@ -306,17 +306,47 @@ def motivation_all_small(dev_desired = '1',ylim=[-1.25, 1.25], c1=10, dfs=['m1',
fr = len(spikes_pure['base_0'][i])/duration
frs.append(fr)
fr = np.mean(frs)
#embed()
# embed()
base_several = False
if base_several:
spikes_new = []
for i in range(len(spikes_pure['base_0'])):
duration = 100
duration_full = 101#501
dur = np.arange(0, duration_full, duration)
for d_nr in range(len(dur) - 1):
#embed()
spikes_new.append(np.array(spikes_pure['base_0'][i][
(spikes_pure['base_0'][i] > dur[d_nr]) & (
spikes_pure['base_0'][i] < dur[
d_nr + 1])])/1000-dur[d_nr]/1000)
# spikes_pure['base_0'] = spikes_new
sampling_rate = 1/np.diff(time_array)
sampling_rate = int(sampling_rate[0]*1000)
spikes_mats = []
smoothed05 = []
for i in range(len(spikes_new)):
spikes_mat = cr_spikes_mat(spikes_new[i], sampling_rate, int(sampling_rate*duration/1000))
spikes_mats.append(spikes_mat)
smoothed05.append(gaussian_filter(spikes_mat, sigma=(float(dev_desired)/1000) * sampling_rate))
smoothed_base = np.mean(smoothed05, axis=0)
mat_base = np.mean(spikes_mats, axis=0)
else:
smoothed_base = arrays[0][0]
mat_base = arrays_original[0][0]
#embed()#arrays[0]v
fr_isi, ax_ps, ax_as = plot_arrays_ROC_psd_single3(
[arrays[0], arrays[2], arrays[1], arrays[3]],
[arrays_original[0], arrays_original[2], arrays_original[1],
[[smoothed_base], arrays[2], arrays[1], arrays[3]],
[[mat_base], arrays_original[2], arrays_original[1],
arrays_original[3]], spikes_pure, fr, cell, grid0, chirps, extract,
mean_type,
group_mean, b, devs,
xlim=xlim, row=1 + d * 3,
array_chosen=array_chosen,
color0_burst=color0_burst, mean_types=[mean_type],
color01=color01, color02=color02,
color01=color01, color02=color02,ylim_log=(-15, 3),
color012=color012,color012_minus = 'pink',
color01_2=color01_2)
@ -345,7 +375,7 @@ def motivation_all_small(dev_desired = '1',ylim=[-1.25, 1.25], c1=10, dfs=['m1',
# plt.show()
if __name__ == '__main__':
motivation_all_small(dev_desired = '1.5', c1=10, mult_type='_multsorted2_', devs=['05'], redo=True, save=True, end='all',
if __name__ == '__main__':#2.5
motivation_all_small(dev_desired = '1', c1=10, mult_type='_multsorted2_', devs=['05'], redo=True, save=True, end='all',
cut_matrix='malefemale', chose_score='mean_nrs', restrict='modulation_no_classes', step='50',
detections=['MeanTrialsIndexPhaseSort'], sorted_on='LocalReconst0.2NormAm')#

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -408,7 +408,7 @@ In this work, the influence of nonlinearities on stimulus encoding in the primar
Nonlinear processes are fundamental in neuronal information processing. On the systemic level: deciding to take one or another action is a nonlinear process. On a finer scale, neurons are inherently nonlinear: whether an action potential is elicited depends on the membrane potential to exceed a certain threshold\citealp{Adelson1985, Brincat2004, Chacron2000, Chacron2001, Nelson1997, Gussin2007, Middleton2007, Longtin2008}. In conjunction with neuronal noise, nonlinear mechanism facilitate the encoding of weak stimuli via stochastic resonance\citealp{Wiesenfeld1995, Stocks2000,Neiman2011fish}. We can find nonlinearities in many sensory systems such as rectification in the transduction machinery of inner hair cells \citealp{Peterson2019}, signal rectification in electroreceptor cells \citealp{Chacron2000, Chacron2001}, or in complex cells of the visual system \citealp{Adelson1985}. In the auditory or the active electric sense, for example, nonlinear processes are needed to extract envelopes, i.e. amplitude modulations of a carrier signal\citealp{Joris2004, Barayeu2023} called beats. Beats are common stimuli in different sensory modalities enabling rhythm and pitch perception in human hearing \citealp{Roeber1834, Plomp1967, Joris2004, Grahn2012} and providing context for electrocommunication in weakly electric fish \citealp{Engler2001, Hupe2008, Henninger2018, Benda2020}.
While the sensory periphery can often be well described by linear models, this is not valid for many upstream neurons. Rather, nonlinear processes are implemented to extract special stimulus features\citealp{Gabbiani1996}. In active electrosensation, the self-generated electric field (electric organ discharge, EOD)\citealp{Salazar2013} that is quasi sinusoidal in wavetype electric fish and acts as the carrier signal that is amplitude modulated in the context of communication\citealp{Benda2013, Fotowat2013, Walz2014, Henninger2018} as well as object detection and navigation\citealp{Fotowat2013, Nelson1999}. In social contexts, the interference of the EODs of two interacting animals result in a characteristic periodic amplitude modulation, the so-called beat. The beat amplitude is defined by the smaller EOD amplitude, its frequency is defined as the difference between the two EOD frequencies ($\Delta f = f-\feod{}$, valid for $f < feod{}/2$\citealp{Barayeu2023}). Cutaneous electroreceptor organs that are distributed over the bodies of these fish \citealp{Carr1982} are tuned to the own field\citealp{Hopkins1976,Viancour1979}. P-type electroreceptor afferents (P-units) innervate these organs via ribbon synapses\citealp{Szabo1965, Wachtel1966} and project to the hindbrain where they trifurcate and synapse onto pyramidal cells in the electrosensory lateral line lobe (ELL)\citealp{Krahe2014}. The P-units ot the gymnotiform electric fish \lepto{} encode such amplitude modulations (AMs) by modulation of their firing rate\citealp{Gabbiani1996}. They fire probabilistically but phase-locked to the own EOD and the skipping of cycles leads to their characteristic multimodal interspike interval distribution. Even though the extraction of the AM itself requires a nonlinearity\citealp{Middleton2006,Stamper2012Envelope,Savard2011} encoding the time-course of the AM is linear over a wide range\citealp{Xu1996,Benda2005,Gussin2007,Grewe2017,Savard2011}. In the context of social signalling among three fish we observe an AM of the AM, also referred to as second-order envelope or just social envelope\citealp{Middleton2006, Savard2011, Stamper2012Envelope}. Encoding this again requires nonlinearities\citealp{Middleton2006} and it was shown that a subpopulation of P-units are sensitive to envelopes\citealp{Savard2011} and exhibit nonlinearities e.g. when driven by strong stimuli\citealp{Nelson1997,Chacron2004}.
While the sensory periphery can often be well described by linear models, this is not true for many upstream neurons. Rather, nonlinear processes are implemented to extract special stimulus features\citealp{Gabbiani1996}. In active electrosensation, the self-generated electric field (electric organ discharge, EOD)\citealp{Salazar2013} that is quasi sinusoidal in wavetype electric fish and acts as the carrier signal that is amplitude modulated in the context of communication\citealp{Benda2013, Fotowat2013, Walz2014, Henninger2018} as well as object detection and navigation\citealp{Fotowat2013, Nelson1999}. In social contexts, the interference of the EODs of two interacting animals result in a characteristic periodic amplitude modulation, the so-called beat. The beat amplitude is defined by the smaller EOD amplitude, its frequency is defined as the difference between the two EOD frequencies ($\Delta f = f-\feod{}$, valid for $f < feod{}/2$)\citealp{Barayeu2023}. Cutaneous electroreceptor organs that are distributed over the bodies of these fish \citealp{Carr1982} are tuned to the own field\citealp{Hopkins1976,Viancour1979}. P-type electroreceptor afferents (P-units) innervate these organs via ribbon synapses\citealp{Szabo1965, Wachtel1966} and project to the hindbrain where they trifurcate and synapse onto pyramidal cells in the electrosensory lateral line lobe (ELL)\citealp{Krahe2014}. The P-units ot the gymnotiform electric fish \lepto{} encode such amplitude modulations (AMs) by modulation of their firing rate\citealp{Gabbiani1996}. They fire probabilistically but phase-locked to the own EOD and the skipping of cycles leads to their characteristic multimodal interspike interval distribution. Even though the extraction of the AM itself requires a nonlinearity\citealp{Middleton2006,Stamper2012Envelope,Savard2011} encoding the time-course of the AM is linear over a wide range\citealp{Xu1996,Benda2005,Gussin2007,Grewe2017,Savard2011}. In the context of social signalling among three fish we observe an AM of the AM, also referred to as second-order envelope or just social envelope\citealp{Middleton2006, Savard2011, Stamper2012Envelope}. Encoding this again requires nonlinearities\citealp{Middleton2006} and it was shown that a subpopulation of P-units are sensitive to envelopes\citealp{Savard2011} and exhibit nonlinearities e.g. when driven by strong stimuli\citealp{Nelson1997,Chacron2004}.
\begin{figure*}[h!]
\includegraphics[width=\columnwidth]{motivation}

216
trialnr.py Normal file
View File

@ -0,0 +1,216 @@
#from utils_suseptibility import default_settings
#from plt_RAM import model_and_data_isi, model_cells
#from utils_suseptibility import model_and_data, remove_yticks
#from utils_suseptibility import *
#from utils_susept import nonlin_title, plt_data_susept, plt_single_square_modl, set_clim_same_here, set_xlabel_arrow, \
# set_ylabel_arrow, \
# xpos_y_modelanddata
#from utils_all import default_settings, find_cell_add, get_flowchart_params, load_folder_name, load_model_susept, \
# overlap_cells, \
# plot_lowpass2, plt_time_arrays, remove_xticks, remove_yticks, resave_small_files, save_visualization, set_same_ylim
from utils_suseptibility import *#model_and_data
#from plt_RAM import model_and_data, model_and_data_sheme, model_and_data_vertical2
def table_printen(table):
print(table.keys())
for l in range(len(table)):
list_here = np.array(table.iloc[l])
l1 = "& ".join(list_here)
print(l1)
def trialnr(eod_metrice = False, width=0.005, nffts=['whole'], powers=[1], cells=["2013-01-08-aa-invivo-1"], show=False,
contrasts=[0], noises_added=[''], D_extraction_method=['additiv_cv_adapt_factor_scaled'],
internal_noise=['RAM'], external_noise=['RAM'], level_extraction=[''], receiver_contrast=[1],
dendrids=[''], ref_types=[''], adapt_types=[''], c_noises=[0.1], c_signal=[0.9], cut_offs1=[300],
label=r'$\frac{1}{mV^2S}$'): # ['eRAM']
# plot_style()#['_RAMscaled']'_RAMscaled'
duration_noise = '_short',
formula = 'code' ##'formula'
# ,int(2 ** 16) int(2 ** 16), int(2 ** 15),
stimulus_length = 1 # 20#550 # 30 # 15#45#0.5#1.5 15 45 100
trials_nrs = [1] # [100, 500, 1000, 3000, 10000, 100000, 1000000] # 500
stimulus_type = '_StimulusOrig_' # ,#
# ,3]#, 3, 1, 1.5, 0.5, ] # ,1,1.5, 0.5] #[1,1.5, 0.5] # 1.5,0.5]3, 1,
variant = 'sinz'
mimick = 'no'
cell_recording_save_name = ''
trans = 1 # 5
rep = 1000000 # 500000#0
repeats = [20, rep] # 250000
aa = 0
good_data, remaining = overlap_cells()
cells_all = [good_data[0]]
plot_style()
default_figsize(column=2, length=3.1) #.254.75 0.75
#grid = gridspec.GridSpec(2, 5, wspace=0.95, bottom=0.09,
# hspace=0.25, width_ratios = [1,0,1,1,1], left=0.09, right=0.93, top=0.9)
a = 0
maxs = []
mins = []
mats = []
ims = []
perc05 = []
perc95 = []
iternames = [D_extraction_method, external_noise,
internal_noise, powers, nffts, dendrids, cut_offs1, trials_nrs, c_signal,
c_noises,
ref_types, adapt_types, noises_added, level_extraction, receiver_contrast, contrasts, ]
nr = '2'
# embed()
# cell_contrasts = ["2013-01-08-aa-invivo-1"]
# cells_triangl_contrast = np.concatenate([cells_all,cell_contrasts])
# cells_triangl_contrast = 1
# cell_contrasts = 1
rows = len(cells_all) # len(good_data)+len(cell_contrasts)
perc = 'perc'
lp = 2
label_model = r'Nonlinearity $\frac{1}{S}$'
for all in it.product(*iternames):
var_type, stim_type_afe, stim_type_noise, power, nfft, dendrid, cut_off1, trial_nrs, c_sig, c_noise, ref_type, adapt_type, noise_added, extract, a_fr, a_fe = all
# print(trials_stim,stim_type_noise, power, nfft, a_fe,a_fr, dendrid, var_type, cut_off1,trial_nrs)
fig = plt.figure()
hs = 0.45
##################################
# model part
trial_nr = 500000
cell = '2013-01-08-aa-invivo-1'
cell = '2012-07-03-ak-invivo-1'
print('cell'+str(cell))
cells_given = [cell]
save_name_rev = load_folder_name(
'calc_model') + '/' + 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_revQuadrant_'
# for trial in trials:#.009
trial_nr = 1000000#1000000
trial_nrs_here = trial_nrs_ram_model()
stacks = []
perc95 = []
perc05 = []
median = []
for tr in trial_nrs_here:
save_names = [
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_'+str(tr)+'_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',]
#'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_5000000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV'
#'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
#'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_500000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
nrs_s = [3, 4, 8, 9]#, 10, 11
#embed()
tr_name = trial_nr/1000000
if tr_name == 1:
tr_name = 1
ax_model = []
for s, sav_name in enumerate(save_names):
save_name = load_folder_name('calc_model') + '/' + sav_name
cell_add, cells_save = find_cell_add(cells_given)
perc = 'perc'
path = save_name + '.pkl' # '../'+
# stack = get_stack_one_quadrant(cell, cell_add, cells_save, path, save_name)
# full_matrix = create_full_matrix2(np.array(stack), np.array(stack_rev))
# stack_final = get_axis_on_full_matrix(full_matrix, stack)
# im = plt_RAM_perc(ax, perc, np.abs(stack))
#
stack = load_model_susept(path, cells_save, save_name.split(r'/')[-1] + cell_add)
if len(stack)> 0:
model_show, stack_plot = get_stack(cell, stack)
stacks.append(stack_plot)
perc95.append(np.percentile(stack_plot,95))
perc05.append(np.percentile(stack_plot, 5))
median.append(np.percentile(stack_plot, 50))
else:
stacks.append([])
perc95.append(float('nan'))
perc05.append(float('nan'))
median.append(float('nan'))
plt.plot(trial_nrs_here, perc05)
plt.plot(trial_nrs_here, perc95)
plt.plot(trial_nrs_here, median)
#embed()
#fig.tag([axes[0:3]], xoffs=-3, yoffs=1.6) # ax_ams[3],
#fig.tag([[axes[4]]], xoffs=-3, yoffs=1.6, minor_index=0) # ax_ams[3],
#fig.tag([axes[3:6]], xoffs=-3, yoffs=1.6) #, major_index = 1, minor_index = 2 ax_ams[3],
#fig.tag([[axes[7]]], xoffs=-3, yoffs=1.6, major_index=2,minor_index=0) # ax_ams[3],
#fig.tag([axes[8::]], xoffs=-3, yoffs=1.6, major_index=2, minor_index=2) # ax_ams[3],
#fig.tag([axes[7::]], xoffs=-3, yoffs=1.6) # ax_ams[3],
#fig.tag([ax_ams[0],ax_data[0],axes[2], axes[3]], xoffs=-3, yoffs=1.6)#ax_ams[3],
save_visualization(pdf=True)
def start_pos_modeldata():
return 1.03
def signal_component_name():
return r'$\xi_{signal}$'#signal noise'
def noise_component_name():#$\xi_{noise}$noise_name =
return r'$\xi_{noise}$'#'Noise component'#'intrinsic noise'
def ypos_x_modelanddata():
return -0.45
if __name__ == '__main__':
model = resave_small_files("models_big_fit_d_right.csv", load_folder='calc_model_core')
cells = model.cell.unique()
# embed()
params = {'cells': cells}
show = True
# if show == False:
# low CV: cells = ['2012-07-03-ak-invivo-1']
plot_style()
default_settings(lw=0.5, column=2, length=3.35) #8.5
redo = False
D_extraction_method = ['additiv_cv_adapt_factor_scaled']
# D_extraction_method = ['additiv_visual_d_4_scaled']
##########################
# hier printen wir die table Werte zum kopieren in den Text
path = 'print_table_suscept-model_params_suscept_table.csv'
if os.path.exists(path):
table = pd.read_csv(path)
table_printen(table)
path = 'print_table_all-model_params_suscept_table.csv'
if os.path.exists(path):
table = pd.read_csv()
print('model big')
table_printen(table)
#embed()
##########################
#embed()
trialnr(eod_metrice = False, width=0.005, show=show, D_extraction_method=D_extraction_method,
label=r'$\frac{1}{mV^2S}$') #r'$\frac{1}{mV^2S}$'

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean,var_stim
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean var_stim

View File

@ -4442,13 +4442,14 @@ def load_model_susept(path, cells, save_name, save=True, redo=False):
redo = False
print(name1)
#embed()
if (versions_comp == 'develop'):
#embed()
if (os.path.exists(name1)):
cont = check_creation_time(load_function, name1)
else:
cont = True
#embed()
if (redo == True) | cont: # (not os.path.exists(name1))
print('redo model')
model = resave_model_susept(cells, load_function, name1, path, remove_old, save, versions_comp)
@ -4502,8 +4503,10 @@ def load_model_susept(path, cells, save_name, save=True, redo=False):
def resave_model_susept(cells, load_function, name1, path, remove_old, save, versions_comp):
if not os.path.exists(path):
dated_up = update_ssh_file(path)
if os.path.exists(path):
embed()
if os.path.exists(
):
################################
# wenn es den localen Computer von Sascha findet soll es die Versionen nochmal updaten
# if (redo == True) : # | (not os.path.exists(name1))& (not os.path.exists(name0))

View File

@ -2,6 +2,7 @@ import ast
import csv
import warnings
import numpy
from scipy.optimize import curve_fit
from scipy.signal import vectorstrength
from scipy.stats import alpha, gaussian_kde
@ -2837,13 +2838,7 @@ def plt_squares_special(params, col_desired=2, var_items=['contrasts'], show=Fal
def plt_single_square_modl(ax, cell, model, perc, titles, width,eod_metrice = True, nr = 3, titles_plot=False, resize=False):
try:
model_show = model[(model.cell == cell)]
except:
print('cell something')
embed()
stack_plot = change_model_from_csv_to_plots(model_show)
stack_plot = RAM_norm(stack_plot, model_show=model_show)
model_show, stack_plot = get_stack(cell, model)
if resize:
stack_plot, add_nonlin_title, resize_val = rescale_colorbar_and_values(stack_plot)
else:
@ -2889,6 +2884,17 @@ def plt_single_square_modl(ax, cell, model, perc, titles, width,eod_metrice = Tr
return add_nonlin_title,cbar, fig, stack_plot, im
def get_stack(cell, model):
try:
model_show = model[(model.cell == cell)]
except:
print('cell something')
embed()
stack_plot = change_model_from_csv_to_plots(model_show)
stack_plot = RAM_norm(stack_plot, model_show=model_show)
return model_show, stack_plot
#[1, 0, 0][1, 0, 0.4]
@ -8824,7 +8830,7 @@ def motivation_small_roc(ylim=[-1.25, 1.25], c1=10, dfs=['m1', 'm2'], mult_type=
data_dir, cell, c, b, chirps, devs, extract, group_mean, mean_type,
plot_group=0,
rocextra=False, sorted_on=sorted_on)
# embed()
#embed()
fr_isi, ax_ps, ax_as = plot_arrays_ROC_psd_single3(
[arrays[0], arrays[2], arrays[1], arrays[3]],
[arrays_original[0], arrays_original[2], arrays_original[1],
@ -10031,6 +10037,7 @@ def plot_arrays_ROC_psd_single3(arrays, arrays_original, spikes_pure, fr, cell,
color_psd = 'black'
# embed()
ax_as = []
#embed()
for j in range(len(arrays)):
###################################
# plt spikes
@ -10054,7 +10061,7 @@ def plot_arrays_ROC_psd_single3(arrays, arrays_original, spikes_pure, fr, cell,
# hier kann man aussuchen welches power spektrum machen haben will
f, nfft = get_psds_ROC(array_chosen, arrays, arrays_original, j, mean_type, names, p_means_all)
ax_as.append(ax_a)
#embed()
#########################################
# plot the psds
@ -10189,7 +10196,7 @@ def plt_psds_ROC(add_burst_corr, arrays, ax00, ax_ps, cell, color_psd, colors_p,
embed()
pp, pp_mean = decide_log_ROCs(j, log, names, p_means_all, ref)
# embed()
#embed()
# add_log = 10.5#2.5
try: # todo: if log müsste hier was anderes rein, das log veränderte nämlich!#2.5
plt_peaks_several(np.array(labels)[choice[j]], np.array(freqs)[choice[j]], pp, j,
@ -10205,6 +10212,7 @@ def plt_psds_ROC(add_burst_corr, arrays, ax00, ax_ps, cell, color_psd, colors_p,
ax00.show_spines('b')
if j == 0:
ax00.yscalebar(-0.02, 0.5, 10, 'dB', va='center', ha='left')
#embed()
return ax00, fr_isi
@ -10221,7 +10229,7 @@ def f2_core(DF1):
def f1_core(DF2):
return '$2 |\Delta f_{1}|=%s$' %(DF2 * 2) + '\,Hz'
return '$2 |\Delta f_{1}|=%s$' %(np.abs(DF2) * 2) + '\,Hz'
def fdiff_core(DF1, DF2):
@ -10229,7 +10237,7 @@ def fdiff_core(DF1, DF2):
def fsum_core(DF1, DF2):
return '$||\Delta f_{1}| +|\Delta f_{2}||=%s$' %(np.abs(DF1) + np.abs(DF2)) + '\,Hz'#)
return '$||\Delta f_{1}| + |\Delta f_{2}||=%s$' %(np.abs(DF1) + np.abs(DF2)) + '\,Hz'#)
def decide_log_ROCs(j, log, names, p_means_all, ref):
@ -10349,7 +10357,7 @@ def plt_traces_ROC(array_chosen, arrays, ax00, colors, datapoints, group_mean, j
def save_arrays_susept(data_dir, cell, c, b, chirps, devs, extract, group_mean, mean_type, plot_group, rocextra,
sorted_on='LocalReconst0.2Norm', dev_desired = '1'):
sorted_on='LocalReconst0.2Norm', base_several = False, dev_desired = '1',mean_type0 = ''):#'_MeanTrialsIndex'
# sorted_on = 'LocalReconst' # 'EodLocSynch'
version_comp, subfolder, mod_name_slash, mod_name, subfolder_path = find_code_vs_not()
@ -10374,7 +10382,7 @@ def save_arrays_susept(data_dir, cell, c, b, chirps, devs, extract, group_mean,
#embed()
mean_type0 = '_MeanTrialsIndex'
spikes_pure, fish_number_base, chirp, fish_cuts, time_array, fish_number, smoothened2, smoothed05, eod_mt, eod_interp, effective_duration, cut, devname, frame = cut_spikes_and_eod_three(
group_mean, b, extract, chirps=chirps, emb=False,
mean_type=mean_type, sorted_on=sorted_on,
@ -10384,6 +10392,7 @@ def save_arrays_susept(data_dir, cell, c, b, chirps, devs, extract, group_mean,
# group_mean,
# mean_type)
if printing: # todo: also das dauert lange das könnte man optimizieren
print('arrays1 ' + str(time.time() - t3))
# embed()
@ -10409,6 +10418,7 @@ def save_arrays_susept(data_dir, cell, c, b, chirps, devs, extract, group_mean,
# embed()
if ('Phase' not in mean_type0) & (mean_type0 != ''):
#embed()
for i in range(len(delays_length['base_0'])):
delays_length['base_0'][i] = np.arange(0, delays_length['base_0'][i][-1], 1)
try:
@ -10671,7 +10681,7 @@ def plt_single_pds(nfft, f, p_means, p_mean_all_here, ylim_psd, xlim_psd, color_
# remove_xticks(ax00)
if j != 0:
remove_yticks(ax00)
#embed()
return ref, ax00
@ -15368,7 +15378,7 @@ def fft_matrix(deltat, osf, f_range, isf, norm='', quadrant=''): # stimulus,
return np.array(f_mat1), np.array(f_mat2), np.array(f_idx_sum), np.array(cross)
def exclude_nans_for_corr(file_here, var_item, x=[], y=[], cv_name='cv_base', score='perc99/med'):
def exclude_nans_for_corr(file_here, var_item, x=[], y=[], max_x = None, cv_name='cv_base', score='perc99/med'):
# embed()
if len(x) == 0:
x = file_here[cv_name]
@ -15384,6 +15394,19 @@ def exclude_nans_for_corr(file_here, var_item, x=[], y=[], cv_name='cv_base', sc
x = x[~exclude_here]
y = y[~exclude_here]
c_axis = c_axis[~exclude_here]
if max_x:
#embed()
if np.sum(x > max_x) > 0:
y = y[x < max_x]
try:
c_axis = c_axis.loc[x < max_x]
except:
print('c something')
embed()
x = x[x < max_x]
return c_axis, x, y, exclude_here
@ -15674,10 +15697,11 @@ def get_axis(cv_name, frame_file, score):
return x_axis, y_axis
def plt_burst_modulation_hists(axk, axl, var_item_name, ax, cell_type_here, cv_name, frame_file, max_val,
score, ymin='no', xmin='no', ymax = 'no', top=False,
def plt_burst_modulation_hists(axk, axl, var_item_name, ax, cell_type_here, cv_name, frame_file, score, ymin='no',
xmin='no', ymax='no', top=False,
burst_fraction_reset='burst_fraction_burst_corr_individual_base',
var_item='response_modulation', n = True, xlim = None, x_pos = 0, burst_fraction=1, ha = 'left'):
var_item='response_modulation', max_x=None, n=True, xlim=None, x_pos=0, burst_fraction=1,
ha='left'):
cmap = []
x_axis = []
y_axis = []
@ -15727,7 +15751,7 @@ def plt_burst_modulation_hists(axk, axl, var_item_name, ax, cell_type_here, cv_n
y_axis = frame_file[score] # np.array(frame_file[score])[frame_file[score] > 0]
# c_axis = np.array(frame_file['response_modulation'])[frame_file[score] > 0]
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, var_item, cv_name=cv_name,
score=score)
score=score, max_x = max_x)
# corr, p_value = stats.pearsonr(x, y)
# y =
# c=c_axis[x_axis < max_val], cmap=cm,
@ -39979,3 +40003,6 @@ def end_fi_s():
return 90
def trial_nrs_ram_model():
trial_nrs_here = np.array([9, 11, 20, 30, 100, 500, 1000, 10000, 100000, 250000, 500000, 750000, 1000000])
return trial_nrs_here