This commit is contained in:
saschuta 2024-03-18 10:03:49 +01:00
parent d6fb6e8ac7
commit 870865f174
19 changed files with 87668 additions and 72524 deletions

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 87 KiB

After

Width:  |  Height:  |  Size: 83 KiB

View File

@ -85,11 +85,21 @@ def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], save=True, end='al
#################
# power spectra data
log = ''#'log'
log = 'log'#'log'
ylim_log = (-15, 3)
nfft = 2 ** 13
xlim_psd = [0, 300]
DF1_desired, DF2_desired, fr, eod_fr, arrays_len = plt_data_full_model(c1, chose_score, detections, devs, dfs, end, grid[3], mult_type, sorted_on, alpha = [1,0.5], log = log,ylim_log = ylim_log, nfft = nfft, xlim_psd = xlim_psd)
DF1_desired_orig = [133, 166]#33
DF2_desired_orig = [-33, 53]#166
#grid0 = gridspec.GridSpecFromSubplotSpec(len(DF1_desired_orig), 1, wspace=0.15, hspace=0.35,
# subplot_spec=grid[1])
DF1_desired, DF2_desired, fr, eod_fr, arrays_len = plt_data_full_model(c1, chose_score, detections, devs, dfs, end, grid[3], mult_type, sorted_on, DF2_desired = DF2_desired_orig, DF1_desired = DF1_desired_orig, alpha = [1, 0.5], log = log, ylim_log = ylim_log, nfft = nfft, xlim_psd = xlim_psd)
#################
@ -101,33 +111,91 @@ def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], save=True, end='al
subplot_spec=grid[2])
fr_mult = fr / eod_fr
multwise = False
if multwise:
DF1_frmult = np.abs((np.array(DF1_desired)-1)/fr_mult)
DF2_frmult = np.abs((np.array(DF2_desired) - 1) / fr_mult)
else:
DF1_frmult = np.array(DF1_desired_orig)/fr
DF2_frmult = np.array(DF2_desired_orig) / fr
#embed()
DF1_frmult[0] = 1
print(DF1_frmult)
print(DF2_frmult)
#DF1_frmult[1] = 0.4
#DF2_frmult[1] = 1.8
#DF1_frmult[1] = 1.45
#DF2_frmult[0] = 0.1
#DF1_frmult[1] = 0.4
#DF2_frmult[1] = 0.6
ylim_log = (-35, 3)
ylim_log = (-15, 3)
#########################
# punkte die zur zweiten Reihe gehören
diagonal = 'line'
combis = diagonal_points()
freq1_ratio = 1 / 2
freq2_ratio = 2 / 3 # 0.1
# for combi in combis:
diagonal = 'diagonal1' # 'vertical3'#'diagonal2'#'diagonal3'#'inside'#'horizontal'#'diagonal'#'vertical'#
diagonal = 'test_data_cell_2022-01-05-aa-invivo-1'
diagonal = 'diagonal1'
# embed()
freq1_ratio = combis[diagonal][0]
freq2_ratio = combis[diagonal][1]
diagonal = ''
freq1_ratio = 1.17#0.25
freq2_ratio = 0.37 # 0.1
freq1_ratio = 1.2#0.25
freq2_ratio = 0.7 # 0.1
plus_q = 'plus' # 'minus'#'plus'##'minus'
way = '' # 'mult'#'absolut'
ways = ['mult_minimum_1', 'absolut', 'mult_env_3', 'mult_f1_3', 'mult_f2_3', 'mult_minimum_3', 'mult_env_1',
'mult_f1_1', 'mult_f2_1', ]
length = 1 # 5
reshuffled = '' # ,
alphas = [1,0.5]
for g in range(len(DF1_desired)):
axp = plt.subplot(grid0[g])
fr = plt_model_full_model(axp, cells=[cell],trials_nr = arrays_len[g], add_pp=250, single_waves=['_SeveralSumWave_', ], cell_start=11,
zeros='ones', several_peaks_nr = 3, alpha = alphas[g], log = log, nfft = nfft, freqs_mult1 = DF1_frmult[g], freqs_mult2 = DF2_frmult[g], xlim = [0, 170], a_f1s=[0.1], a_frs=[1], add_half=0, show=True)#01
#
old = False
if old:
fr = plt_model_full_model(axp, a_f1s=[0.03], af_2 = 0.1, cells=[cell],trials_nr = arrays_len[g], add_pp=250, single_waves=['_SeveralSumWave_', ], cell_start=11,
zeros='ones', perc = 0.25, several_peaks_nr = 2, alpha = alphas[g], log = log, nfft = nfft, freqs_mult1 = DF1_frmult[g], freqs_mult2 = DF2_frmult[g], xlim = [0, 170], a_frs=[1], add_half=0, show=True)#01
axes.append(axp)
if g == 0:
remove_xticks(axp)
axp.set_xlabel('')
axp.set_xlim(xlim_psd)
if log == 'log':
axp.set_ylim(ylim_log)
else:
fr = plt_model_full_model2(axp, dev_spikes='original', reshuffled=reshuffled, datapoints=50, limit=10.2,
reshuffle=reshuffled, dev=0.0005, a_f1s=[0.15], af_2 = 0.15, trials_nr=arrays_len[g],
stimulus_length=length, way=way, plus_q=plus_q, freq1_ratio=DF1_frmult[g],
diagonal=diagonal, freq2_ratio=DF2_frmult[g], runs=5,nfft = nfft,
cells=['2013-01-08-aa-invivo-1'],
show=True, log = 'log', clip_on = True) # a_f1s=[0.02]"2012-12-13-an-invivo-1"
axes.append(axp)
if g == 0:
remove_xticks(axp)
axp.set_xlabel('')
else:
axp.set_xlabel('Frequency [Hz]')
axp.set_xlim(xlim_psd)
if log == 'log':
axp.set_ylim(ylim_log)
join_y(axes[1::])
#.share
@ -156,7 +224,7 @@ def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], save=True, end='al
save_visualization()
def plt_model_full_model(axp, min=0.2, cells=[], alpha = 1, trials_nr = 15, add_pp=50,
def plt_model_full_model(axp, min=0.2, cells=[], a_f2 = 0.1, perc = 0.05, alpha = 1, trials_nr = 15, add_pp=50,
single_waves=['_SingleWave_', '_SeveralWave_', ], cell_start=13,
zeros='zeros', several_peaks_nr = 2, a_f1s=[0, 0.005, 0.01, 0.05, 0.1, 0.2, ], a_frs=[1],
add_half=0, log = 'log', xlim = [0, 350], freqs_mult1 = None, freqs_mult2 = None, show=False, nfft=int(2 ** 15), beat='', gain=1, us_name=''):
@ -181,7 +249,7 @@ def plt_model_full_model(axp, min=0.2, cells=[], alpha = 1, trials_nr = 15, add_
if single_wave == '_SingleWave_':
a_f2s = [0] # , 0,0.2
else:
a_f2s = [0.1]
a_f2s = [a_f2]
for a_f2 in a_f2s:
# 150
@ -288,6 +356,8 @@ def plt_model_full_model(axp, min=0.2, cells=[], alpha = 1, trials_nr = 15, add_
sampling_rate = 1 / deltat
smoothed05 = gaussian_filter(spikes_mat, sigma=gaussian_intro() * sampling_rate)
mat05 = np.mean(smoothed05, axis=0)
beat1 = np.round(freq1 - eod_fr)[0]
# if titles:
# ax[0].set_title('a_f1 ' + str(a_f1), fontsize=fs)
@ -297,6 +367,15 @@ def plt_model_full_model(axp, min=0.2, cells=[], alpha = 1, trials_nr = 15, add_
beat1 = (freq1 - eod_fr)[0]
beat2 = (freq2 - eod_fr)[0]
test = False
if test:
ax = plt.subplot(1,1,1)
ax.axvline(fr, color = 'blue')
ax.axvline(beat1, color = 'green', linestyle = '-.')
ax.axvline(beat2, color = 'purple', linestyle = '--')
ax.plot(f, pp_mean)
plt.show()
#embed()
nr = 2
color_01, color_012, color01_2, color_02, color0_burst, color0 = colors_suscept_paper_dots()
@ -355,7 +434,7 @@ def plt_model_full_model(axp, min=0.2, cells=[], alpha = 1, trials_nr = 15, add_
axp, pp_mean, colors, f, add_log=2.5,
text_extra=True, ha='center', rel='rel', rot=0, several_peaks=True,
exact=False, texts_left=texts_left, add_texts=add_texts,several_peaks_nr=several_peaks_nr,
rots=[0, 0, 0, 0,0], ms=14, alphas = [alpha]*len(colors), perc=0.05, log=log, clip_on=True) # True
rots=[0, 0, 0, 0,0], ms=14, alphas = [alpha]*len(colors), perc=perc, log=log, clip_on=True) # True
axp.plot(f, pp_mean, color='black', zorder=0) # 0.45
axp.set_xlim(xlim)
@ -372,9 +451,280 @@ def plt_model_full_model(axp, min=0.2, cells=[], alpha = 1, trials_nr = 15, add_
axp.set_xlabel('Frequency [Hz]')
return fr
def plt_model_full_model2(ax, reshuffled='reshuffled',af_2 = 0.1, datapoints=1000, dev=0.0005, limit=10.2, a_f1s=[0.03],
pdf=True, printing=False, plus_q='minus', freq1_ratio=1 / 2, diagonal='diagonal',
freq2_ratio=2 / 3, way='absolut', stimulus_length=0.5, runs=1, trials_nr=500, cells=[],
show=False, nfft=int(4096), beat='', nfft_for_morph=4096 * 4, gain=1,
sampling_factors=[''],
fish_receiver='Alepto', end_f1=4645,
fish_emitter='Alepto',
fish_jammer='Alepto', reshuffle='reshuffled',clip_on = True,
redo_level='celllevel', step=10, zeros='zeros', corr='ratecorrrisidual',
us_name='', dev_spikes='original', start_f1=20, log = '',plot=False):
plot_style()
model_cells = pd.read_csv(load_folder_name('calc_model_core') + "/models_big_fit_d_right.csv")
if len(cells) < 1:
cells = len(model_cells)
#embed()
for cell_here in cells:
# sachen die ich variieren will
###########################################
single_waves = ['_SeveralWave_'] # , '_SingleWave_']
####### VARY HERE
for single_wave in single_waves:
if single_wave == '_SingleWave_':
a_f2s = [0] # , 0,0.2
else:
a_f2s = [af_2]
for a_f2 in a_f2s:
# ,0.05,0.01, 0.005, 0.1, 0.2] # 0.001,
for a_f1 in a_f1s:
a_frs = [1]
titles_amp = ['base eodf'] # ,'baseline to Zero',]
for a, a_fr in enumerate(a_frs):
model_params = model_cells[model_cells['cell'] == cell_here].iloc[0]
# model_params = model_cells.iloc[cell_nr]
def plt_data_full_model(c1, chose_score, detections, devs, dfs, end, grid, mult_type, sorted_on, log = 'log', alpha = [], ylim_log = (-15, 3), nfft = 2 ** 13, xlim_psd = [0, 235]):
# embed()
eod_fr = model_params['EODf'] # .iloc[0]
offset = model_params.pop('v_offset')
cell = model_params.pop('cell')
print(cell)
SAM, adapt_offset, cell_recording, constant_reduction, damping, damping_type, dent_tau_change, exponential, f1, f2, fish_emitter, fish_receiver, fish_morph_harmonics_var, lower_tol, mimick, n, phase_right, phaseshift_fr, sampling_factor, upper_tol, zeros = default_model0()
# in case you want a different sampling here we can adujust
time_array, sampling, deltat = deltat_choice(model_params, sampling_factor, eod_fr,
stimulus_length)
# generate the eod_fish_r in the four mimick variants (copy, thunderfish, mimick, just sinus)
eod_fish_r, deltat, eod_fr, time_array = eod_fish_r_generation(time_array, eod_fr, a_fr,
stimulus_length, phaseshift_fr,
cell_recording, zeros, mimick,
sampling, fish_receiver, deltat,
nfft, nfft_for_morph,
fish_morph_harmonics_var=fish_morph_harmonics_var,
beat=beat)
sampling = 1 / deltat
multiple = 0
slope = 0
add = 0
plus = 0
sig_val = (7, 1)
variant = 'sinz'
if exponential == '':
v_exp = 1
exp_tau = 0.001
# prepare for adapting offset due to baseline modification
baseline_with_wave_damping, baseline_without_wave = prepare_baseline_array(time_array, eod_fr,
nfft_for_morph,
phaseshift_fr,
mimick, zeros,
cell_recording,
sampling,
stimulus_length,
fish_receiver,
deltat, nfft,
damping_type,
damping, us_name,
gain, beat=beat,
fish_morph_harmonics_var=fish_morph_harmonics_var)
spikes_base = [[]] * trials_nr
color0 = 'green' # 'orange'
color01 = 'blue'
color02 = 'red'
color012 = 'orange'
color01_2 = 'purple'
color01, color012, color01_2, color02, color0_burst, color0 = colors_suscept_paper_dots()
#fig = plt.figure(figsize=(11.5, 5.4))
# embed()
for run in range(runs):
print(run)
t1 = time.time()
for t in range(trials_nr):
# get the baseline properties here
# baseline_after,spikes_base,rate_adapted, rate_baseline_before, rate_baseline_after, np.array(spike_times), stimulus_power, v_dent_output[int(0.05 / deltat):-1], offset, v_mem_output
stimulus = eod_fish_r
stimulus_base = eod_fish_r
if 'Zero' in titles_amp[a]:
power_here = 'sinz' + '_' + zeros
else:
power_here = 'sinz'
cvs, adapt_output, baseline_after_b, _, rate_adapted_b, rate_baseline_before_b, rate_baseline_after_b, \
spikes_base[t], _, _, offset_new, _,noise_final = simulate(cell, offset, stimulus, f1,
nr=n,
power_variant=power_here,
adapt_offset=adapt_offset,
add=add, alpha=alpha,
reshuffle=reshuffled,
lower_tol=lower_tol,
upper_tol=upper_tol,
v_exp=v_exp, exp_tau=exp_tau,
dent_tau_change=dent_tau_change,
alter_taus=constant_reduction,
exponential=exponential,
exponential_mult=1,
exponential_plus=plus,
exponential_slope=slope,
sig_val=sig_val, j=f2,
deltat=deltat, t=t,
**model_params)
if t == 0:
# here we record the changes in the offset due to the adaptation
change_offset = offset - offset_new
# and we subsequently reset the offset to be the new adapted for all subsequent trials
offset = offset_new * 1
if printing:
print('Baseline time' + str(time.time() - t1))
base_cut, mat_base = find_base_fr(spikes_base, deltat, stimulus_length, time_array, dev=dev)
fr = np.mean(base_cut)
if 'diagonal' in diagonal:
two_third_fr = fr * freq2_ratio
freq1_ratio = (1 - freq2_ratio)
third_fr = fr * freq1_ratio
else:
two_third_fr = fr * freq2_ratio
third_fr = fr * freq1_ratio
if plus_q == 'minus':
two_third_fr = -two_third_fr
third_fr = -third_fr
freqs2 = [eod_fr + two_third_fr] # , eod_fr - third_fr, two_third_fr,
# third_fr,
# two_third_eodf, eod_fr - two_third_eodf,
# third_eodf, eod_fr - third_eodf, ]
freqs1 = [
eod_fr + third_fr] # , eod_fr - two_third_fr, third_fr,two_third_fr,third_eodf, eod_fr - third_eodf,two_third_eodf, eod_fr - two_third_eodf, ]
#embed()
sampling_rate = 1 / deltat
base_cut, mat_base, smoothed0, mat0 = find_base_fr2(sampling_rate, spikes_base, deltat,
stimulus_length, time_array, dev=dev)
fr = np.mean(base_cut)
frate, isis_diff = ISI_frequency(time_array, spikes_base[0], fill=0.0)
isi = np.diff(spikes_base[0])
cv0 = np.std(isi) / np.mean(isi)
cv1 = np.std(frate) / np.mean(frate)
for ff, freq1 in enumerate(freqs1):
freq1 = [freq1]
freq2 = [freqs2[ff]]
# time_var = time.time()
# if printing:
# print(cell )
# f_corr = create_beat_corr(np.array([freq1[f1]]), np.array([eod_fr]))
# create the second eod_fish1 array analogous to the eod_fish_r array
t1 = time.time()
phaseshift_f1, phaseshift_f2 = get_phaseshifts(a_f1, a_f2, phase_right, phaseshift_fr)
eod_fish1, time_fish_e = eod_fish_e_generation(time_array, a_f1, freq1, f1,
nfft_for_morph, phaseshift_f1,
cell_recording, fish_morph_harmonics_var,
zeros, mimick, fish_emitter, sampling,
stimulus_length, thistype='emitter')
eod_fish2, time_fish_j = eod_fish_e_generation(time_array, a_f2, freq2, f2,
nfft_for_morph, phaseshift_f2,
cell_recording, fish_morph_harmonics_var,
zeros, mimick, fish_jammer, sampling,
stimulus_length, thistype='jammer')
eod_stimulus = eod_fish1 + eod_fish2
v_mems, offset_new, mat01, mat02, mat012, smoothed01, smoothed02, smoothed012, stimulus_01, stimulus_02, stimulus_012, mat05_01, spikes_01, mat05_02, spikes_02, mat05_012, spikes_012 = get_arrays_for_three(
cell, a_f2, a_f1,
SAM, eod_stimulus, eod_fish_r, freq2, eod_fish1, eod_fish_r,
eod_fish2, stimulus_length,
baseline_with_wave_damping, baseline_without_wave,
offset, model_params, n, variant, t, adapt_offset,
upper_tol, lower_tol, dent_tau_change, constant_reduction,
exponential, plus, slope, add,
deltat, alpha, sig_val, v_exp, exp_tau, f2,
trials_nr, time_array,
f1, freq1, damping_type,
gain, eod_fr, damping, us_name, dev=dev, reshuffle=reshuffled)
if printing:
print('Generation process' + str(time.time() - t1))
results_diff = pd.DataFrame()
results_diff['f1'] = freq1
results_diff['f2'] = freq2
results_diff['f0'] = eod_fr
if run == 0:
##################################
# power spectrum
# embed()
if dev_spikes == 'original':
nfft = 2 ** 15
# embed()
p0, p02, p01, p012, fs = calc_ps(nfft, [np.mean(mat012, axis=0)],
[np.mean(mat01, axis=0)],
[np.mean(mat02, axis=0)],
[np.mean(mat0, axis=0)],
test=False, sampling_rate=sampling_rate)
else:
nfft = 2 ** 15
p0, p02, p01, p012, fs = calc_ps(nfft, smoothed012,
smoothed01, smoothed02, smoothed0,
test=False, sampling_rate=sampling_rate)
if log == 'log':
p012 = 10 * np.log10(p012 / np.max(p012))
# pp_mean = np.log
p_arrays = [p012]
for j in range(len(p_arrays)):
sampling = 40000
p0_means = []
for i in range(len(p0)):
ax.plot(fs, p_arrays[j][i], color='grey')
p0_mean = np.mean(p_arrays[j], axis=0)
p0_means.append(p0_mean)
ax.plot(fs, p0_mean, color='black') # plt_peaks(ax[0], p01, fs, 'orange')
DF1 = np.abs(results_diff.f1.iloc[-1] - results_diff.f0.iloc[-1])
DF2 = np.abs(results_diff.f2.iloc[-1] - results_diff.f0.iloc[-1])
# embed()
for p in range(len(p0_means)):
freqs = [np.abs(DF1), np.abs(DF1 * 2),
np.abs(DF2), np.abs(DF2 * 2),
np.abs(np.abs(DF1) - np.abs(DF2)),
np.abs(DF1) + np.abs(DF2), fr]
colors = [color01, color01,color02, color02,
color01_2, color012, color0]
labels = ['DF1', 'DF1_H1', 'DF1_H3', 'DF1_H4', 'DF2', 'DF2_H1',
'DF2_H2', 'DF2_H3', '|DF1-DF2|', '|DF1+DF2|', 'baseline']
#embed()
plt_peaks_several(labels, freqs, p0_means, 0, ax,
p0_means[p], colors, fs, clip_on = clip_on, alpha=0.7)
ax.set_xlim(0, 300)
ax.set_ylim(0 - 20,
np.max(np.max(p_arrays)) + 70) # np.min(np.min(p0_means))
#if j == 0:
# ax.legend(ncol=2)
return fr
def plt_data_full_model(c1, chose_score, detections, devs, dfs, end, grid, mult_type, sorted_on, log = 'log', alpha = [],DF2_desired = [-33, -100], DF1_desired = [133, 66], ylim_log = (-15, 3), nfft = 2 ** 13, xlim_psd = [0, 235]):
# mean_type = '_MeanTrialsIndexPhaseSort_Min0.25sExcluded_'
extract = ''
datasets, data_dir = find_all_dir_cells()
@ -383,8 +733,8 @@ def plt_data_full_model(c1, chose_score, detections, devs, dfs, end, grid, mult_
append_others = 'apend_others' # '#'apend_others'#'apend_others'#'apend_others'##'apend_others'
autodefine = '_DFdesired_'
autodefine = 'triangle_diagonal_fr' # ['triangle_fr', 'triangle_diagonal_fr', 'triangle_df2_fr','triangle_df2_eodf''triangle_df1_eodf', ] # ,'triangle_df2_fr''triangle_df1_fr','_triangle_diagonal__fr',]
DF2_desired = [-33, -100] # 167(167, 133) (166, 249)
DF1_desired = [133, 66] # (133, 265)167, -33) das ist ein komischer Punkt: (166,83)
# 167(167, 133) (166, 249)
# (133, 265)167, -33) das ist ein komischer Punkt: (166,83)
#(66 / 166
autodefine = '_dfchosen_closest_'
autodefine = '_dfchosen_closest_first_'
@ -667,7 +1017,7 @@ def plt_data_full_model(c1, chose_score, detections, devs, dfs, end, grid, mult_
spikes_pure, time_array, range_plot=[3], names=names,
ax01=ax00, clip_on = False, xlim_psd=xlim_psd, alphas = alphas, choice = choice, labels = labels, ylim_log=ylim_log, log=log, text_extra=False)
# [arrays[-1]]arrays, ax00, ax_ps, cell, colors_p, f, [-1]grid0, group_mean, nfft, p_means, p_means_all, ps, row,spikes_pure, time_array,
#embed()
ax00.show_spines('lb')
if gg == 0:
ax00.legend(ncol=6, loc=(-1.22, 1.1))
if gg != len(DF1_desired) - 1:

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,89 +1,91 @@
,0,1,2
0,0.2650000001243047,0.36499999953786677,1.0800000001356338
1,12.490000000523027,2.0399999999700587,13.605000000231678
2,15.165000000249451,14.214999999812898,16.079999999553557
3,16.790000000125758,16.989999999741592,17.78000000026369
4,18.29000000043135,18.714999999820172,29.529999999928997
5,30.140000000298926,29.014999999735778,31.079999999880975
6,31.715000000528846,30.5899999999657,32.879999999883886
7,45.34000000012139,32.24000000011995,46.180000000410665
8,46.76500000050265,44.34000000003846,47.75499999973109
9,48.29000000017669,47.264999999815814,49.32999999996101
10,58.81499999986528,59.09000000031494,59.68000000043249
11,60.34000000044881,60.614999999988974,61.23000000038447
12,62.01499999997151,62.365000000345496,73.60499999972237
13,75.58999999991767,75.66499999996277,76.47999999985333
14,78.36499999984636,77.2400000001927,79.40499999963069
15,89.01500000001516,80.51500000022325,88.7299999996205
16,90.44000000039642,89.23999999990893,90.27999999957248
17,92.14000000019706,90.74000000021452,103.62999999974565
18,105.51499999973868,92.48999999966155,106.42999999995229
19,106.96500000039788,104.31500000016068,109.52999999985624
20,108.5399999997183,107.31499999986237,119.88000000032773
21,119.11499999996278,119.1900000000079,121.4300000002797
22,120.61500000026837,120.76500000023782,123.38000000013128
23,135.59000000031784,122.43999999976052,136.5799999995463
24,137.11499999999188,136.06500000026256,138.10500000012982
25,138.6900000002218,137.56499999965865,148.804999999945
26,149.41500000031493,149.3399999996019,150.40499999954338
27,150.86500000006464,150.91499999983182,164.2549999998184
28,165.81499999983617,152.4649999997838,166.6299999998475
29,167.26500000049538,166.0150000003615,168.4800000004063
30,168.76499999989147,167.5650000003135,178.72999999976602
31,179.23999999993367,169.16499999991186,180.20499999979367
32,180.71499999996132,179.4900000001054,181.7300000003772
33,182.46500000031784,181.01499999977943,195.3800000002477
34,196.14000000046627,182.63999999965574,196.8799999996438
35,197.61500000049392,194.96500000025674,198.6300000000003
36,199.06500000024363,197.76499999955388,209.00499999984024
37,209.5150000000079,209.590000000053,210.45499999958994
38,210.9150000001112,211.0900000003586,212.08000000037575
39,212.71500000011412,212.73999999960336,225.6550000003219
40,227.41499999983472,223.36499999949422,228.33000000004833
41,228.94000000041825,226.48999999967612,230.13000000005124
42,230.83999999971394,239.69000000000062,239.35499999983878
43,240.86500000021016,241.21499999967466,241.80499999979222
44,242.5150000003644,242.81500000018252,255.58000000014292
45,256.13999999995696,254.9649999997474,257.13000000009487
46,257.76499999983326,257.9650000003586,269.0549999998868
47,259.31499999978524,269.86499999987257,270.5299999999144
48,269.74000000018106,271.3149999996223,272.0049999999421
49,271.18999999993076,272.99000000005447,284.4049999995579
50,286.1399999997023,285.2149999995437,287.15500000011815
51,287.6899999996543,287.9900000003819,288.82999999964085
52,289.1649999996819,299.93999999954224,299.20500000039027
53,299.69000000028,301.4149999995699,300.80499999998864
54,301.21499999995405,303.01500000007775,302.3050000002942
55,303.0400000002349,315.33999999976925,316.1050000000134
56,316.26499999992785,318.1399999999759,318.6550000001691
57,317.81499999987983,329.98999999984346,329.254999999782
58,319.34000000046336,331.53999999979544,330.7050000004412
59,330.1900000001272,333.21500000022763,332.2799999997616
60,331.7400000000792,345.2899999998682,345.9299999996321
61,346.36499999987547,348.1150000003528,348.7550000001167
62,347.8399999999031,349.83999999952186,350.4800000001953
63,349.3899999998551,360.1649999997154,360.75499999983293
64,359.8649999998973,361.7149999996674,362.33000000006285
65,361.3900000004808,363.66499999951895,375.905000000009
66,363.1149999996499,376.91500000039935,377.42999999968305
67,376.490000000101,378.41499999979544,379.22999999968596
68,377.9900000004066,390.21500000001663,389.5549999998795
69,379.6150000002829,391.73999999969067,390.98000000026076
70,390.0650000000472,393.34000000019853,392.53000000021274
71,391.5899999997212,405.6399999996121,406.2299999997296
72,406.59000000004863,408.39000000017234,409.02999999993625
73,408.0900000003542,410.1150000002509,410.7800000002928
74,409.66499999967465,420.3899999998886,421.00500000028404
75,420.13999999971685,421.93999999984055,422.50499999968014
76,421.64000000002244,423.6900000001971,436.3050000003088
77,423.2400000005303,437.16499999994096,437.9300000001851
78,438.19000000030184,438.7649999995393,449.70500000012834
79,439.7400000002538,450.4400000001898,451.2050000004339
80,450.16499999974013,451.96499999986384,452.6799999995521
81,451.7149999996921,453.6649999996645,464.87999999967286
82,453.59000000052885,467.14000000031785,466.4800000001807
83,466.96500000007046,468.63999999971395,469.4799999998824
84,468.7900000003513,470.3399999995146,479.85499999972234
85,480.34000000052157,480.61500000006174,481.2800000001036
86,481.8150000005492,482.11500000036733,482.87999999970197
87,483.4400000004255,483.8399999995364,
,1,0
0,2.355000000535088,15.005000000250956
1,15.530000000581655,16.480000000278604
2,17.055000000255692,18.205000000357185
3,19.93000000038666,21.730000000438675
4,21.555000000262968,34.605000000787925
5,36.78000000036337,37.55500000084322
6,38.23000000011308,39.18000000071953
7,39.75500000069661,52.90500000051435
8,56.05500000001558,55.705000000720986
9,57.55500000032117,57.255000000672965
10,59.07999999999521,58.75500000006906
11,62.28000000010144,75.10500000085341
12,75.73000000047688,76.6050000002495
13,77.20500000050453,78.2800000006817
14,80.17999999992827,93.25500000073117
15,82.00500000020912,94.70500000048088
16,95.35500000038229,97.68000000081412
17,98.2550000007912,99.43000000026115
18,99.90500000003595,115.63000000028734
19,116.15500000061803,117.13000000059293
20,117.65500000001413,118.68000000054491
21,119.30500000016838,133.830000000721
22,123.98000000030225,135.2800000004707
23,135.68000000032117,136.78000000077628
24,137.23000000027315,139.93000000032663
25,140.1550000000505,154.7800000008054
26,141.8800000001291,156.55500000053036
27,155.33000000050453,159.3050000001811
28,158.23000000000394,172.9050000004052
29,159.8300000005118,175.93000000038484
30,176.23000000003304,177.45500000005887
31,177.73000000033863,179.155000000769
32,179.329999999937,195.230000000315
33,182.38000000019457,196.73000000062058
34,195.78000000001413,199.85500000080248
35,197.40499999989044,213.43000000074863
36,200.38000000022367,214.90500000077628
37,202.3050000007068,217.88000000020003
38,217.08000000035173,219.73000000075882
39,218.55500000037938,235.85500000086068
40,220.1300000006093,237.32999999997884
41,236.35500000000394,238.8800000008403
42,237.88000000058747,254.08000000066278
43,239.48000000018584,255.58000000005887
44,244.27999999989044,257.0550000000865
45,255.88000000061658,260.1800000002684
46,257.48000000021494,274.95500000082285
47,260.38000000062385,276.5550000004212
48,262.1300000000709,278.2800000004998
49,277.0800000007519,293.0300000007763
50,278.5300000005016,296.0050000002
51,280.05500000017565,297.555000000152
52,296.4550000006064,299.15500000065987
53,297.9550000000025,314.280000000558
54,299.5300000002324,315.75500000058565
55,314.7300000000549,317.1800000000574
56,316.28000000000685,321.7300000006206
57,317.85500000023677,333.7050000000589
58,320.73000000036774,335.20500000036446
59,335.579999999937,338.15500000041976
60,337.1550000001669,339.88000000049834
61,338.6550000004725,353.20500000039357
62,340.30500000062676,356.20500000009525
63,356.5300000000214,357.70500000040084
64,358.0799999999734,374.55500000037756
65,359.68000000048124,377.0549999999774
66,362.93000000023386,380.23000000071517
67,376.1050000002804,393.70500000045905
68,377.7800000007126,395.2300000001331
69,380.63000000056564,398.1800000001884
70,395.73000000018584,399.78000000069625
71,398.6050000003168,415.080000000721
72,400.2300000001931,417.6299999999672
73,415.35500000009125,419.255000000753
74,416.8300000001189,434.3550000003732
75,418.3300000004245,435.8050000001229
76,422.8050000001538,437.28000000015055
77,436.25500000052926,453.805000000152
78,437.7800000002033,455.3050000004576
79,440.70499999998066,458.23000000023495
80,442.5300000002615,459.8050000004649
81,455.955000000359,473.4800000006133
82,458.80500000021203,476.3050000001884
83,460.43000000008834,477.9300000000647
84,476.8300000005191,479.53000000057256
85,478.2800000002688,494.5550000002684
86,479.8550000004987,495.9800000006497
87,484.7800000006835,497.380000000753
88,495.0800000005991,
89,496.6300000005511,

1 1 0 2
2 0 0.36499999953786677 2.355000000535088 0.2650000001243047 15.005000000250956 1.0800000001356338
3 1 2.0399999999700587 15.530000000581655 12.490000000523027 16.480000000278604 13.605000000231678
4 2 14.214999999812898 17.055000000255692 15.165000000249451 18.205000000357185 16.079999999553557
5 3 16.989999999741592 19.93000000038666 16.790000000125758 21.730000000438675 17.78000000026369
6 4 18.714999999820172 21.555000000262968 18.29000000043135 34.605000000787925 29.529999999928997
7 5 29.014999999735778 36.78000000036337 30.140000000298926 37.55500000084322 31.079999999880975
8 6 30.5899999999657 38.23000000011308 31.715000000528846 39.18000000071953 32.879999999883886
9 7 32.24000000011995 39.75500000069661 45.34000000012139 52.90500000051435 46.180000000410665
10 8 44.34000000003846 56.05500000001558 46.76500000050265 55.705000000720986 47.75499999973109
11 9 47.264999999815814 57.55500000032117 48.29000000017669 57.255000000672965 49.32999999996101
12 10 59.09000000031494 59.07999999999521 58.81499999986528 58.75500000006906 59.68000000043249
13 11 60.614999999988974 62.28000000010144 60.34000000044881 75.10500000085341 61.23000000038447
14 12 62.365000000345496 75.73000000047688 62.01499999997151 76.6050000002495 73.60499999972237
15 13 75.66499999996277 77.20500000050453 75.58999999991767 78.2800000006817 76.47999999985333
16 14 77.2400000001927 80.17999999992827 78.36499999984636 93.25500000073117 79.40499999963069
17 15 80.51500000022325 82.00500000020912 89.01500000001516 94.70500000048088 88.7299999996205
18 16 89.23999999990893 95.35500000038229 90.44000000039642 97.68000000081412 90.27999999957248
19 17 90.74000000021452 98.2550000007912 92.14000000019706 99.43000000026115 103.62999999974565
20 18 92.48999999966155 99.90500000003595 105.51499999973868 115.63000000028734 106.42999999995229
21 19 104.31500000016068 116.15500000061803 106.96500000039788 117.13000000059293 109.52999999985624
22 20 107.31499999986237 117.65500000001413 108.5399999997183 118.68000000054491 119.88000000032773
23 21 119.1900000000079 119.30500000016838 119.11499999996278 133.830000000721 121.4300000002797
24 22 120.76500000023782 123.98000000030225 120.61500000026837 135.2800000004707 123.38000000013128
25 23 122.43999999976052 135.68000000032117 135.59000000031784 136.78000000077628 136.5799999995463
26 24 136.06500000026256 137.23000000027315 137.11499999999188 139.93000000032663 138.10500000012982
27 25 137.56499999965865 140.1550000000505 138.6900000002218 154.7800000008054 148.804999999945
28 26 149.3399999996019 141.8800000001291 149.41500000031493 156.55500000053036 150.40499999954338
29 27 150.91499999983182 155.33000000050453 150.86500000006464 159.3050000001811 164.2549999998184
30 28 152.4649999997838 158.23000000000394 165.81499999983617 172.9050000004052 166.6299999998475
31 29 166.0150000003615 159.8300000005118 167.26500000049538 175.93000000038484 168.4800000004063
32 30 167.5650000003135 176.23000000003304 168.76499999989147 177.45500000005887 178.72999999976602
33 31 169.16499999991186 177.73000000033863 179.23999999993367 179.155000000769 180.20499999979367
34 32 179.4900000001054 179.329999999937 180.71499999996132 195.230000000315 181.7300000003772
35 33 181.01499999977943 182.38000000019457 182.46500000031784 196.73000000062058 195.3800000002477
36 34 182.63999999965574 195.78000000001413 196.14000000046627 199.85500000080248 196.8799999996438
37 35 194.96500000025674 197.40499999989044 197.61500000049392 213.43000000074863 198.6300000000003
38 36 197.76499999955388 200.38000000022367 199.06500000024363 214.90500000077628 209.00499999984024
39 37 209.590000000053 202.3050000007068 209.5150000000079 217.88000000020003 210.45499999958994
40 38 211.0900000003586 217.08000000035173 210.9150000001112 219.73000000075882 212.08000000037575
41 39 212.73999999960336 218.55500000037938 212.71500000011412 235.85500000086068 225.6550000003219
42 40 223.36499999949422 220.1300000006093 227.41499999983472 237.32999999997884 228.33000000004833
43 41 226.48999999967612 236.35500000000394 228.94000000041825 238.8800000008403 230.13000000005124
44 42 239.69000000000062 237.88000000058747 230.83999999971394 254.08000000066278 239.35499999983878
45 43 241.21499999967466 239.48000000018584 240.86500000021016 255.58000000005887 241.80499999979222
46 44 242.81500000018252 244.27999999989044 242.5150000003644 257.0550000000865 255.58000000014292
47 45 254.9649999997474 255.88000000061658 256.13999999995696 260.1800000002684 257.13000000009487
48 46 257.9650000003586 257.48000000021494 257.76499999983326 274.95500000082285 269.0549999998868
49 47 269.86499999987257 260.38000000062385 259.31499999978524 276.5550000004212 270.5299999999144
50 48 271.3149999996223 262.1300000000709 269.74000000018106 278.2800000004998 272.0049999999421
51 49 272.99000000005447 277.0800000007519 271.18999999993076 293.0300000007763 284.4049999995579
52 50 285.2149999995437 278.5300000005016 286.1399999997023 296.0050000002 287.15500000011815
53 51 287.9900000003819 280.05500000017565 287.6899999996543 297.555000000152 288.82999999964085
54 52 299.93999999954224 296.4550000006064 289.1649999996819 299.15500000065987 299.20500000039027
55 53 301.4149999995699 297.9550000000025 299.69000000028 314.280000000558 300.80499999998864
56 54 303.01500000007775 299.5300000002324 301.21499999995405 315.75500000058565 302.3050000002942
57 55 315.33999999976925 314.7300000000549 303.0400000002349 317.1800000000574 316.1050000000134
58 56 318.1399999999759 316.28000000000685 316.26499999992785 321.7300000006206 318.6550000001691
59 57 329.98999999984346 317.85500000023677 317.81499999987983 333.7050000000589 329.254999999782
60 58 331.53999999979544 320.73000000036774 319.34000000046336 335.20500000036446 330.7050000004412
61 59 333.21500000022763 335.579999999937 330.1900000001272 338.15500000041976 332.2799999997616
62 60 345.2899999998682 337.1550000001669 331.7400000000792 339.88000000049834 345.9299999996321
63 61 348.1150000003528 338.6550000004725 346.36499999987547 353.20500000039357 348.7550000001167
64 62 349.83999999952186 340.30500000062676 347.8399999999031 356.20500000009525 350.4800000001953
65 63 360.1649999997154 356.5300000000214 349.3899999998551 357.70500000040084 360.75499999983293
66 64 361.7149999996674 358.0799999999734 359.8649999998973 374.55500000037756 362.33000000006285
67 65 363.66499999951895 359.68000000048124 361.3900000004808 377.0549999999774 375.905000000009
68 66 376.91500000039935 362.93000000023386 363.1149999996499 380.23000000071517 377.42999999968305
69 67 378.41499999979544 376.1050000002804 376.490000000101 393.70500000045905 379.22999999968596
70 68 390.21500000001663 377.7800000007126 377.9900000004066 395.2300000001331 389.5549999998795
71 69 391.73999999969067 380.63000000056564 379.6150000002829 398.1800000001884 390.98000000026076
72 70 393.34000000019853 395.73000000018584 390.0650000000472 399.78000000069625 392.53000000021274
73 71 405.6399999996121 398.6050000003168 391.5899999997212 415.080000000721 406.2299999997296
74 72 408.39000000017234 400.2300000001931 406.59000000004863 417.6299999999672 409.02999999993625
75 73 410.1150000002509 415.35500000009125 408.0900000003542 419.255000000753 410.7800000002928
76 74 420.3899999998886 416.8300000001189 409.66499999967465 434.3550000003732 421.00500000028404
77 75 421.93999999984055 418.3300000004245 420.13999999971685 435.8050000001229 422.50499999968014
78 76 423.6900000001971 422.8050000001538 421.64000000002244 437.28000000015055 436.3050000003088
79 77 437.16499999994096 436.25500000052926 423.2400000005303 453.805000000152 437.9300000001851
80 78 438.7649999995393 437.7800000002033 438.19000000030184 455.3050000004576 449.70500000012834
81 79 450.4400000001898 440.70499999998066 439.7400000002538 458.23000000023495 451.2050000004339
82 80 451.96499999986384 442.5300000002615 450.16499999974013 459.8050000004649 452.6799999995521
83 81 453.6649999996645 455.955000000359 451.7149999996921 473.4800000006133 464.87999999967286
84 82 467.14000000031785 458.80500000021203 453.59000000052885 476.3050000001884 466.4800000001807
85 83 468.63999999971395 460.43000000008834 466.96500000007046 477.9300000000647 469.4799999998824
86 84 470.3399999995146 476.8300000005191 468.7900000003513 479.53000000057256 479.85499999972234
87 85 480.61500000006174 478.2800000002688 480.34000000052157 494.5550000002684 481.2800000001036
88 86 482.11500000036733 479.8550000004987 481.8150000005492 495.9800000006497 482.87999999970197
89 87 483.8399999995364 484.7800000006835 483.4400000004255 497.380000000753
90 88 495.0800000005991
91 89 496.6300000005511

View File

@ -1,71 +1,72 @@
,0,1,2
0,4.547473508864641e-10,1.3500000000021828,0.024999999595820555
1,8.550000000013824,7.600000000365981,6.4249999998082785
2,17.475000000104046,13.34999999971842,12.799999999742795
3,23.57499999970969,19.324999999753345,18.50000000035834
4,32.475000000431464,31.424999999671854,21.724999999833017
5,35.55000000005748,37.39999999970678,32.22500000015316
6,42.02500000019427,43.50000000022192,39.62499999965985
7,50.67499999995562,49.40000000033251,44.29999999979373
8,56.72499999991487,58.42499999971551,54.6999999999116
9,62.75000000050568,63.17499999977372,62.4000000000251
10,71.72500000024229,73.45000000032087,69.70000000023902
11,78.25000000002547,76.77499999999782,78.85000000010223
12,86.74999999993815,87.39999999988868,84.87499999978354
13,92.85000000045329,96.22499999977663,92.42500000004839
14,104.7750000002452,102.4000000002161,99.87500000011096
15,107.99999999971988,112.7000000001317,105.92500000007021
16,116.95000000008804,118.77500000036889,115.1750000001357
17,123.07499999997162,121.92499999991924,120.79999999991742
18,129.00000000036016,133.6500000002161,125.54999999997563
19,137.85000000052605,135.6250000003456,134.72500000011678
20,147.2500000004402,142.90000000028158,142.0250000003307
21,155.84999999964566,148.8750000003165,149.59999999996398
22,157.70000000020445,160.8499999997548,157.17499999959728
23,166.67499999994106,166.85000000006767,166.0999999996875
24,174.07500000035725,172.90000000002692,172.32499999977335
25,183.00000000044747,177.59999999952925,178.29999999980828
26,184.9250000000211,185.02500000022337,184.30000000012114
27,195.15000000001237,195.77499999968495,190.24999999987813
28,202.72499999964566,198.60000000016953,197.9249999997137
29,207.3249999998552,209.0499999999338,202.4499999999989
30,219.62500000017826,215.20000000009532,211.4750000002914
31,225.10000000011132,225.62499999958163,217.27500000019973
32,227.10000000051878,233.17499999984648,226.5250000002652
33,237.40000000043437,238.0500000003849,235.47499999972388
34,245.0000000003456,245.32500000032087,241.69999999980973
35,249.47500000007494,251.54999999949723,247.8750000002492
36,258.40000000016516,260.35000000001673,258.10000000024047
37,267.3250000002554,269.32499999975335,264.09999999964384
38,273.8000000003922,272.5249999998596,271.62499999963075
39,285.3250000002845,281.2749999998232,277.5000000003729
40,286.9500000001608,289.00000000021464,286.7749999998068
41,291.700000000219,294.999999999618,292.6749999999174
42,303.52499999980864,299.5749999995496,301.60000000000764
43,309.4750000004751,308.4249999997155,310.6499999996686
44,314.12500000033106,320.42500000034124,316.5499999997792
45,321.75000000052023,323.60000000016953,322.67499999966276
46,327.82499999984793,332.47499999970387,328.5500000004049
47,334.1000000004897,338.90000000019427,334.82500000013715
48,342.52500000047803,346.1000000002059,346.7249999996511
49,351.6999999997097,348.0500000000575,351.5749999999116
50,355.10000000022046,358.1749999998465,358.8750000001255
51,366.8750000001637,365.62499999990905,364.8249999998825
52,372.7750000002743,374.5750000002772,375.62499999989996
53,378.92500000043583,376.27500000007785,381.3750000001619
54,387.7500000003238,386.6000000002714,385.9999999997399
55,394.0749999997024,392.6249999999527,393.650000000207
56,400.04999999973734,401.67499999961365,399.4999999997617
57,408.7750000003325,408.125000000382,411.62499999995816
58,410.4499999998552,414.0249999995831,413.2499999998345
59,420.95000000017535,422.874999999749,420.5999999996948
60,431.54999999978827,428.99999999963256,429.8750000000382
61,438.8500000000022,436.40000000004875,437.12499999969623
62,442.25000000051296,442.4999999996544,444.6749999999611
63,452.64999999972133,453.0499999996209,452.1500000003016
64,457.22499999965294,459.1249999998581,461.22500000024047
65,463.25000000024374,465.32499999966603,467.17499999999745
66,470.72499999967476,474.149999999554,473.37499999980537
67,478.07500000044456,480.2500000000691,482.22499999997126
68,487.0750000004591,488.9749999997548,486.90000000010514
69,488.875000000462,490.87499999996,497.4000000004253
,1,0
0,0.09999999997489795,7.850000000416912
1,8.849999999938518,16.800000000785076
2,12.225000000171349,22.82500000046639
3,21.175000000539512,28.925000000072032
4,26.975000000447835,37.925000000086584
5,36.25000000079126,45.37500000014916
6,42.07500000006803,49.95000000008076
7,48.150000000305226,59.0000000006512
8,54.15000000061809,64.82500000083746
9,63.10000000007676,75.42500000045038
10,69.17500000031396,77.12500000025102
11,75.22500000027321,87.60000000029322
12,81.15000000066175,95.0000000007094
13,93.05000000017571,101.05000000066866
14,96.27500000055988,107.25000000047658
15,105.12500000072578,115.97500000016225
16,111.32500000053369,122.02500000012151
17,120.22500000034597,131.02500000013606
18,126.32499999995161,137.02500000044893
19,133.9500000001408,143.07500000040818
20,136.77500000062537,149.15000000064538
21,145.72500000008404,158.32500000078653
22,156.09999999992397,167.1000000001186
23,162.17500000016116,173.15000000007785
24,169.9000000005526,179.2000000000371
25,174.22500000043328,185.15000000070359
26,180.30000000067048,191.5250000006381
27,189.25000000012915,203.07500000080836
28,195.27500000071996,209.10000000048967
29,203.0000000002019,216.67500000012296
30,210.7499999999618,224.1000000008171
31,219.27500000015243,230.02500000029613
32,225.57500000016262,233.3000000003267
33,234.27500000047985,242.2750000000633
34,240.30000000016116,249.8500000006061
35,246.32500000075197,255.72500000043874
36,252.4250000003576,266.25000000012733
37,258.5000000005948,275.22500000077343
38,267.4750000003314,278.2250000004751
39,276.475000000346,284.3000000007123
40,282.5749999999516,290.4750000002423
41,288.4250000004158,297.8250000001026
42,294.5500000002994,308.32500000042273
43,303.3499999999094,311.5500000008069
44,306.45000000072287,317.225000000235
45,315.5500000000302,329.4250000003558
46,324.5750000003227,334.0000000002874
47,330.7000000002063,339.8500000007516
48,338.1750000005468,344.4250000006832
49,344.05000000037944,354.9500000003718
50,351.52500000071996,362.4250000007123
51,357.6250000003256,371.375000000171
52,366.4750000004915,376.0750000005828
53,368.2750000004944,383.40000000016516
54,378.6250000000564,389.6750000008069
55,387.6500000003489,397.00000000038926
56,393.6750000000302,407.47500000043146
57,399.7500000002674,410.65000000025975
58,411.4999999999327,419.45000000077926
59,413.2250000000113,422.8250000001026
60,423.5500000002048,433.05000000009386
61,426.6750000003867,434.95000000029904
62,435.6250000007549,446.5000000004693
63,446.20000000008986,449.7000000005755
64,451.200000000199,458.57500000010987
65,459.6500000004653,464.7250000002714
66,462.75000000036925,473.45000000086657
67,471.8500000005861,479.6500000006745
68,479.5000000001437,485.7250000000022
69,485.4000000002543,494.85000000049695
70,492.7500000001146,

1 1 0 2
2 0 1.3500000000021828 0.09999999997489795 4.547473508864641e-10 7.850000000416912 0.024999999595820555
3 1 7.600000000365981 8.849999999938518 8.550000000013824 16.800000000785076 6.4249999998082785
4 2 13.34999999971842 12.225000000171349 17.475000000104046 22.82500000046639 12.799999999742795
5 3 19.324999999753345 21.175000000539512 23.57499999970969 28.925000000072032 18.50000000035834
6 4 31.424999999671854 26.975000000447835 32.475000000431464 37.925000000086584 21.724999999833017
7 5 37.39999999970678 36.25000000079126 35.55000000005748 45.37500000014916 32.22500000015316
8 6 43.50000000022192 42.07500000006803 42.02500000019427 49.95000000008076 39.62499999965985
9 7 49.40000000033251 48.150000000305226 50.67499999995562 59.0000000006512 44.29999999979373
10 8 58.42499999971551 54.15000000061809 56.72499999991487 64.82500000083746 54.6999999999116
11 9 63.17499999977372 63.10000000007676 62.75000000050568 75.42500000045038 62.4000000000251
12 10 73.45000000032087 69.17500000031396 71.72500000024229 77.12500000025102 69.70000000023902
13 11 76.77499999999782 75.22500000027321 78.25000000002547 87.60000000029322 78.85000000010223
14 12 87.39999999988868 81.15000000066175 86.74999999993815 95.0000000007094 84.87499999978354
15 13 96.22499999977663 93.05000000017571 92.85000000045329 101.05000000066866 92.42500000004839
16 14 102.4000000002161 96.27500000055988 104.7750000002452 107.25000000047658 99.87500000011096
17 15 112.7000000001317 105.12500000072578 107.99999999971988 115.97500000016225 105.92500000007021
18 16 118.77500000036889 111.32500000053369 116.95000000008804 122.02500000012151 115.1750000001357
19 17 121.92499999991924 120.22500000034597 123.07499999997162 131.02500000013606 120.79999999991742
20 18 133.6500000002161 126.32499999995161 129.00000000036016 137.02500000044893 125.54999999997563
21 19 135.6250000003456 133.9500000001408 137.85000000052605 143.07500000040818 134.72500000011678
22 20 142.90000000028158 136.77500000062537 147.2500000004402 149.15000000064538 142.0250000003307
23 21 148.8750000003165 145.72500000008404 155.84999999964566 158.32500000078653 149.59999999996398
24 22 160.8499999997548 156.09999999992397 157.70000000020445 167.1000000001186 157.17499999959728
25 23 166.85000000006767 162.17500000016116 166.67499999994106 173.15000000007785 166.0999999996875
26 24 172.90000000002692 169.9000000005526 174.07500000035725 179.2000000000371 172.32499999977335
27 25 177.59999999952925 174.22500000043328 183.00000000044747 185.15000000070359 178.29999999980828
28 26 185.02500000022337 180.30000000067048 184.9250000000211 191.5250000006381 184.30000000012114
29 27 195.77499999968495 189.25000000012915 195.15000000001237 203.07500000080836 190.24999999987813
30 28 198.60000000016953 195.27500000071996 202.72499999964566 209.10000000048967 197.9249999997137
31 29 209.0499999999338 203.0000000002019 207.3249999998552 216.67500000012296 202.4499999999989
32 30 215.20000000009532 210.7499999999618 219.62500000017826 224.1000000008171 211.4750000002914
33 31 225.62499999958163 219.27500000015243 225.10000000011132 230.02500000029613 217.27500000019973
34 32 233.17499999984648 225.57500000016262 227.10000000051878 233.3000000003267 226.5250000002652
35 33 238.0500000003849 234.27500000047985 237.40000000043437 242.2750000000633 235.47499999972388
36 34 245.32500000032087 240.30000000016116 245.0000000003456 249.8500000006061 241.69999999980973
37 35 251.54999999949723 246.32500000075197 249.47500000007494 255.72500000043874 247.8750000002492
38 36 260.35000000001673 252.4250000003576 258.40000000016516 266.25000000012733 258.10000000024047
39 37 269.32499999975335 258.5000000005948 267.3250000002554 275.22500000077343 264.09999999964384
40 38 272.5249999998596 267.4750000003314 273.8000000003922 278.2250000004751 271.62499999963075
41 39 281.2749999998232 276.475000000346 285.3250000002845 284.3000000007123 277.5000000003729
42 40 289.00000000021464 282.5749999999516 286.9500000001608 290.4750000002423 286.7749999998068
43 41 294.999999999618 288.4250000004158 291.700000000219 297.8250000001026 292.6749999999174
44 42 299.5749999995496 294.5500000002994 303.52499999980864 308.32500000042273 301.60000000000764
45 43 308.4249999997155 303.3499999999094 309.4750000004751 311.5500000008069 310.6499999996686
46 44 320.42500000034124 306.45000000072287 314.12500000033106 317.225000000235 316.5499999997792
47 45 323.60000000016953 315.5500000000302 321.75000000052023 329.4250000003558 322.67499999966276
48 46 332.47499999970387 324.5750000003227 327.82499999984793 334.0000000002874 328.5500000004049
49 47 338.90000000019427 330.7000000002063 334.1000000004897 339.8500000007516 334.82500000013715
50 48 346.1000000002059 338.1750000005468 342.52500000047803 344.4250000006832 346.7249999996511
51 49 348.0500000000575 344.05000000037944 351.6999999997097 354.9500000003718 351.5749999999116
52 50 358.1749999998465 351.52500000071996 355.10000000022046 362.4250000007123 358.8750000001255
53 51 365.62499999990905 357.6250000003256 366.8750000001637 371.375000000171 364.8249999998825
54 52 374.5750000002772 366.4750000004915 372.7750000002743 376.0750000005828 375.62499999989996
55 53 376.27500000007785 368.2750000004944 378.92500000043583 383.40000000016516 381.3750000001619
56 54 386.6000000002714 378.6250000000564 387.7500000003238 389.6750000008069 385.9999999997399
57 55 392.6249999999527 387.6500000003489 394.0749999997024 397.00000000038926 393.650000000207
58 56 401.67499999961365 393.6750000000302 400.04999999973734 407.47500000043146 399.4999999997617
59 57 408.125000000382 399.7500000002674 408.7750000003325 410.65000000025975 411.62499999995816
60 58 414.0249999995831 411.4999999999327 410.4499999998552 419.45000000077926 413.2499999998345
61 59 422.874999999749 413.2250000000113 420.95000000017535 422.8250000001026 420.5999999996948
62 60 428.99999999963256 423.5500000002048 431.54999999978827 433.05000000009386 429.8750000000382
63 61 436.40000000004875 426.6750000003867 438.8500000000022 434.95000000029904 437.12499999969623
64 62 442.4999999996544 435.6250000007549 442.25000000051296 446.5000000004693 444.6749999999611
65 63 453.0499999996209 446.20000000008986 452.64999999972133 449.7000000005755 452.1500000003016
66 64 459.1249999998581 451.200000000199 457.22499999965294 458.57500000010987 461.22500000024047
67 65 465.32499999966603 459.6500000004653 463.25000000024374 464.7250000002714 467.17499999999745
68 66 474.149999999554 462.75000000036925 470.72499999967476 473.45000000086657 473.37499999980537
69 67 480.2500000000691 471.8500000005861 478.07500000044456 479.6500000006745 482.22499999997126
70 68 488.9749999997548 479.5000000001437 487.0750000004591 485.7250000000022 486.90000000010514
71 69 490.87499999996 485.4000000002543 488.875000000462 494.85000000049695 497.4000000004253
72 70 492.7500000001146

View File

@ -1,89 +1,76 @@
,2,0,1
0,9.325000000224463,2.4250000001302396,10.825000000111322
1,10.749999999696229,9.550000000217551,12.424999999709689
2,12.42500000012842,11.074999999891588,14.124999999510328
3,24.37500000019827,12.725000000045839,26.02499999993379
4,25.824999999947977,24.974999999813008,29.024999999635476
5,27.424999999546344,27.650000000448927,39.87500000020882
6,39.79999999979373,38.60000000031505,41.39999999988286
7,42.24999999974716,41.225000000395084,44.07499999960928
8,44.00000000010368,43.100000000322325,56.02499999967913
9,55.74999999976899,56.27500000036889,57.57499999963111
10,57.32499999999891,57.80000000004293,59.29999999970969
11,58.97500000015316,59.5749999997679,71.12500000020881
12,70.94999999959145,71.3250000003427,72.75000000008512
13,72.47500000017499,72.87500000029468,84.7750000000793
14,84.67500000029577,83.94999999973152,86.32500000003128
15,86.1999999999698,86.32499999976062,99.77499999949723
16,89.17500000030304,88.0499999998392,101.27499999980282
17,100.99999999989268,100.2000000003136,102.97499999960345
18,102.62499999976899,103.05000000016662,115.05000000015352
19,114.74999999996544,115.04999999988286,116.47499999962528
20,116.19999999971515,116.5249999999105,119.57499999952924
21,119.20000000032633,119.60000000044602,131.4250000003063
22,131.0999999998403,130.22500000033688,133.07499999955107
23,132.7249999997166,131.7500000000109,143.72499999971987
24,144.77499999998872,145.1750000001084,146.42499999972424
25,146.2750000002943,146.65000000013606,148.35000000020736
26,148.05000000001928,148.1749999998101,161.47499999969804
27,159.95000000044274,160.22500000008222,163.0750000002059
28,161.44999999983884,161.65000000046348,173.70000000009676
29,164.39999999989413,163.4500000004664,176.44999999974752
30,176.2499999997617,175.30000000033397,178.1250000001797
31,177.82499999999163,176.75000000008367,190.25000000037616
32,179.52499999979227,178.4499999998843,191.74999999977226
33,191.37499999965985,191.67500000048676,194.77499999975188
34,193.00000000044565,193.22500000043874,206.62499999961946
35,206.37499999998727,194.97499999988577,208.24999999949577
36,207.8999999996613,206.82499999975335,220.44999999961655
37,209.54999999981555,208.4749999999076,221.8749999999978
38,221.45000000023902,220.49999999990177,223.6000000000764
39,222.97499999991305,221.97499999992942,236.6749999999207
40,224.65000000034524,225.24999999995998,238.22499999987267
41,236.50000000021282,235.5000000002292,239.94999999995125
42,238.12500000008913,237.3000000002321,250.52500000019572
43,250.27499999965403,250.47500000027867,252.0750000001477
44,251.74999999968168,251.9999999999527,265.4250000003209
45,253.39999999983593,253.60000000046057,266.924999999717
46,266.67500000008476,265.57499999989886,268.47499999966897
47,268.2500000003147,267.1500000001288,280.7000000000677
48,270.1499999996104,279.45000000045184,282.1499999998174
49,280.3999999998796,281.99999999969805,285.07499999959475
50,282.05000000003383,283.75000000005457,296.94999999974027
51,296.64999999955216,295.90000000052896,298.62500000017246
52,298.25000000006,297.39999999992506,310.52499999968643
53,299.82500000028995,300.34999999998035,312.0749999996384
54,311.7249999998039,310.7999999997446,313.89999999991926
55,313.2749999997559,312.3499999996966,325.57499999966024
56,314.9500000001881,325.9000000002743,327.10000000024377
57,326.7749999997777,327.37500000030195,328.94999999989307
58,328.35000000000764,339.57500000042273,342.07500000029324
59,330.2500000002128,341.02500000017244,343.6250000002452
60,341.89999999967586,343.92499999967185,345.2750000003995
61,343.4749999999058,355.9250000002976,357.12500000026705
62,345.24999999963075,357.4249999996937,358.7249999998654
63,356.9749999999276,359.2249999996966,370.99999999991053
64,358.4750000002332,370.94999999999345,372.5499999998625
65,360.2000000003118,372.45000000029904,385.82500000011134
66,371.99999999962347,374.1750000003776,387.32499999950744
67,373.6499999997777,387.44999999971697,388.95000000029324
68,385.8999999995449,389.0500000002248,400.92499999973154
69,387.45000000040636,399.75000000004,402.3999999997592
70,390.2000000000571,401.72500000016953,405.45000000001676
71,402.124999999849,414.8000000000138,417.3250000001623
72,403.6250000001546,416.24999999976353,418.87500000011426
73,416.3000000000993,417.95000000047366,420.7999999996879
74,418.57499999992615,429.92499999991196,432.39999999950453
75,420.2749999997268,432.6249999999163,434.02500000029033
76,432.17500000015025,435.7500000000982,446.17499999985523
77,433.75000000038017,446.400000000267,447.7249999998072
78,435.52500000010514,447.85000000001673,461.0749999999804
79,447.22500000012406,460.0249999998596,462.550000000008
80,448.85000000000036,461.52500000016516,464.17499999988434
81,450.6500000000033,463.02500000047075,476.27499999980284
82,462.32499999974425,476.350000000366,477.7499999998305
83,463.89999999997417,477.87500000004,479.3250000000604
84,465.6500000003307,491.42499999970823,
85,477.37499999971806,492.8500000000895,
86,478.9000000003016,494.50000000024374,
87,480.85000000015316,,
,0,1
0,3.7000000006628397,0.8999999999021384
1,6.925000000137516,8.125000000191722
2,14.3250000005537,12.849999999971988
3,20.250000000032742,18.875000000562796
4,26.27500000062355,26.17500000077671
5,36.87500000023647,30.800000000354704
6,42.650000000776345,38.575000000392535
7,44.35000000057698,48.825000000661746
8,54.70000000013897,54.89999999998945
9,60.825000000022555,60.75000000045365
10,68.10000000086802,66.82500000069085
11,73.05000000042128,73.17500000034742
12,80.17500000050859,80.35000000008112
13,84.95000000084474,86.37500000067193
14,92.17500000022483,96.87500000008258
15,100.00000000081855,102.8500000001175
16,108.92499999999927,109.1000000004813
17,115.05000000079235,116.37500000041727
18,122.37500000037471,118.07500000021791
19,130.07500000048822,128.37500000013353
20,134.30000000016662,134.65000000077526
21,140.30000000047949,140.4500000006836
22,146.25000000023647,150.95000000009424
23,152.37500000012005,152.92500000022375
24,162.8250000007938,163.05000000001274
25,164.57500000024083,170.57499999999965
26,170.4000000004271,175.10000000028487
27,176.40000000073996,182.5250000000695
28,186.85000000050422,193.3000000007185
29,188.60000000086075,199.00000000042456
30,199.00000000006912,205.07500000066176
31,205.02500000065993,211.14999999998946
32,212.4750000007225,218.65000000060792
33,218.42500000047949,224.70000000056717
34,224.65000000056534,230.87500000009715
35,234.95000000048094,241.10000000008841
36,241.0000000004402,242.87500000072288
37,248.42500000022483,253.1250000000826
38,253.02500000043437,259.1500000006734
39,259.2250000002423,265.1250000007083
40,265.2000000002772,271.27499999996036
41,272.4750000002132,283.1000000004595
42,278.500000000804,284.75000000061374
43,284.7500000002583,289.62500000024266
44,290.6000000007225,295.52500000035326
45,302.50000000023647,307.1750000007258
46,307.12500000072396,309.12500000057736
47,313.20000000005166,319.20000000071997
48,320.65000000011423,320.80000000031833
49,331.12500000015643,331.5500000006894
50,332.625000000462,337.35000000059773
51,340.45000000014625,343.32500000063266
52,343.22500000007494,349.6500000000113
53,352.4000000002161,355.5000000004755
54,361.2000000007356,367.27500000041874
55,368.80000000064683,368.94999999994144
56,373.4000000008564,379.4500000002616
57,379.27500000068903,385.4250000002965
58,386.7250000007516,391.3750000000535
59,397.35000000064247,397.525000000215
60,403.35000000004584,403.57500000017427
61,410.77500000073996,409.6250000001335
62,416.7500000007749,415.6250000004464
63,421.5000000008331,424.62500000046094
64,428.8000000001375,433.4999999999953
65,433.4750000002714,439.72500000008114
66,440.75000000020736,445.70000000011606
67,446.8500000007225,451.5250000003023
68,457.4999999999818,459.2000000001379
69,466.4750000006279,469.4500000004071
70,470.8750000004329,475.45000000071997
71,478.60000000082437,477.12500000024266
72,481.47500000004584,487.4500000004362
73,493.35000000019136,493.77500000072433
74,494.9250000004213,

1 2 0 1
2 0 9.325000000224463 2.4250000001302396 3.7000000006628397 10.825000000111322 0.8999999999021384
3 1 10.749999999696229 9.550000000217551 6.925000000137516 12.424999999709689 8.125000000191722
4 2 12.42500000012842 11.074999999891588 14.3250000005537 14.124999999510328 12.849999999971988
5 3 24.37500000019827 12.725000000045839 20.250000000032742 26.02499999993379 18.875000000562796
6 4 25.824999999947977 24.974999999813008 26.27500000062355 29.024999999635476 26.17500000077671
7 5 27.424999999546344 27.650000000448927 36.87500000023647 39.87500000020882 30.800000000354704
8 6 39.79999999979373 38.60000000031505 42.650000000776345 41.39999999988286 38.575000000392535
9 7 42.24999999974716 41.225000000395084 44.35000000057698 44.07499999960928 48.825000000661746
10 8 44.00000000010368 43.100000000322325 54.70000000013897 56.02499999967913 54.89999999998945
11 9 55.74999999976899 56.27500000036889 60.825000000022555 57.57499999963111 60.75000000045365
12 10 57.32499999999891 57.80000000004293 68.10000000086802 59.29999999970969 66.82500000069085
13 11 58.97500000015316 59.5749999997679 73.05000000042128 71.12500000020881 73.17500000034742
14 12 70.94999999959145 71.3250000003427 80.17500000050859 72.75000000008512 80.35000000008112
15 13 72.47500000017499 72.87500000029468 84.95000000084474 84.7750000000793 86.37500000067193
16 14 84.67500000029577 83.94999999973152 92.17500000022483 86.32500000003128 96.87500000008258
17 15 86.1999999999698 86.32499999976062 100.00000000081855 99.77499999949723 102.8500000001175
18 16 89.17500000030304 88.0499999998392 108.92499999999927 101.27499999980282 109.1000000004813
19 17 100.99999999989268 100.2000000003136 115.05000000079235 102.97499999960345 116.37500000041727
20 18 102.62499999976899 103.05000000016662 122.37500000037471 115.05000000015352 118.07500000021791
21 19 114.74999999996544 115.04999999988286 130.07500000048822 116.47499999962528 128.37500000013353
22 20 116.19999999971515 116.5249999999105 134.30000000016662 119.57499999952924 134.65000000077526
23 21 119.20000000032633 119.60000000044602 140.30000000047949 131.4250000003063 140.4500000006836
24 22 131.0999999998403 130.22500000033688 146.25000000023647 133.07499999955107 150.95000000009424
25 23 132.7249999997166 131.7500000000109 152.37500000012005 143.72499999971987 152.92500000022375
26 24 144.77499999998872 145.1750000001084 162.8250000007938 146.42499999972424 163.05000000001274
27 25 146.2750000002943 146.65000000013606 164.57500000024083 148.35000000020736 170.57499999999965
28 26 148.05000000001928 148.1749999998101 170.4000000004271 161.47499999969804 175.10000000028487
29 27 159.95000000044274 160.22500000008222 176.40000000073996 163.0750000002059 182.5250000000695
30 28 161.44999999983884 161.65000000046348 186.85000000050422 173.70000000009676 193.3000000007185
31 29 164.39999999989413 163.4500000004664 188.60000000086075 176.44999999974752 199.00000000042456
32 30 176.2499999997617 175.30000000033397 199.00000000006912 178.1250000001797 205.07500000066176
33 31 177.82499999999163 176.75000000008367 205.02500000065993 190.25000000037616 211.14999999998946
34 32 179.52499999979227 178.4499999998843 212.4750000007225 191.74999999977226 218.65000000060792
35 33 191.37499999965985 191.67500000048676 218.42500000047949 194.77499999975188 224.70000000056717
36 34 193.00000000044565 193.22500000043874 224.65000000056534 206.62499999961946 230.87500000009715
37 35 206.37499999998727 194.97499999988577 234.95000000048094 208.24999999949577 241.10000000008841
38 36 207.8999999996613 206.82499999975335 241.0000000004402 220.44999999961655 242.87500000072288
39 37 209.54999999981555 208.4749999999076 248.42500000022483 221.8749999999978 253.1250000000826
40 38 221.45000000023902 220.49999999990177 253.02500000043437 223.6000000000764 259.1500000006734
41 39 222.97499999991305 221.97499999992942 259.2250000002423 236.6749999999207 265.1250000007083
42 40 224.65000000034524 225.24999999995998 265.2000000002772 238.22499999987267 271.27499999996036
43 41 236.50000000021282 235.5000000002292 272.4750000002132 239.94999999995125 283.1000000004595
44 42 238.12500000008913 237.3000000002321 278.500000000804 250.52500000019572 284.75000000061374
45 43 250.27499999965403 250.47500000027867 284.7500000002583 252.0750000001477 289.62500000024266
46 44 251.74999999968168 251.9999999999527 290.6000000007225 265.4250000003209 295.52500000035326
47 45 253.39999999983593 253.60000000046057 302.50000000023647 266.924999999717 307.1750000007258
48 46 266.67500000008476 265.57499999989886 307.12500000072396 268.47499999966897 309.12500000057736
49 47 268.2500000003147 267.1500000001288 313.20000000005166 280.7000000000677 319.20000000071997
50 48 270.1499999996104 279.45000000045184 320.65000000011423 282.1499999998174 320.80000000031833
51 49 280.3999999998796 281.99999999969805 331.12500000015643 285.07499999959475 331.5500000006894
52 50 282.05000000003383 283.75000000005457 332.625000000462 296.94999999974027 337.35000000059773
53 51 296.64999999955216 295.90000000052896 340.45000000014625 298.62500000017246 343.32500000063266
54 52 298.25000000006 297.39999999992506 343.22500000007494 310.52499999968643 349.6500000000113
55 53 299.82500000028995 300.34999999998035 352.4000000002161 312.0749999996384 355.5000000004755
56 54 311.7249999998039 310.7999999997446 361.2000000007356 313.89999999991926 367.27500000041874
57 55 313.2749999997559 312.3499999996966 368.80000000064683 325.57499999966024 368.94999999994144
58 56 314.9500000001881 325.9000000002743 373.4000000008564 327.10000000024377 379.4500000002616
59 57 326.7749999997777 327.37500000030195 379.27500000068903 328.94999999989307 385.4250000002965
60 58 328.35000000000764 339.57500000042273 386.7250000007516 342.07500000029324 391.3750000000535
61 59 330.2500000002128 341.02500000017244 397.35000000064247 343.6250000002452 397.525000000215
62 60 341.89999999967586 343.92499999967185 403.35000000004584 345.2750000003995 403.57500000017427
63 61 343.4749999999058 355.9250000002976 410.77500000073996 357.12500000026705 409.6250000001335
64 62 345.24999999963075 357.4249999996937 416.7500000007749 358.7249999998654 415.6250000004464
65 63 356.9749999999276 359.2249999996966 421.5000000008331 370.99999999991053 424.62500000046094
66 64 358.4750000002332 370.94999999999345 428.8000000001375 372.5499999998625 433.4999999999953
67 65 360.2000000003118 372.45000000029904 433.4750000002714 385.82500000011134 439.72500000008114
68 66 371.99999999962347 374.1750000003776 440.75000000020736 387.32499999950744 445.70000000011606
69 67 373.6499999997777 387.44999999971697 446.8500000007225 388.95000000029324 451.5250000003023
70 68 385.8999999995449 389.0500000002248 457.4999999999818 400.92499999973154 459.2000000001379
71 69 387.45000000040636 399.75000000004 466.4750000006279 402.3999999997592 469.4500000004071
72 70 390.2000000000571 401.72500000016953 470.8750000004329 405.45000000001676 475.45000000071997
73 71 402.124999999849 414.8000000000138 478.60000000082437 417.3250000001623 477.12500000024266
74 72 403.6250000001546 416.24999999976353 481.47500000004584 418.87500000011426 487.4500000004362
75 73 416.3000000000993 417.95000000047366 493.35000000019136 420.7999999996879 493.77500000072433
76 74 418.57499999992615 429.92499999991196 494.9250000004213 432.39999999950453
75 420.2749999997268 432.6249999999163 434.02500000029033
76 432.17500000015025 435.7500000000982 446.17499999985523
77 433.75000000038017 446.400000000267 447.7249999998072
78 435.52500000010514 447.85000000001673 461.0749999999804
79 447.22500000012406 460.0249999998596 462.550000000008
80 448.85000000000036 461.52500000016516 464.17499999988434
81 450.6500000000033 463.02500000047075 476.27499999980284
82 462.32499999974425 476.350000000366 477.7499999998305
83 463.89999999997417 477.87500000004 479.3250000000604
84 465.6500000003307 491.42499999970823
85 477.37499999971806 492.8500000000895
86 478.9000000003016 494.50000000024374
87 480.85000000015316

View File

@ -1,78 +1,90 @@
,1,0,2
0,9.050000000165145,11.230000000265527,10.09999999954196
1,10.54999999956124,18.6800000003281,19.250000000314667
2,18.15000000038197,20.23000000028008,29.599999999876655
3,19.675000000056006,29.330000000496902,31.275000000308847
4,28.749999999994888,38.1799999997533,40.17500000012112
5,37.67500000008511,39.82999999990755,47.72500000038597
6,39.44999999981008,48.955000000402315,49.699999999605986
7,49.62500000015496,50.52999999972274,59.82500000030447
8,58.775000000018174,59.45499999981296,68.80000000004108
9,60.32499999997015,68.48000000010546,70.45000000019533
10,69.39999999990903,71.35500000023643,80.77500000038887
11,71.05000000006328,79.17999999992065,82.44999999991157
12,79.8000000000269,89.35500000026553,89.89999999997414
13,88.82500000031939,91.02999999978823,98.92500000026664
14,90.47499999956415,100.02999999980278,100.524999999865
15,99.52500000013458,101.65499999967909,110.92499999998287
16,109.89999999997451,112.10500000035285,119.89999999971948
17,111.52499999985082,119.63000000033975,121.57500000015169
18,119.02499999955978,128.60500000007636,129.42500000011387
19,120.92499999976496,130.40500000007927,132.2250000003205
20,129.49999999960198,140.67999999971693,140.99999999965257
21,131.2999999996049,149.67999999973148,150.07499999959145
22,141.9499999997737,151.22999999968346,159.17499999980828
23,149.37499999955833,160.25499999997595,160.87499999960892
24,152.12500000011858,161.9050000001302,169.92500000017935
25,161.12500000013313,170.83000000022042,180.12499999989268
26,168.67500000039797,179.9050000001593,181.77500000004693
27,170.4749999994914,188.9300000004518,190.77500000006148
28,180.7249999997606,192.15499999992647,192.3500000002914
29,182.27499999971258,199.5799999997111,199.89999999964675
30,191.22500000008074,201.45500000054784,210.2249999998403
31,198.79999999971403,211.52999999978096,211.8499999997166
32,200.37499999994395,220.5800000003514,219.4250000002594
33,210.8249999997082,229.45499999988573,229.9000000003016
34,212.62499999971112,230.95500000019132,231.5250000001779
35,221.27500000038197,240.00499999985226,240.42499999999018
36,230.39999999996724,241.68000000028445,242.29999999991742
37,231.9999999995656,250.53000000045034,251.25000000028558
38,241.09999999978243,259.5800000001113,260.19999999974425
39,249.875000000024,261.1550000003412,269.1249999998345
40,251.47499999962236,270.20500000000214,270.67499999978645
41,260.4749999996369,279.17999999973875,279.57499999959873
42,269.52500000020734,280.8800000004489,281.1249999995507
43,272.55000000018697,291.20499999973293,290.35000000024775
44,280.22500000002253,300.25500000030337,291.97500000012406
45,281.80000000025245,301.85499999990174,300.4499999997588
46,292.1249999995365,309.6550000002175,302.32499999968604
47,293.7999999999687,319.8800000002088,311.17499999985193
48,302.5999999995787,321.53000000036303,321.72499999981846
49,311.6999999997955,330.32999999997304,330.6000000002623
50,319.3249999999847,332.00500000040523,332.1500000002143
51,323.7750000003456,342.3549999999672,334.10000000006585
52,331.22499999949866,351.35499999998177,343.1499999997268
53,338.9999999995365,353.0549999997824,350.550000000143
54,341.8999999999454,362.0050000001506,360.82499999978063
55,351.17500000028883,369.57999999978387,363.97500000024047
56,359.8250000000502,371.25500000021606,371.29999999982283
57,361.4999999995729,381.405000000283,380.2999999998374
58,370.57499999951176,383.0799999998057,381.9249999997137
59,379.59999999980425,392.1300000003761,392.4749999996802
60,383.0999999996078,393.8550000004547,399.8750000000964
61,390.3500000001753,401.3800000004416,401.4749999996948
62,399.2000000003412,410.30500000053183,410.54999999963366
63,409.5000000002568,420.6299999998159,412.00000000029286
64,410.9500000000065,422.2050000000458,420.97500000002947
65,421.49999999997306,431.3050000002626,422.6250000001837
66,423.1500000001273,441.7050000003805,431.55000000027394
67,432.02499999966165,443.4300000004591,433.1499999998723
68,441.04999999995414,450.6800000001171,442.20000000044274
69,442.72500000038633,452.3550000005493,451.1499999999014
70,450.3000000000196,462.7800000000356,460.2249999998403
71,459.4750000001608,470.5800000003514,461.8000000000702
72,462.3250000000138,472.1050000000254,472.0999999999858
73,471.2999999997504,481.25499999988864,479.82500000037726
74,480.2500000001186,491.4300000002335,481.3500000000513
75,481.80000000007055,500.47999999989446,490.52500000019245
76,490.82500000036305,,
,0,1
0,2.21500000002689,0.6200000005089019
1,12.515000000851984,13.89500000075774
2,14.09000000017241,15.445000000709719
3,15.66500000040233,17.020000000030144
4,18.79000000058423,32.02000000035756
5,32.16500000012584,33.52000000066315
6,33.690000000709375,35.02000000005925
7,36.59000000020879,37.970000000114545
8,51.59000000053621,53.070000000644235
9,53.16500000076613,54.57000000004033
10,54.715000000718106,56.11999999999231
11,57.61500000021752,59.34500000037648
12,72.7650000003936,73.09500000044923
13,75.56500000060024,75.54500000040267
14,77.3899999999716,77.21999999992536
15,92.36500000002107,92.42000000065732
16,93.84000000004872,95.02000000045942
17,96.6650000005333,96.64500000033573
18,111.69000000022916,98.47000000061658
19,113.29000000073702,113.19500000061512
20,114.81500000041106,114.69500000001122
21,117.76500000046636,116.29500000051908
22,132.81500000044016,119.67000000075191
23,134.31500000074575,134.170000000068
24,135.86500000069773,135.72000000001998
25,150.99000000059587,137.37000000017423
26,153.6650000003223,152.3950000007796
27,155.36500000012293,154.39500000027755
28,157.16500000012584,156.72000000066026
29,173.26500000085926,158.44500000073884
30,174.7900000005333,173.42000000078832
31,176.53999999998032,174.9700000007403
32,192.8400000002088,176.52000000069228
33,194.34000000051438,192.7950000006428
34,195.81500000054203,194.2950000000389
35,197.81500000004,195.87000000026882
36,212.79000000008946,197.5950000003474
37,215.31499999996723,212.44499999991666
38,217.01500000067736,215.22000000075485
39,232.09000000001961,216.94499999992394
40,234.84000000057986,233.32000000007673
41,236.4900000007341,234.84500000066026
42,238.29000000073702,236.39500000061224
43,252.99000000045763,251.5950000004347
44,254.5400000004096,254.34500000008546
45,256.26500000048816,256.07000000016404
46,271.290000000184,258.0200000000156
47,273.91500000026406,272.44500000031684
48,275.6650000006206,274.0449999999152
49,279.99000000050125,275.5950000007767
50,293.5650000004474,278.42000000035176
51,295.0150000001971,293.4200000006792
52,296.6900000006293,294.97000000063116
53,312.96500000057983,296.52000000058314
54,314.4900000002539,311.8449999999763
55,316.09000000076173,314.39500000013203
56,317.76500000028443,316.0700000005642
57,332.6650000004096,320.77000000006655
58,334.16500000071517,332.5950000005657
59,335.7900000005915,334.37000000029064
60,340.0400000005478,338.5200000000447
61,353.615000000494,353.4950000000942
62,355.11500000079957,355.0200000006777
63,356.9150000008025,356.59499999999815
64,373.09000000055073,359.77000000073593
65,374.61500000022477,373.14500000027755
66,376.1900000004547,374.6950000002295
67,391.61500000005014,376.5200000005104
68,394.16500000020585,392.59500000005636
69,395.8650000000065,394.1950000005642
70,397.41500000086796,395.76999999988465
71,412.3650000006395,400.39500000037214
72,415.1400000005682,413.6200000000651
73,416.79000000072244,415.195000000295
74,433.16499999996574,416.8200000001713
75,434.7150000008272,431.8700000001451
76,436.2650000007792,433.44500000037505
77,438.1150000004285,436.1950000000258
78,452.865000000705,437.9450000003823
79,454.34000000073263,452.7949999999516
80,456.0150000002553,454.2950000002572
81,472.3900000004081,455.79500000056277
82,473.86500000043577,458.84499999991084
83,475.3900000001098,473.8700000005162
84,478.31500000079666,475.4200000004682
85,493.2650000005682,476.9950000006981
86,494.8400000007981,492.12000000059624
87,496.4400000003965,494.72000000039833
88,499.44000000009817,496.4450000004769

1 0 1 2
2 0 11.230000000265527 2.21500000002689 9.050000000165145 0.6200000005089019 10.09999999954196
3 1 18.6800000003281 12.515000000851984 10.54999999956124 13.89500000075774 19.250000000314667
4 2 20.23000000028008 14.09000000017241 18.15000000038197 15.445000000709719 29.599999999876655
5 3 29.330000000496902 15.66500000040233 19.675000000056006 17.020000000030144 31.275000000308847
6 4 38.1799999997533 18.79000000058423 28.749999999994888 32.02000000035756 40.17500000012112
7 5 39.82999999990755 32.16500000012584 37.67500000008511 33.52000000066315 47.72500000038597
8 6 48.955000000402315 33.690000000709375 39.44999999981008 35.02000000005925 49.699999999605986
9 7 50.52999999972274 36.59000000020879 49.62500000015496 37.970000000114545 59.82500000030447
10 8 59.45499999981296 51.59000000053621 58.775000000018174 53.070000000644235 68.80000000004108
11 9 68.48000000010546 53.16500000076613 60.32499999997015 54.57000000004033 70.45000000019533
12 10 71.35500000023643 54.715000000718106 69.39999999990903 56.11999999999231 80.77500000038887
13 11 79.17999999992065 57.61500000021752 71.05000000006328 59.34500000037648 82.44999999991157
14 12 89.35500000026553 72.7650000003936 79.8000000000269 73.09500000044923 89.89999999997414
15 13 91.02999999978823 75.56500000060024 88.82500000031939 75.54500000040267 98.92500000026664
16 14 100.02999999980278 77.3899999999716 90.47499999956415 77.21999999992536 100.524999999865
17 15 101.65499999967909 92.36500000002107 99.52500000013458 92.42000000065732 110.92499999998287
18 16 112.10500000035285 93.84000000004872 109.89999999997451 95.02000000045942 119.89999999971948
19 17 119.63000000033975 96.6650000005333 111.52499999985082 96.64500000033573 121.57500000015169
20 18 128.60500000007636 111.69000000022916 119.02499999955978 98.47000000061658 129.42500000011387
21 19 130.40500000007927 113.29000000073702 120.92499999976496 113.19500000061512 132.2250000003205
22 20 140.67999999971693 114.81500000041106 129.49999999960198 114.69500000001122 140.99999999965257
23 21 149.67999999973148 117.76500000046636 131.2999999996049 116.29500000051908 150.07499999959145
24 22 151.22999999968346 132.81500000044016 141.9499999997737 119.67000000075191 159.17499999980828
25 23 160.25499999997595 134.31500000074575 149.37499999955833 134.170000000068 160.87499999960892
26 24 161.9050000001302 135.86500000069773 152.12500000011858 135.72000000001998 169.92500000017935
27 25 170.83000000022042 150.99000000059587 161.12500000013313 137.37000000017423 180.12499999989268
28 26 179.9050000001593 153.6650000003223 168.67500000039797 152.3950000007796 181.77500000004693
29 27 188.9300000004518 155.36500000012293 170.4749999994914 154.39500000027755 190.77500000006148
30 28 192.15499999992647 157.16500000012584 180.7249999997606 156.72000000066026 192.3500000002914
31 29 199.5799999997111 173.26500000085926 182.27499999971258 158.44500000073884 199.89999999964675
32 30 201.45500000054784 174.7900000005333 191.22500000008074 173.42000000078832 210.2249999998403
33 31 211.52999999978096 176.53999999998032 198.79999999971403 174.9700000007403 211.8499999997166
34 32 220.5800000003514 192.8400000002088 200.37499999994395 176.52000000069228 219.4250000002594
35 33 229.45499999988573 194.34000000051438 210.8249999997082 192.7950000006428 229.9000000003016
36 34 230.95500000019132 195.81500000054203 212.62499999971112 194.2950000000389 231.5250000001779
37 35 240.00499999985226 197.81500000004 221.27500000038197 195.87000000026882 240.42499999999018
38 36 241.68000000028445 212.79000000008946 230.39999999996724 197.5950000003474 242.29999999991742
39 37 250.53000000045034 215.31499999996723 231.9999999995656 212.44499999991666 251.25000000028558
40 38 259.5800000001113 217.01500000067736 241.09999999978243 215.22000000075485 260.19999999974425
41 39 261.1550000003412 232.09000000001961 249.875000000024 216.94499999992394 269.1249999998345
42 40 270.20500000000214 234.84000000057986 251.47499999962236 233.32000000007673 270.67499999978645
43 41 279.17999999973875 236.4900000007341 260.4749999996369 234.84500000066026 279.57499999959873
44 42 280.8800000004489 238.29000000073702 269.52500000020734 236.39500000061224 281.1249999995507
45 43 291.20499999973293 252.99000000045763 272.55000000018697 251.5950000004347 290.35000000024775
46 44 300.25500000030337 254.5400000004096 280.22500000002253 254.34500000008546 291.97500000012406
47 45 301.85499999990174 256.26500000048816 281.80000000025245 256.07000000016404 300.4499999997588
48 46 309.6550000002175 271.290000000184 292.1249999995365 258.0200000000156 302.32499999968604
49 47 319.8800000002088 273.91500000026406 293.7999999999687 272.44500000031684 311.17499999985193
50 48 321.53000000036303 275.6650000006206 302.5999999995787 274.0449999999152 321.72499999981846
51 49 330.32999999997304 279.99000000050125 311.6999999997955 275.5950000007767 330.6000000002623
52 50 332.00500000040523 293.5650000004474 319.3249999999847 278.42000000035176 332.1500000002143
53 51 342.3549999999672 295.0150000001971 323.7750000003456 293.4200000006792 334.10000000006585
54 52 351.35499999998177 296.6900000006293 331.22499999949866 294.97000000063116 343.1499999997268
55 53 353.0549999997824 312.96500000057983 338.9999999995365 296.52000000058314 350.550000000143
56 54 362.0050000001506 314.4900000002539 341.8999999999454 311.8449999999763 360.82499999978063
57 55 369.57999999978387 316.09000000076173 351.17500000028883 314.39500000013203 363.97500000024047
58 56 371.25500000021606 317.76500000028443 359.8250000000502 316.0700000005642 371.29999999982283
59 57 381.405000000283 332.6650000004096 361.4999999995729 320.77000000006655 380.2999999998374
60 58 383.0799999998057 334.16500000071517 370.57499999951176 332.5950000005657 381.9249999997137
61 59 392.1300000003761 335.7900000005915 379.59999999980425 334.37000000029064 392.4749999996802
62 60 393.8550000004547 340.0400000005478 383.0999999996078 338.5200000000447 399.8750000000964
63 61 401.3800000004416 353.615000000494 390.3500000001753 353.4950000000942 401.4749999996948
64 62 410.30500000053183 355.11500000079957 399.2000000003412 355.0200000006777 410.54999999963366
65 63 420.6299999998159 356.9150000008025 409.5000000002568 356.59499999999815 412.00000000029286
66 64 422.2050000000458 373.09000000055073 410.9500000000065 359.77000000073593 420.97500000002947
67 65 431.3050000002626 374.61500000022477 421.49999999997306 373.14500000027755 422.6250000001837
68 66 441.7050000003805 376.1900000004547 423.1500000001273 374.6950000002295 431.55000000027394
69 67 443.4300000004591 391.61500000005014 432.02499999966165 376.5200000005104 433.1499999998723
70 68 450.6800000001171 394.16500000020585 441.04999999995414 392.59500000005636 442.20000000044274
71 69 452.3550000005493 395.8650000000065 442.72500000038633 394.1950000005642 451.1499999999014
72 70 462.7800000000356 397.41500000086796 450.3000000000196 395.76999999988465 460.2249999998403
73 71 470.5800000003514 412.3650000006395 459.4750000001608 400.39500000037214 461.8000000000702
74 72 472.1050000000254 415.1400000005682 462.3250000000138 413.6200000000651 472.0999999999858
75 73 481.25499999988864 416.79000000072244 471.2999999997504 415.195000000295 479.82500000037726
76 74 491.4300000002335 433.16499999996574 480.2500000001186 416.8200000001713 481.3500000000513
77 75 500.47999999989446 434.7150000008272 481.80000000007055 431.8700000001451 490.52500000019245
78 76 436.2650000007792 490.82500000036305 433.44500000037505
79 77 438.1150000004285 436.1950000000258
80 78 452.865000000705 437.9450000003823
81 79 454.34000000073263 452.7949999999516
82 80 456.0150000002553 454.2950000002572
83 81 472.3900000004081 455.79500000056277
84 82 473.86500000043577 458.84499999991084
85 83 475.3900000001098 473.8700000005162
86 84 478.31500000079666 475.4200000004682
87 85 493.2650000005682 476.9950000006981
88 86 494.8400000007981 492.12000000059624
89 87 496.4400000003965 494.72000000039833
90 88 499.44000000009817 496.4450000004769

View File

@ -520,7 +520,6 @@ Theoretical work shows that leaky-integrate-and-fire (LIF) model neurons show a
\subsection*{Low-CV P-units exhibit nonlinear interactions} %frequency combinations withappearing when the input frequencies are related to \fbase{} are
Second-order susceptibility is expected to be especially pronounced for low-CV cells \cite{Voronenko2017}. P-units fire action potentials probabilistically phase-locked to the self-generated EOD. Skipping of EOD cycles leads to the characteristic multimodal ISI distribution with maxima at integer multiples of the EOD period (\subfigrefb{fig:cells_suscept}{A}). In this example the ISI distribution has a CV of 0.2 which can be considered low among P-units\cite{Hladnik2023}. Spectral analysis of the baseline activity shows two major peaks, the first is located at the baseline firing rate (\fbase), the second is located at the discharge frequency of the electric organ (\feod{}) and is flanked by two smaller peaks at $\feod \pm \fbase{}$ (\subfigref{fig:cells_suscept}{B}). High-CV P-units do not exhibit pronounced nonlinearities (for more details see supplementary information: \nameref*{S1:highcvpunit} )
%
\begin{figure*}[!ht]
\includegraphics[width=\columnwidth]{cells_suscept}
@ -571,10 +570,11 @@ We calculated the second-order susceptibility surfaces at \fsum{} by extracting
%section \ref{intrinsicsplit_methods}).\figitem{A} Absolute value of the second-order susceptibility of an electrophysiologically recorded P-unit. RAM stimulus realizations $N=11$. Diagonal bands appear when the sum of the frequencies \fsum{} or the difference \fdiff{} is equal to \fbase{}. \figitem{B} The diagonals, that were present in \panel{A}, are complemented by vertical and horizontal lines when \fone{} or \ftwo{} are equal to \fbase{}. Note that the different scale of the second-order susceptibility is associated with the higher signal-to-ratio in case of 1 million repeats in \panel{B}.
The second-order susceptibility can also be calculated for the full matrix including negative frequency components of the respective spectra in \Eqnsref{eq:crosshigh} and (\ref{eq:susceptibility}). The resulting \suscept{} matrix is symmetric with respect to the origin and shows \suscept{} at \fsum{} in the upper-right and lower-left quadrants and \suscept{} for the differences \fdiff{} in the lower-right and upper-left quadrants \cite{Voronenko2017} (\figref{fig:model_full}). The vertical and horizontal lines at \foneb{} and \ftwob{} are very pronounced in the upper-right quadrant of \figref{fig:model_full} for the nonlinearity at \fsum{} and extend into the upper-left quadrant (representing \fdiff) fading out towards more negative $f_1$ frequencies. \suscept{} values at \fsum{} match the \fsum{} peak seen in \figref{fig:motivation}.
The second-order susceptibility can also be calculated for the full matrix including negative frequency components of the respective spectra in \Eqnsref{eq:crosshigh} and (\ref{eq:susceptibility}). The resulting \suscept{} matrix is symmetric with respect to the origin and shows \suscept{} at \fsum{} in the upper-right and lower-left quadrants and \suscept{} for the differences \fdiff{} in the lower-right and upper-left quadrants \cite{Voronenko2017} (\subfigrefb{fig:model_full}{A}). The vertical and horizontal lines at \foneb{} and \ftwob{} are very pronounced in the upper-right quadrant of \figref{fig:model_full} for the nonlinearity at \fsum{} and extend into the upper-left quadrant (representing \fdiff) fading out towards more negative $f_1$ frequencies. \suscept{} values at \fsum{} are present in the model with pure sine wave stimulation (\subfigrefb{fig:model_full}{B}, left) and match the \fsum{} peak seen in \figref{fig:motivation} that is also shown in (\subfigrefb{fig:model_full}{B}, right).
The smaller \fdiff{} power spectral peak observed during pure sine-wave stimulation (\subfigrefb{fig:motivation}{D}) can be explained by the fading out horizontal line in the upper-left quadrant (\figrefb{fig:model_full}, \cite{Schlungbaum2023}). Even though the second-order susceptibilities here were estimated form data and models with an modulated (EOD) carrier (\figrefb{fig:model_full}) they are in good accordance with the second-order susceptibilities found in LIF models without a carrier\cite{Voronenko2017, Schlungbaum2023}.
The smaller \fdiff{} power spectral peak observed during pure sine-wave stimulation (\subfigrefb{fig:motivation}{D}, \subfigrefb{fig:model_full}{B}) can be explained by the fading out horizontal line in the upper-left quadrant (\figrefb{fig:model_full}, \cite{Schlungbaum2023}). Even though the second-order susceptibilities here were estimated form data and models with an modulated (EOD) carrier (\figrefb{fig:model_full}) they are in good accordance with the second-order susceptibilities found in LIF models without a carrier\cite{Voronenko2017, Schlungbaum2023}.
If two frequencies not part of the triangular structure are chosen with pure sine wave stimulation no nonlinearity peaks appear (\subfigrefb{fig:model_full}{C}). \notesr{Das sind toy Beispiele, die Powerspectren, da arbeite ich noch dran. Und auch an den Einheiten.}
\begin{figure*}[!ht]
\includegraphics[width=\columnwidth]{data_overview_mod}

View File

@ -520,7 +520,6 @@ Theoretical work shows that leaky-integrate-and-fire (LIF) model neurons show a
\subsection*{Low-CV P-units exhibit nonlinear interactions} %frequency combinations withappearing when the input frequencies are related to \fbase{} are
Second-order susceptibility is expected to be especially pronounced for low-CV cells \cite{Voronenko2017}. P-units fire action potentials probabilistically phase-locked to the self-generated EOD. Skipping of EOD cycles leads to the characteristic multimodal ISI distribution with maxima at integer multiples of the EOD period (\subfigrefb{fig:cells_suscept}{A}). In this example the ISI distribution has a CV of 0.2 which can be considered low among P-units\cite{Hladnik2023}. Spectral analysis of the baseline activity shows two major peaks, the first is located at the baseline firing rate (\fbase), the second is located at the discharge frequency of the electric organ (\feod{}) and is flanked by two smaller peaks at $\feod \pm \fbase{}$ (\subfigref{fig:cells_suscept}{B}). High-CV P-units do not exhibit pronounced nonlinearities (for more details see supplementary information: \nameref*{S1:highcvpunit} )
%
\begin{figure*}[!ht]
\includegraphics[width=\columnwidth]{cells_suscept}
@ -571,10 +570,11 @@ We calculated the second-order susceptibility surfaces at \fsum{} by extracting
%section \ref{intrinsicsplit_methods}).\figitem{A} Absolute value of the second-order susceptibility of an electrophysiologically recorded P-unit. RAM stimulus realizations $N=11$. Diagonal bands appear when the sum of the frequencies \fsum{} or the difference \fdiff{} is equal to \fbase{}. \figitem{B} The diagonals, that were present in \panel{A}, are complemented by vertical and horizontal lines when \fone{} or \ftwo{} are equal to \fbase{}. Note that the different scale of the second-order susceptibility is associated with the higher signal-to-ratio in case of 1 million repeats in \panel{B}.
The second-order susceptibility can also be calculated for the full matrix including negative frequency components of the respective spectra in \Eqnsref{eq:crosshigh} and (\ref{eq:susceptibility}). The resulting \suscept{} matrix is symmetric with respect to the origin and shows \suscept{} at \fsum{} in the upper-right and lower-left quadrants and \suscept{} for the differences \fdiff{} in the lower-right and upper-left quadrants \cite{Voronenko2017} (\figref{fig:model_full}). The vertical and horizontal lines at \foneb{} and \ftwob{} are very pronounced in the upper-right quadrant of \figref{fig:model_full} for the nonlinearity at \fsum{} and extend into the upper-left quadrant (representing \fdiff) fading out towards more negative $f_1$ frequencies. \suscept{} values at \fsum{} match the \fsum{} peak seen in \figref{fig:motivation}.
The second-order susceptibility can also be calculated for the full matrix including negative frequency components of the respective spectra in \Eqnsref{eq:crosshigh} and (\ref{eq:susceptibility}). The resulting \suscept{} matrix is symmetric with respect to the origin and shows \suscept{} at \fsum{} in the upper-right and lower-left quadrants and \suscept{} for the differences \fdiff{} in the lower-right and upper-left quadrants \cite{Voronenko2017} (\subfigrefb{fig:model_full}{A}). The vertical and horizontal lines at \foneb{} and \ftwob{} are very pronounced in the upper-right quadrant of \figref{fig:model_full} for the nonlinearity at \fsum{} and extend into the upper-left quadrant (representing \fdiff) fading out towards more negative $f_1$ frequencies. \suscept{} values at \fsum{} are present in the model with pure sine wave stimulation (\subfigrefb{fig:model_full}{B}, left) and match the \fsum{} peak seen in \figref{fig:motivation} that is also shown in (\subfigrefb{fig:model_full}{B}, right).
The smaller \fdiff{} power spectral peak observed during pure sine-wave stimulation (\subfigrefb{fig:motivation}{D}) can be explained by the fading out horizontal line in the upper-left quadrant (\figrefb{fig:model_full}, \cite{Schlungbaum2023}). Even though the second-order susceptibilities here were estimated form data and models with an modulated (EOD) carrier (\figrefb{fig:model_full}) they are in good accordance with the second-order susceptibilities found in LIF models without a carrier\cite{Voronenko2017, Schlungbaum2023}.
The smaller \fdiff{} power spectral peak observed during pure sine-wave stimulation (\subfigrefb{fig:motivation}{D}, \subfigrefb{fig:model_full}{B}) can be explained by the fading out horizontal line in the upper-left quadrant (\figrefb{fig:model_full}, \cite{Schlungbaum2023}). Even though the second-order susceptibilities here were estimated form data and models with an modulated (EOD) carrier (\figrefb{fig:model_full}) they are in good accordance with the second-order susceptibilities found in LIF models without a carrier\cite{Voronenko2017, Schlungbaum2023}.
If two frequencies not part of the triangular structure are chosen with pure sine wave stimulation no nonlinearity peaks appear (\subfigrefb{fig:model_full}{C}). \notesr{Das sind toy Beispiele, die Powerspectren, da arbeite ich noch dran. Und auch an den Einheiten.}
\begin{figure*}[!ht]
\includegraphics[width=\columnwidth]{data_overview_mod}