worked on discussion

This commit is contained in:
Jan Benda 2024-11-05 11:28:56 +01:00
parent 9fce766b15
commit 8290aee03a
2 changed files with 60 additions and 49 deletions

View File

@ -7030,3 +7030,12 @@ microelectrode recordings from visual cortex and functional implications.},
volume={209},
pages={361-372},
}
@Article{Vilela2009,
title={Are the input parameters of white noise driven integrate and fire neurons uniquely determined by rate and CV?},
author={Rafael D. Vilela and Benjamin Lindner},
year={2009},
journal={J Theor Biol},
volume={257},
pages={90-99},
}

View File

@ -390,8 +390,11 @@
%\paragraph{Conflict of interest:}The authors declare no conflict of interest.
%\paragraph{Author Contributions:} All authors designed the study and discussed the results. AB performed the data analyses and modeling, AB and JG drafted the paper, all authors discussed and revised the manuscript.
\paragraph{Keywords:} $|$ $|$ heterogeneity $|$ electric fish $|$ mutual information
\begin{keywords}
\item heterogeneity
\item electric fish
\item mutual information
\end{keywords}
% Please keep the abstract below 300 words
\section{Abstract}
@ -404,6 +407,9 @@ Neuronal processing is inherently nonlinear --- spiking thresholds or rectificat
%Weakly electric fish use their self-generated electric field to detect a wide range of behaviorally relevant stimuli. Intriguingly, they show detection performances of stimuli that are (i) extremely weak and (ii) occur in the background of strong foreground signals, reminiscent of what is often described as the cocktail party problem. Such performances are achieved by boosting the signal detection through nonlinear mechanisms. We here analyze nonlinear encoding in two different populations of primary electrosensory afferents of the weakly electric fish. We derive the rules under which nonlinear effects can be observed in both electrosensory subsystems. In a combined experimental and modeling approach we generalize the approach of nonlinear susceptibility to systems that respond to amplitude modulations of a carrier signal.
\notejb{Check use of $f_2$ versus $\Delta f_2$ in the results section, in particular in fig 4 and following}
\section{Introduction}
\begin{figure*}[t]
@ -411,11 +417,11 @@ Neuronal processing is inherently nonlinear --- spiking thresholds or rectificat
\notejg{units on the figure?}
\caption{\label{fig:lifresponse} First- (linear) and second-order response functions of the leaky integrate-and-fire model. \figitem{A} Magnitude of the first-order response function $|\chi_1(f_1)|$, also known as ``gain'' quantifies the response amplitude relative to the stimulus amplitude, both measured at the stimulus frequency. \figitem{B} Magnitude of the second-order response function $|\chi_2(f_1, f_2)|$ quantifies the response at the sum of two stimulus frequencies. For linear systems, the second-order response function is zero, because linear systems do not create new frequencies and thus there is no response at the summed frequencies. The plots show the analytical solutions from \citep{Lindner2001} and \citep{Voronenko2017} with $\mu = 1.1$ and $D = 0.001$.}
\end{figure*}
We like to think about signal encoding in terms of linear relations with unique mapping of a given input value to a certain output of the system under consideration. Indeed, such linear methods, for example the transfer function or first-oder susceptibility shown in figure~\ref{fig:lifresponse}, have been widely and successfully applied to describe and predict neuronal responses and are an invaluable tool to characterize nervous systems \citep{Borst1999}. Nonlinear mechanisms, on the other hand, are key on different levels of neural processing. Deciding for one action over another is a nonlinear process on the systemic level. On the cellular level, spiking neurons are inherently nonlinear. Whether an action potential is elicited depends on the membrane potential to exceed a threshold \citep{Hodgkin1952, Koch1995}. Because of such nonlinearities, understanding and predicting neuronal responses to sensory stimuli is in general a difficult task.
We like to think about signal encoding in terms of linear relations with unique mapping of a given input value to a certain output of the system under consideration. Indeed, such linear methods, for example the transfer function or first-oder susceptibility shown in figure~\ref{fig:lifresponse}, have been widely and successfully applied to describe and predict neuronal responses and are an invaluable tool to characterize neural systems \citep{Borst1999}. Nonlinear mechanisms, on the other hand, are key on different levels of neural processing. Deciding for one action over another is a nonlinear process on the systemic level. On the cellular level, spiking neurons are inherently nonlinear. Whether an action potential is elicited depends on the membrane potential to exceed a threshold \citep{Hodgkin1952, Koch1995}. Because of such nonlinearities, understanding and predicting neuronal responses to sensory stimuli is in general a difficult task.
The transfer function used to describe linear properties of a system is the first-order term of a Volterra series. Higher-order terms successively approximate nonlinear features of a system \citep{Rieke1999}. Second-order kernels have been used in the time domain to predict visual responses in catfish \citep{Marmarelis1972}. In the frequency domain, second-order kernels are known as second-order response functions or susceptibilities. Nonlinear interactions of two stimulus frequencies generate peaks in the response spectrum at the sum and the difference of the two. Including higher-order terms of the Volterra series, the nonlinear nature of spider mechanoreceptors \citep{French2001}, mammalian visual systems \citep{Victor1977, Schanze1997}, locking in chinchilla auditory nerve fibers \citep{Temchin2005}, and bursting responses in paddlefish \citep{Neiman2011} have been demonstrated.
Noise in nonlinear systems, however, linearizes the system's response properties \citep{Yu1989, Chialvo1997}. Alternatively, in the limit to small stimuli, nonlinear systems can be well described by linear response theory \citep{Roddey2000, Doiron2004, Rocha2007, Sharafi2013}. With increasing stimulus amplitude, the contribution of the second-order kernel of the Volterra series becomes more relevant. For these weakly nonlinear responses of leaky-integrate-and-fire (LIF) model neurons, an analytical expression for the second-order susceptibility has been derived \citep{Lindner2001, Voronenko2017}. In the suprathreshold regime, where the LIF generates a baseline firing rate in the absence of an external stimulus, the linear response function has a peak at the baseline firing rate and its harmonics (\subfigrefb{fig:lifresponse}{A}) and the second-order susceptibility shows very distinct ridges of elevated nonlinear responses, exactly where two stimulus frequencies equal or add up to the neuron's baseline firing rate (\subfigrefb{fig:lifresponse}{B}). In experimental data, such structures in the second-order susceptibility have not been reported yet.
Noise in nonlinear systems, however, linearizes the system's response properties \citep{Yu1989, Chialvo1997}. Vice versa, in the limit to small stimuli, nonlinear systems can be well described by linear response theory \citep{Roddey2000, Doiron2004, Rocha2007, Sharafi2013}. With increasing stimulus amplitude, the contribution of the second-order kernel of the Volterra series becomes more relevant. For these weakly nonlinear responses of leaky-integrate-and-fire (LIF) model neurons, an analytical expression for the second-order susceptibility has been derived \citep{Lindner2001, Voronenko2017}. In the suprathreshold regime, where the LIF generates a baseline firing rate in the absence of an external stimulus, the linear response function has a peak at the baseline firing rate and its harmonics (\subfigrefb{fig:lifresponse}{A}) and the second-order susceptibility shows very distinct ridges of elevated nonlinear responses, exactly where two stimulus frequencies equal or add up to the neuron's baseline firing rate (\subfigrefb{fig:lifresponse}{B}). In experimental data, such structures in the second-order susceptibility have not been reported yet.
Here we search for such weakly nonlinear responses in electroreceptors of the two electrosensory systems of the wave-type electric fish \textit{Apteronotus leptorhynchus}, i.e. the tuberous (active) and the ampullary (passive) electrosensory system. The p-type electroreceptors of the active system (P-units) are driven by the fish's high-frequency, quasi-sinusoidal electric organ discharges (EOD) and encode disturbances of it \citep{Bastian1981a}. The electroreceptors of the passive system are tuned to lower-frequency exogeneous electric fields such as caused by muscle activity of prey \citep{Kalmijn1974}. As different animals have different EOD-frequencies, being exposed to stimuli of multiple distinct frequencies is part of the animal's everyday life \citep{Benda2020,Henninger2020} and weakly non-linear interactions may occur in the electrosensory periphery. In communication contexts \citep{Walz2014, Henninger2018} the EODs of interacting fish superimpose and lead to periodic amplitude modulations (AMs or beats) of the receiver's EOD. Non-linear mechanisms in P-units, enable encoding of AMs in their time-dependent firing rates \citep{Bastian1981a, Walz2014, Middleton2006, Barayeu2023}. When multiple animals interact, the EOD interferences induce second-order amplitude modulations referred to as envelopes \citep{Yu2005, Fotowat2013, Stamper2012Envelope} and saturation non-linearities allow also for the encoding of these in the electrosensory periphery \citep{Savard2011}. Field observations have shown that courting males were able to react to the extremely weak signals of distant intruding males despite the strong foreground EOD of the nearby female \citep{Henninger2018}. Weakly nonlinear interactions at particular combinations of signals can be of immediate relevance in such settings as they could boost detectability of the faint signals \citep{Schlungbaum2023}.
@ -435,7 +441,7 @@ Here we search for such weakly nonlinear responses in electroreceptors of the tw
Theoretical work on leaky integrate-and-fire and conductance-based models suggests a distinct structure of the second-order response function for neurons with low levels of intrinsic noise driven in the supra-threshold regime with low stimulus amplitudes (\figrefb{fig:lifresponse}, \citealp{Voronenko2017}). Here, we explored a large set of recordings of P-units and ampullary cells of the active and passive electrosensory systems of the brown ghost knifefish \textit{Apteronotus leptorhynchus} to search for such weakly nonlinear responses in real neurons. Our work is supported by simulations of LIF-based models of P-unit spiking. We start with demonstrating the basic concepts using example P-units and models.
\subsection{Nonlinear responses in P-units stimulated with two beat frequencies}\notejg{stimulated with two beats?}
Without external stimulation, a P-unit is driven by the fish's own EOD alone (with EOD frequency \feod{}) and spontaneously fires action potentials at the baseline rate \fbase{}. Accordingly, the power spectrum of the baseline activity has a peak at \fbase{} (\subfigrefb{fig:motivation}{A}). Superposition of the receiver's EOD with an EOD of another fish with frequency $f_1$ results in a beat, a periodic amplitude modulation of the receiver's EOD. The frequency of the beat is given by the difference frequency $\Delta f_1 = f_1 - \feod$ between the two fish \notejg{(only valid for $f_1 < f_{EOD}/2)$}. P-units encode this beat in their firing rate \citep{Bastian1981a, Barayeu2023} and consequently, the power spectrum of the response has a peak at the beat frequency (\subfigrefb{fig:motivation}{B}). A second peak at the first harmonic of the beat frequency is indicative of a nonlinear process that here is easily identified by the clipping of the P-unit's firing rate at zero. Pairing the fish with another fish with a higher beat frequency $\Delta f_2 = f_2 - \feod > \Delta f_1$ results in a weaker response with a single peak in the response power spectrum, suggesting a linear response (\subfigrefb{fig:motivation}{C}). The weaker response to this beat can be explained by the beat tuning of the cell \citep{Walz2014}. Note that $\Delta f_2$ has been deliberately chosen to match the recorded P-unit's baseline firing rate.
Without external stimulation, a P-unit is driven by the fish's own EOD alone (with EOD frequency \feod{}) and spontaneously fires action potentials at the baseline rate \fbase{}. Accordingly, the power spectrum of the baseline activity has a peak at \fbase{} (\subfigrefb{fig:motivation}{A}). Superposition of the receiver's EOD with an EOD of another fish with frequency $f_1$ results in a beat, a periodic amplitude modulation of the receiver's EOD. The frequency of the beat is given by the difference frequency $\Delta f_1 = f_1 - \feod$ between the two fish \notejg{(only valid for $f_1 < f_{EOD}/2)$}. P-units encode this beat in their firing rate \citep{Bastian1981a, Barayeu2023} and consequently the power spectrum of the response has a peak at the beat frequency (\subfigrefb{fig:motivation}{B}). A second peak at the first harmonic of the beat frequency is indicative of a nonlinear process that here is easily identified by the clipping of the P-unit's firing rate at zero. Pairing the fish with another fish at a higher beat frequency $\Delta f_2 = f_2 - \feod > \Delta f_1$ results in a weaker response with a single peak in the response power spectrum, suggesting a linear response (\subfigrefb{fig:motivation}{C}). The weaker response to this beat can be explained by the beat tuning of the cell \citep{Walz2014}. Note that $\Delta f_2$ has been deliberately chosen to match the recorded P-unit's baseline firing rate.
When stimulating with both foreign signals simultaneously, additional peaks appear in the response power spectrum at the sum \bsum{} and the difference frequency \bdiff{} (\subfigrefb{fig:motivation}{D}). Thus, the cellular response is not equal to the sum of the responses to the two beats presented separately. These peaks at the sum and the difference of the two stimulus frequencies are a hallmark of nonlinear interactions that by definition are absent in linear systems.
@ -448,11 +454,11 @@ When stimulating with both foreign signals simultaneously, additional peaks appe
The stimuli used in \figref{fig:motivation} had the same not-small amplitude. Whether this stimulus conditions falls into the weakly nonlinear regime as in \citet{Voronenko2017} is not clear. In order to illustrate how the responses to two beat frequencies develop over a range of amplitudes we use a stochastic leaky-integrate-and-fire (LIF) based P-unit model fitted to a specific electrophysiologically measured cell \citep{Barayeu2023}.
At very low stimulus contrasts (less than approximately 0.5\,\% relative to the receiver's EOD amplitude) the spectrum has small peaks only at the beat frequencies (note, $|\Delta f_2 = f_{base}|$, \subfigref{fig:nonlin_regime}{A}, green and purple). The amplitudes of these peaks initially increase linearly with stimulus amplitude (\subfigref{fig:nonlin_regime}{E}), an indication of the linear response at lowest stimulus amplitudes.
At very low stimulus contrasts (less than approximately 0.5\,\% relative to the receiver's EOD amplitude) the spectrum has small peaks only at the beat frequencies (note, $\Delta f_2 = f_{base}$, \subfigref{fig:nonlin_regime}{A}, green and purple). The amplitudes of these peaks initially increase linearly with stimulus amplitude (\subfigref{fig:nonlin_regime}{E}), an indication of the linear response at lowest stimulus amplitudes.
The linear regime is followed by the weakly non-linear regime. In addition to peaks at the stimulus frequencies, peaks at the sum and the difference of the stimulus frequencies appear in the response spectrum (\subfigref{fig:nonlin_regime}{B}, orange and red). The amplitudes of these two peaks initially increase quadratically with stimulus amplitude (\subfigref{fig:nonlin_regime}{E}).
At higher stimulus amplitudes (\subfigref{fig:nonlin_regime}{C \& D}) additional peaks appear in the response spectrum. The linear response and the weakly-nonlinear response start to deviate from their linear and quadratic dependence on amplitude (\subfigref{fig:nonlin_regime}{E}). The responses may even decrease for intermediate stimulus contrasts (\subfigref{fig:nonlin_regime}{D}). At high stimulus contrasts, additional nonlinearities, in particular clipping of the firing rate, in the system shape the responses.
At higher stimulus amplitudes (\subfigref{fig:nonlin_regime}{C \& D}) additional peaks appear in the response spectrum. The linear response and the weakly-nonlinear response start to deviate from their linear and quadratic dependence on amplitude (\subfigref{fig:nonlin_regime}{E}). The responses may even decrease for intermediate stimulus contrasts (\subfigref{fig:nonlin_regime}{D}). At high stimulus contrasts, additional nonlinearities in the system, in particular clipping of the firing rate, shape the responses.
For this example, we have chosen two specific stimulus (beat) frequencies. One of these matching the P-unit's baseline firing rate. In the following, however, we are interested in how the non-linear responses depend on different combinations of stimulus frequencies in the weakly nonlinear regime.
@ -467,7 +473,7 @@ Weakly nonlinear responses are expected in cells with sufficiently low intrinsic
\caption{\label{fig:cells_suscept} Linear and nonlinear stimulus encoding in a low-CV P-unit (cell identifier ``2010-06-21-ai"). \figitem{A} Interspike interval (ISI) distribution of the cell's baseline activity, i.e. the cell is driven only by the unperturbed own electric field. The low CV of the ISIs indicates quite regular firing. \figitem{B} Power spectral density of the baseline response with peaks at the cell's baseline firing rate \fbase{} and the fish's EOD frequency \feod{}. \figitem{C} Random amplitude modulation stimulus (top, with cutoff frequency of 300\,Hz) and evoked responses (spike raster, bottom) of the same P-unit. The stimulus contrast (right) measures the strength of the AM. \figitem{D} Gain of the transfer function (first-order susceptibility), \eqnref{linearencoding_methods}, computed from the responses to 10\,\% (light purple) and 20\,\% contrast (dark purple) RAM stimulation of 10\,s duration. \figitem{E, F} Absolute value of the second-order susceptibility, \eqnref{eq:susceptibility}, for both the low and high stimulus contrast. Pink triangles mark vertical, horizontal, and diagonal lines where \fone, \ftwo{} or \fsum{} are equal to \fbase{}. \figitem{G} Second-order susceptibilities projected onto the diagonal (means of all anti-diagonals of the matrices shown in \panel{E, F}). Dots mark \fbase{}, horizontal dashed lines mark medians of the projected susceptibilities.}
\end{figure*}
Noise stimuli, here random amplitude modulations (RAM) of the EOD (\subfigref{fig:cells_suscept}{C}, top trace, red line), are commonly used to characterize stimulus-driven responses of sensory neurons using transfer functions (first-order susceptibility), spike-triggered averages, or stimulus-response coherences. Here, we additionally estimate the second-order susceptibility to quantify nonlinear encoding. P-unit spikes align more or less clearly with fluctuations in the RAM stimulus. A higher stimulus intensity, here a higher contrast of the RAM relative to the EOD amplitude (see methods), entrains the P-unit response more clearly (light and dark purple for low and high contrast stimuli, \subfigrefb{fig:cells_suscept}{C}). Linear encoding, quantified by the transfer function, \eqnref{linearencoding_methods}, is similar for the two RAM contrasts in this low-CV P-unit (\subfigrefb{fig:cells_suscept}{D}), as expected for a linear system. The first-order susceptibility is low for low frequencies, peaks in the range below 100\,Hz and then falls off again \notejb{Cite Moe paper and Benda2005?}.
Noise stimuli, here random amplitude modulations (RAM) of the EOD (\subfigref{fig:cells_suscept}{C}, top trace, red line), are commonly used to characterize stimulus-driven responses of sensory neurons using transfer functions (first-order susceptibility), spike-triggered averages, or stimulus-response coherences. Here, we additionally estimate the second-order susceptibility to quantify nonlinear encoding. P-unit spikes align more or less clearly with fluctuations in the RAM stimulus. A higher stimulus intensity, here a higher contrast of the RAM relative to the EOD amplitude (see methods), entrains the P-unit response more clearly (light and dark purple for low and high contrast stimuli, \subfigrefb{fig:cells_suscept}{C}). Linear encoding, quantified by the transfer function, \eqnref{linearencoding_methods}, is similar for the two RAM contrasts in this low-CV P-unit (\subfigrefb{fig:cells_suscept}{D}), as expected for a linear system. The first-order susceptibility is low for low frequencies, peaks in the range below 100\,Hz and then falls off again \citep{Benda2005}.
The second-order susceptibility, \eqnref{eq:susceptibility}, quantifies the amplitude and phase of the stimulus-evoked response at the sum \fsum{} for each combination of two stimulus frequencies \fone{} and \ftwo{}. Large values of the second-order susceptibility indicate stimulus-evoked peaks in the response spectrum at the summed frequency that cannot be explained by linear response theory. Similar to the first-order susceptibility, the second-order susceptibility can be estimated directly from the response evoked by a RAM stimulus that stimulates the neuron with a whole range of frequencies simultaneously (\subfigsref{fig:cells_suscept}{E, F}). For a LIF-model driven in the supra-threshold regime, theory predicts nonlinear interactions between the two stimulus frequencies, when the two frequencies \fone{} and \ftwo{} or their sum \fsum{} exactly match the neuron's baseline firing rate \fbase{} \citep{Voronenko2017}. Only then, additional stimulus-evoked peaks appear in the spectrum of the spiking response that would show up in the second-order susceptibility as a horizontal, a vertical, and an anti-diagonal line (\subfigrefb{fig:lifresponse}{B}, pink triangle in \subfigsref{fig:cells_suscept}{E, F}).
@ -521,89 +527,85 @@ Is it possible to predict nonlinear responses in a three-fish setting based on s
\begin{figure*}[tp]
\includegraphics[width=\columnwidth]{data_overview_mod.pdf}
\caption{\label{fig:data_overview} Nonlinear responses in P-units and ampullary cells. The second-order susceptibility is condensed into the peakedness of the nonlinearity, \nli{} \eqnref{eq:nli_equation}, that relates the amplitude of the projected susceptibility at a cell's baseline firing rate to its median (see \subfigrefb{fig:cells_suscept}{G}). Each of the recorded neurons contributes at maximum with two stimulus contrasts. Black squares and circles highlight recordings conducted in a single cell. Squares in \panel{A, C, E} correspond to the cell in \figrefb{fig:cells_suscept} and circles to the cell in \figrefb{fig:cells_suscept_high_CV}. Squares in \panel{B, D, F} correspond to the cell in \figrefb{fig:ampullary}. \figitem{A, B} There is a negative correlation between the CV during baseline and \nli. \figitem{C, D} There is a negative correlation between the CV during stimulation and \nli. \figitem{E, F} \nli{} is plotted against the response modulation, (see methods), an indicator of the subjective stimulus strength for a cell. There is a negative correlation between response modulation and \nli. Restricting the analysis to the weakest stimulus that was presented to each unique neuron, does not change the results. The number of unique neurons is 221 for P-units and 45 for ampullary cells.
% The two example P-units shown before are highlighted with dark markers in \subfigrefb{fig:data_overview}{A, C, E} (squares -- \figrefb{fig:cells_suscept}, circles -- \figrefb{fig:cells_suscept_high_CV}).
% Several of the recorded neurons contribute with two samples to the population analysis as their responses have been recorded to two different contrasts of the same RAM stimulus. Higher stimulus contrasts lead to a stronger drive and thus stronger response modulations (see color code bar in \subfigref{fig:data_overview}{A}, see methods).
\caption{\label{fig:dataoverview} Nonlinear responses in P-units and ampullary cells. The second-order susceptibility is condensed into the peakedness of the nonlinearity, \nli{} \eqnref{eq:nli_equation}, that relates the amplitude of the projected susceptibility at a cell's baseline firing rate to its median (see \subfigrefb{fig:cells_suscept}{G}). Each of the recorded neurons contributes at maximum with two stimulus contrasts. Black squares and circles highlight recordings conducted in a single cell. Squares in \panel{A, C, E} correspond to the cell in \figrefb{fig:cells_suscept} and circles to the cell in \figrefb{fig:cells_suscept_high_CV}. Squares in \panel{B, D, F} correspond to the cell in \figrefb{fig:ampullary}. \figitem{A, B} There is a negative correlation between the CV during baseline and \nli. \figitem{C, D} There is a negative correlation between the CV during stimulation and \nli. \figitem{E, F} \nli{} is plotted against the response modulation, (see methods), an indicator of the subjective stimulus strength for a cell. There is a negative correlation between response modulation and \nli. Restricting the analysis to the weakest stimulus that was presented to each unique neuron, does not change the results. The number of unique neurons is 221 for P-units and 45 for ampullary cells.
% The two example P-units shown before are highlighted with dark markers in \subfigrefb{fig:dataoverview}{A, C, E} (squares -- \figrefb{fig:cells_suscept}, circles -- \figrefb{fig:cells_suscept_high_CV}).
% Several of the recorded neurons contribute with two samples to the population analysis as their responses have been recorded to two different contrasts of the same RAM stimulus. Higher stimulus contrasts lead to a stronger drive and thus stronger response modulations (see color code bar in \subfigref{fig:dataoverview}{A}, see methods).
% The example cell shown above (\figref{fig:ampullary}) was recorded at two different stimulus intensities and the \nli{} values are highlighted with black squares.
}
\end{figure*}
\subsection{Low CVs and weak stimuli are associated with strong nonlinearity}
All the statements about nonlinear encoding in p-type and ampullary electroreceptor afferents based on single-cell examples shown above are supported by the analysis of our pool of 221 P-units and 47 ampullary afferents recorded in 71 specimen. For comparison across cells we summarize the structure of the second-order susceptibilities in a single number, the peakedness of the projected nonlinearity at \fbase{} (\nli{}) \eqnref{eq:nli_equation}, that characterizes the size of the expected peak of the projections of a \suscept{} matrix onto its diagonal at the baseline firing rate (e.g. \subfigref{fig:cells_suscept}{G}). \nli{} assumes high values when the peak at \fbase{} is pronounced relative to the median of projections onto the diagonal and is small when there is no distinct peak. The \nli{} values of the P-unit population depend weakly on the CV of the baseline ISI distribution. Cells with lower baseline CVs tend to have more pronounced peaks in their projections than those that have high baseline CVs (\subfigrefb{fig:data_overview}{A}). This negative correlation is more pronounced against the CV measured during stimulation (\subfigrefb{fig:data_overview}{C}).
All the statements about nonlinear encoding in p-type and ampullary electroreceptor afferents based on single-cell examples shown above are supported by the analysis of our pool of 221 P-units and 47 ampullary afferents recorded in 71 specimen. For comparison across cells we summarize the structure of the second-order susceptibilities in a single number, the peakedness of the projected nonlinearity at \fbase{} (\nli{}) \eqnref{eq:nli_equation}, that characterizes the size of the expected peak of the projections of a \suscept{} matrix onto its diagonal at the baseline firing rate (e.g. \subfigref{fig:cells_suscept}{G}). \nli{} assumes high values when the peak at \fbase{} is pronounced relative to the median of projections onto the diagonal and is small when there is no distinct peak. The \nli{} values of the P-unit population depend weakly on the CV of the baseline ISI distribution. Cells with lower baseline CVs tend to have more pronounced peaks in their projections than those that have high baseline CVs (\subfigrefb{fig:dataoverview}{A}). This negative correlation is more pronounced against the CV measured during stimulation (\subfigrefb{fig:dataoverview}{C}).
The effective stimulus strength also plays an important role. We quantify the effect of stimulus strength on a cell's response by the response modulation --- the standard deviation of a cell's firing rate in response to a RAM stimulus. P-units are heterogeneous in their sensitivity, their response modulations to the same stimulus contrast vary a lot \citep{Grewe2017}. Cells with weak responses to a stimulus, be it an insensitive cell or a weak stimulus, have higher \nli{} values and thus a more pronounced ridge in the second-order susceptibility at \fsumb{} in comparison to strongly responding cells that basically have flat second-order susceptibilities (\subfigrefb{fig:data_overview}{E}). How pronounced nonlinear response components are in P-units thus depends on the baseline CV (a proxy for the internal noise level), and both the CV and response strength during stimulation (effective output noise).
The effective stimulus strength also plays an important role. We quantify the effect of stimulus strength on a cell's response by the response modulation --- the standard deviation of a cell's firing rate in response to a RAM stimulus. P-units are heterogeneous in their sensitivity, their response modulations to the same stimulus contrast vary a lot \citep{Grewe2017}. Cells with weak responses to a stimulus, be it an insensitive cell or a weak stimulus, have higher \nli{} values and thus a more pronounced ridge in the second-order susceptibility at \fsumb{} in comparison to strongly responding cells that basically have flat second-order susceptibilities (\subfigrefb{fig:dataoverview}{E}). How pronounced nonlinear response components are in P-units thus depends on the baseline CV (a proxy for the internal noise level), and both the CV and response strength during stimulation (effective output noise).
%(Pearson's $r=-0.35$, $p<0.001$)221 P-units and 47 (Pearson's $r=-0.16$, $p<0.01$)
%In a P-unit population where each cell is represented not by several contrasts but by the lowest recorded contrast, \nli{} significantly correlates with the CV during baseline ($r=-0.17$, $p=0.01$), the response modulation ($r=-0.35$, $p<0.001$) and \fbase{} ($r=-0.32$, $p<0.001$).%, $\n{}=221$*, $\n{}=221$******, $\n{}=221$
The population of ampullary cells is generally more homogeneous, with lower baseline CVs than P-units. Accordingly, \nli{} values of ampullary cells are indeed much higher than in P-units by about a factor of ten. Ampullary cells also show a negative correlation with baseline CV. Again, sensitive cells with strong response modulations are at the bottom of the distribution and have \nli{} values close to one (\subfigrefb{fig:data_overview}{B, D}). The weaker the response modulation, because of less sensitive cells or weaker stimulus amplitudes, the stronger the nonlinear component of a cell's response (\subfigrefb{fig:data_overview}{F}).
The population of ampullary cells is generally more homogeneous, with lower baseline CVs than P-units. Accordingly, \nli{} values of ampullary cells are indeed much higher than in P-units by about a factor of ten. Ampullary cells also show a negative correlation with baseline CV. Again, sensitive cells with strong response modulations are at the bottom of the distribution and have \nli{} values close to one (\subfigrefb{fig:dataoverview}{B, D}). The weaker the response modulation, because of less sensitive cells or weaker stimulus amplitudes, the stronger the nonlinear component of a cell's response (\subfigrefb{fig:dataoverview}{F}).
%(Pearson's $r=-0.35$, $p < 0.01$) (Pearson's $r=-0.59$, $p < 0.0001$)
\section{Discussion}
%\notejb{Even though the extraction of the AM itself requires a \notejb{nonlinearity} \citep{Middleton2006, Stamper2012Envelope, Savard2011, Barayeu2023} encoding the time-course of the AM is linear over a wide range of AM amplitudes and frequencies \citep{Xu1996, Benda2005, Gussin2007, Grewe2017, Savard2011}. In the context of social signaling among three fish, we observe an AM of the AM, also referred to as second-order envelope or just social envelope \citep{Middleton2006, Savard2011, Stamper2012Envelope}. Encoding this again requires nonlinearities \citep{Middleton2006} and it was shown that a subpopulation of P-units is sensitive to envelopes \citep{Savard2011} and exhibit nonlinearities e.g. when driven by strong stimuli \citep{Nelson1997, Chacron2004}.}
%\notejb{Leftovers from introduction}
%\notejb{Phase-locking to the own field also leads to a representation of \feod{} in the P-unit firing rate (see \figref{fig:cells_suscept}\panel{B}) \citep{Sinz2020}.}
%\notejb{The appearing difference peak is known as the social envelope \citep{Stamper2012Envelope, Savard2011}. The neuron shown here clearly encodes the envelope. Whether P-units in general encode envelopes has been the subject of controversy, some works do not consider P-units as envelope encoders \citep{Middleton2006}, while others identify some P-units as envelope encoders \citep{Savard2011}. }
%\notejb{Weakly nonlinear responses versus saturation regime}
%\notejb{Estimating the infinite Volterra series from limited experimental data is usually limited to the first two or three kernels, which might not be sufficient for a proper prediction of the neuronal response \citep{French2001}. Making assumptions about the nonlinearities in a system reduces the amount of data needed for parameter estimation. In particular, models combining linear filtering with static nonlinearities \citep{Chichilnisky2001}, have been successful in capturing functionally relevant neuronal computations in visual \citep{Gollisch2009} as well as auditory systems \citep{Clemens2013}. On the other hand, linear methods based on backward models for estimating the stimulus from neuronal responses, have been extensively used to quantify information transmission in neural systems \citep{Theunissen1996, Borst1999, Wessel1996, Chacron?}, because backward models do not need to generate action potentials \citep{Rieke1999}.}
\section{Discussion}
%\notejb{Note in the discussion that \suscept{} predicts stimulus-evoked responses whereas in the power spectrum, we see peaks even if they are unrelated to the stimulus. Like the baseline firing rate.}
Theoretical work \citep{Voronenko2017} derived analytical expressions for weakly-nonlinear responses in a LIF model neuron driven by two sine waves with distinct frequencies. We here looked for such nonlinear responses in two types of electroreceptor afferents that differ in their intrinsic noise levels \citep{Grewe2017} using white-noise stimuli to estimate second-order susceptibilities. Following \citet{Voronenko2017} we expected to observe increased levels of second-order susceptibility where either of the stimulus frequencies alone or the sum of the stimulus frequencies matches the baseline firing rate ($f_1=\fbase{}$, $f_2=\fbase{}$ or \fsumb{}). We find traces of these nonlinear responses in most of the low-noise ampullary afferents and only those P-units with very low intrinsic noise levels. Complementary model simulations demonstrate, in the limit to vanishing stimulus amplitudes and extremely high number of repetitions, that the second order susceptibilities estimated from the electrophysiological data are indeed indicative of the theoretically expected weakly nonlinear responses.
% TO DISCUSSION:
%Even though the second-order susceptibilities here were estimated from data and models with a modulated (EOD) carrier (\figrefb{fig:model_full}) they are in good accordance with the second-order susceptibilities found in LIF models without a carrier \citep{Voronenko2017, Schlungbaum2023}.
% EOD locking:
% Phase-locking to the own field also leads to a representation of \feod{} in the P-unit firing rate (see \figref{fig:cells_suscept}\panel{B}) \citep{Sinz2020}.
Theoretical work \citep{Voronenko2017} derived analytical expressions for weakly-nonlinear responses in a LIF model neuron driven by two sine waves with distinct frequencies. We here search for such nonlinear responses in two types of electroreceptor afferents that differ in their intrinsic noise levels \citep{Grewe2017} using white-noise stimuli to estimate second-order susceptibilities. Following \citet{Voronenko2017} we expected to observe increased levels of second-order susceptibility where either of the stimulus frequencies alone or the sum of the stimulus frequencies matches the baseline firing rate ($f_1=\fbase{}$, $f_2=\fbase{}$ or \fsumb{}). We find traces of these nonlinear responses in most of the low-noise ampullary afferents and only those P-units with very low intrinsic noise levels. Complementary model simulations demonstrate, in the limit to vanishing stimulus amplitudes and extremely high number of repetitions, that the observed traces are indeed indicative of the expected nonlinear responses.
% Weakly nonlinear responses versus saturation regime
\subsection{Intrinsic noise limits nonlinear responses}
The pattern of elevated second-order susceptibility found in the experimental data matches the theoretical expectations only partially. Only P-units with low coefficients of variation (CV $<$ 0.25) of the interspike-interval distribution in their baseline response show the expected nonlinearities (\figref{fig:cells_suscept}, \figref{fig:model_full}, \subfigref{fig:data_overview}{A}). Such low-CV cells are rare among the 221 P-units used in this study. On the other hand, the majority of the ampullary cells have generally lower CVs (median of 0.12) and have an approximately ten-fold higher level of second-order susceptibilities where \fsumb{} (\figref{fig:ampullary}, \subfigrefb{fig:data_overview}{B}).
The pattern of elevated second-order susceptibility found in the experimental data matches the theoretical expectations only partially. Only P-units with low coefficients of variation (CV $<$ 0.25) of the interspike-interval distribution in their baseline response show the expected nonlinearities (\figref{fig:cells_suscept}, \figref{fig:model_full}, \subfigref{fig:dataoverview}{A}). Such low-CV cells are rare among the 221 P-units used in this study. On the other hand, the majority of the ampullary cells have generally lower CVs (median of 0.12) and have an approximately ten-fold higher level of second-order susceptibilities where \fsumb{} (\figref{fig:ampullary}, \subfigrefb{fig:dataoverview}{B}).
The CV is a proxy for the intrinsic noise in the cells \cite{}\notejb{Cite Lindner IF by rate and CV}. In both cell types, we observe a negative correlation between the second-order susceptibility at \fsumb{} and the CV, indicating that it is the level of intrinsic noise that shapes nonlinear responses. These findings are in line with previous theoretical and experimental studies showing the linearizing effects of noise in nonlinear systems \citep{Roddey2000, Chialvo1997, Voronenko2017}. Increased intrinsic noise has been demonstrated to increase the CV and reduce nonlinear phase-locking in vestibular afferents \citep{Schneider2011}. Reduced noise, on the other hand, has been associated with stronger nonlinearity in pyramidal cells of the ELL \citep{Chacron2006}. Only in cells with sufficiently low levels of intrinsic noise, weakly nonlinear responses can be observed.
The CV is a proxy for the intrinsic noise in the cells \citep{Vilela2009}. In both cell types, we observe a negative correlation between the second-order susceptibility at \fsumb{} and the CV, indicating that it is the level of intrinsic noise that shapes nonlinear responses. These findings are in line with previous theoretical and experimental studies showing the linearizing effects of noise in nonlinear systems \citep{Roddey2000, Chialvo1997, Voronenko2017}. Increased intrinsic noise has been demonstrated to increase the CV and reduce nonlinear phase-locking in vestibular afferents \citep{Schneider2011}. Reduced noise, on the other hand, has been associated with stronger nonlinearity in pyramidal cells of the ELL \citep{Chacron2006}. Only in cells with sufficiently low levels of intrinsic noise, weakly nonlinear responses can be observed.
\subsection{Linearization by white-noise stimulation}
Not only the intrinsic noise but also the stimulaion with external white-noise linearizes the cells. This applies to both, the stimulation with AMs in P-units (\subfigrefb{fig:data_overview}{E}) and direct stimulation in ampullary cells (\subfigrefb{fig:data_overview}{F}). The stronger the effective stimulus, the less pronounced are the peaks in second-order susceptibility. In order to characterize the non-linearity of the cells in the limit to vanishing stimulus amplitudes we utilized the Furutsu-Novikov theorem \citep{Novikov1965, Furutsu1963}. Following \citet{Lindner2022}, a substantial part of the intrinsic noise of a P-unit model \citep{Barayeu2023} is treated as signal. Performing this noise-split trick we can estimate the weakly nonlinear response without the linearizing effect of an additional external white noise stimulus. The model of a low-CV P-unit then shows the full nonlinear structure (\figref{model_and_data}) known from analytical derivations and simulations of basic LIF models driven with pairs of sine-wave stimuli \citep{Voronenko2017}.
Not only the intrinsic noise but also the stimulaion with external white-noise linearizes the cells. This applies to both, the stimulation with AMs in P-units (\subfigrefb{fig:dataoverview}{E}) and direct stimulation in ampullary cells (\subfigrefb{fig:dataoverview}{F}). The stronger the effective stimulus, the less pronounced are the peaks in second-order susceptibility. This linearizing effect of noise stimuli limits the weakly nonlinear regime to small stimulus amplitudes. At higher stimulus amplitudes, however, other non-linearities of the system eventually show up in the second-order susceptibility.
\subsection{Noise stimulation approximates real interactions}
Our analysis is based on the neuronal responses to white-noise stimulus sequences. %For the P-units, the stimulus was a random amplitude modulation (RAM) while it was a direct noise stimulus for the ampullary cells.
These broad-band stimuli have the advantage that all behaviorally relevant frequencies can be measured with a single stimulus presentation and it is a widely used approach to characterize sensory coding \citep{French1973, Marmarelis1999, Borst1999, Chacron2005, Grewe2017}. However, asdiscussed above, these stimuli also increase the total level of noise in the system and linearize the system. In the real-world situation, the natural stimuli are periodic signals defined by the EODs of small groups of interacting fish and the resulting AMs \citep{Stamper2010}. How well can we extrapolate from the white-noise analysis to the pure sinewave situation?
In contrast to the situation with individual frequencies (direct sine-waves or sinusoidal AMs) the total signal power of the noise stimulus is equally distributed on all frequencies leading to a weaker signal-to-noise ratio. This explains that the nonlinearity pattern in the electroreceptor recordings only partially matches the expectation (\figsref{fig:cells_suscept},\,\ref{fig:ampullary}) while the single-frequency stimulation shows nonlinear interference when the individual stimulus frequencies ($f_1, f_2, \Delta f_1, \Delta f_2$) match the baseline firing rate (\figref{fig:motivation}, \subfigref{fig:model_full}{B--E}). Applying the Furutsu-Novikov theorem in the model simulations strongly suggests that low-CV cells do have the full nonlinearity pattern that is, however, covered by the intrinsic noise. We thus conclude that the presence of the anti-diagonal pattern in the \suscept{} matrix is sufficient to infer that the same nonlinear interactions happen here. This also validates the application of the white noise approach to characterize the full \suscept{} matrix instead of using all combinations of frequencies.
In order to characterize weakly nonlinear responses of the cells in the limit to vanishing stimulus amplitudes we utilized the Furutsu-Novikov theorem \citep{Novikov1965, Furutsu1963}. Following \citet{Lindner2022}, a substantial part of the intrinsic noise of a P-unit model \citep{Barayeu2023} is treated as signal. Performing this noise-split trick we can estimate the weakly nonlinear response without the linearizing effect of an additional external white noise stimulus. The model of a low-CV P-unit then shows the full nonlinear structure (\figref{model_and_data}) known from analytical derivations and simulations of basic LIF models driven with pairs of sine-wave stimuli \citep{Voronenko2017}.
\notejb{Say that previous work on second-order nonlinearities did not see the weakly nonlinear regime, because of the linearizing effects}
%In our P-unit models, we were able to make use of the Furutsu-Novikov theorem to estimate nonlinear signal transmission for zero-amplitude stimulation. Only with this procedure and many trials, we find for low-CV P-units all the pronounced ridges in the second-order susceptibility that we would expect according to theory \citep{Voronenko2017}.
\subsection{Alternatives to the Volterra series}
Estimating the infinite Volterra series from limited experimental data is usually limited to the first two or three kernels, which might not be sufficient for a proper prediction of the neuronal response \citep{French2001}. As we have demonstrated, even a proper estimation of just the second-order susceptibility in the weakly nonlinear regime is not feasable in electrophysiological experiments. Making assumptions about the nonlinearities in a system reduces the amount of data needed for parameter estimation. In particular, models combining linear filtering with static nonlinearities \citep{Chichilnisky2001}, have been successful in capturing functionally relevant neuronal computations in visual \citep{Gollisch2009} as well as auditory systems \citep{Clemens2013}. On the other hand, linear methods based on backward models for estimating the stimulus from neuronal responses, have been extensively used to quantify information transmission in neural systems \citep{Theunissen1996, Borst1999, Wessel1996, Machens2001, Chacron?}, because backward models do not need to generate action potentials \citep{Rieke1999}.
\subsection{Noise stimulation approximates real interactions}
Our characterization of electrorecptors is based on neuronal responses to white-noise stimuli. These broad-band stimuli have the advantage that all behaviorally relevant frequencies can be measured with a single stimulus presentation and it is a widely used approach to characterize sensory coding \citep{French1973, Marmarelis1999, Borst1999, Chacron2005, Grewe2017}. In the real-world situation of wave-type electric fish, the natural stimuli encoded by P-units are the sinusoidal EOD signals with distinct frequencies continuosly emitted by a small number of near by interacting fish and the resulting beating AMs \citep{Stamper2010, Henninger2020}. How informative is the second-order susceptibility estimated in the limit of vanishing noise-stimulus amplitude for the encoding of distinct frequencies with finite amplitudes?
% Under noise stimulation, nonlinearities were demonstrated to be strong for weak stimuli but were shown to decrease for stronger noise stimuli (\figrefb{fig:cells_suscept}).
% The nonlinearity of ampullary cells in paddlefish \citep{Neiman2011fish} has been previously accessed with bandpass limited white noise.
In contrast to the situation with individual frequencies (direct sine-waves or sinusoidal AMs) the total signal power of the noise stimulus is equally distributed on all frequencies leading to a weaker signal-to-noise ratio. This explains that the nonlinearity pattern in the electroreceptor recordings only partially matches the expectation (\figsref{fig:cells_suscept},\,\ref{fig:ampullary}) while the single-frequency stimulation shows nonlinear interference when the individual stimulus frequencies ($f_1, f_2, \Delta f_1, \Delta f_2$) match the baseline firing rate (\figref{fig:motivation}, \subfigref{fig:model_full}{B--E}). Applying the Furutsu-Novikov theorem in the model simulations strongly suggests that low-CV cells do have the full nonlinearity pattern that is, however, covered by the intrinsic noise. We thus conclude that the presence of the anti-diagonal pattern in the \suscept{} matrix is sufficient to infer that the same nonlinear interactions happen here. This also validates the application of the white noise approach to characterize the full \suscept{} matrix instead of using all combinations of frequencies.
% Here it was demonstrated that the second-order susceptibility for the two RAM noise input frequencies \fone{} and \ftwo{} can approximate a three-fish setting, where the driving force for the P-unit are two beats with frequencies \bone{} and \btwo{}. This was confirmed by a low-CV P-unit, where nonlinearities in the P-unit response occurred at the sum and difference of the beat frequencies for pure sine-wave stimulation (\figrefb{fig:motivation}). In this P-unit the nonlinearity appeared in a three-wave setting with \bone{} being close to \fbase{}, corresponding to a frequency combination on the vertical line at \foneb{} in the second-order susceptibility (\subfigrefb{fig:model_full}{B}). This implies that even if only the diagonal structure can be accessed with noise stimulation in the second-order susceptibility in an experiment (\subfigrefb{fig:model_full}{A}), it can be taken as an indicator that the whole nonlinear structure should be present during pure sine-wave stimulation in the same cell. With this RAM stimulation was demonstrated to be an effective method to scan the three-fish or two-beat plane and estimate the whole theoretically predicted nonlinear structure in experimentally recorded cells.
\subsection{Selective readout versus integration of heterogeneous populations}% Nonlinearity might be influenced once integrating from a P-unit population with heterogeneous baseline properties}%Heterogeneity of P-units might influence
\subsection{Beats are essentiallly sine wave stimuli}
Even though the second-order susceptibilities here were estimated from data and models with a modulated (EOD) carrier (\figrefb{fig:model_full}) they are in good accordance with the second-order susceptibilities found in LIF models without a carrier \citep{Voronenko2017, Schlungbaum2023}.
% AM extraction is linear:
Even though the extraction of the AM itself requires a nonlinearity \citep{Middleton2006, Stamper2012Envelope, Savard2011, Barayeu2023} encoding the time-course of the AM is linear over a wide range of AM amplitudes and frequencies \citep{Xu1996, Benda2005, Gussin2007, Grewe2017, Savard2011}.
\subsection{Selective readout versus integration of heterogeneous populations}
The observed nonlinear effects can possibly facilitate the detectability of faint signals during a three-fish setting, the electrosensory cocktail party \citep{Henninger2018}. These nonlinear effects are, however, very specific with respect to the relation of stimulus frequencies and a given P-unit's baseline frequency. The EOD frequencies of the interacting fish would be drawn from the distributions of EOD frequencies found in male and female fish \citep{Hopkins1974Eigen, Meyer1987, Henninger2018, Henninger2020}. To be behaviorally relevant the faint signal detection would require reliable neuronal signaling irrespective of the individual EOD frequencies.
P-units, however, are very heterogeneous in their baseline firing properties \citep{Grewe2017, Hladnik2023}. The baseline firing rates vary in wide ranges (50--450\,Hz). This range covers substantial parts of the beat frequencies that may occur during animal interactions which is limited to frequencies below the Nyquist frequency (0 -- \feod/2) \citep{Barayeu2023}. It is thus likely that there are P-units that approximately match the specificities of the different encounters.
On the other hand, this nonlinearity was found only in low-CV P-units (with white noise stimulation). The CVs are also very heterogeneous (0.1--1.4, \figref{fig:data_overview}\panel{A}) in our sample. Only a small fraction of the P-units have a sufficiently low level of intrinsic noise and will exhibit nonlinear responses. The P-units project to the ELL \citep{Krahe2014} and the integrating pyramidal cells in the different segments receive inputs in the range of 10s to 1000s of neurons \citep{Maler2009a}. Since the receptive fields of the pyramidal neurons are patches of adjacent receptors on the fish's body surface \citep{Bastian2002, Maler2009a, Haggard2023} and the input heterogeneity does not depend on the location of the receptor on the fish body \citep{Hladnik2023} the pyramidal cell input population will be heterogeneous. Even though heterogeneity was shown to be generally advantageous for the encoding in this \citep{Hladnik2023} and other systems \citep{Padmanabhan2010, Beiran2018} it contradicts the apparent need for a selective readout of low-CV cells to maintain information arising through nonlinear interactions.
On the other hand, this nonlinearity was found only in low-CV P-units (with white noise stimulation). The CVs are also very heterogeneous (0.1--1.4, \figref{fig:dataoverview}\panel{A}) in our sample. Only a small fraction of the P-units have a sufficiently low level of intrinsic noise and will exhibit nonlinear responses. The P-units project to the ELL \citep{Krahe2014} and the integrating pyramidal cells in the different segments receive inputs in the range of 10s to 1000s of neurons \citep{Maler2009a}. Since the receptive fields of the pyramidal neurons are patches of adjacent receptors on the fish's body surface \citep{Bastian2002, Maler2009a, Haggard2023} and the input heterogeneity does not depend on the location of the receptor on the fish body \citep{Hladnik2023} the pyramidal cell input population will be heterogeneous. Even though heterogeneity was shown to be generally advantageous for the encoding in this \citep{Hladnik2023} and other systems \citep{Padmanabhan2010, Beiran2018} it contradicts the apparent need for a selective readout of low-CV cells to maintain information arising through nonlinear interactions.
A possible readout mechanism should be the topic of future studies that need to take into account that the nonlinearities are stronger in pure sine-wave stimulation and the fraction of cells that show it under naturalistic stimulation might be larger than expected from the distribution of CVs.
\subsection{Nonlinear encoding in electroreceptors}
\subsection{Nonlinear encoding in P-units}
Outside courtship behavior, the encoding of secondary or social envelopes is a common need \citep{Stamper2012Envelope}. In a previous study, it was demonstrated that information about low-frequency secondary envelopes would not be present in P-units' responses but would arise through nonlinear processing downstream in the ELL \citep{Middleton2006, Middleton2007}. Based on our work we would predict that only a small subset of cells, with low CVs, should encode the social envelopes under white noise stimulation. An absence of low-CV cells in the population analyzed in the previous studies could explain their conclusions. On the other hand, another study showed that P-units with strong nonlinearities, low firing rates and, high CVs could indeed encode social envelopes \citep{Savard2011}. These findings are in contrast to the previously mentioned work \citep{Middleton2007} and, at first glance, also to our results. The missing link, that has not been considered in this work, might be the bursting of P-units, the repeated firing of spikes after one EOD period interleaved with longer intervals of quietness \citep{Chacron2004}. Bursting was not explicitly addressed in the previous work, still, the reported high CVs of the envelope encoding P-units indicate a higher rate of bursting \citep{Savard2011}. How bursts influence the second-order susceptibility of P-units will be addressed in the following works \citep{Barayeu2024, Schlungbaum2024}. Note that in this work we operated in a regime of weak stimuli and that the envelope-encoding addressed in \citep{Savard2011, Middleton2007} operates in a regime of strong stimuli, where firing rates are saturated. The exact transition from the nonlinearities in a regime of weak stimuli to a regime of strong stimuli should be addressed in further P-unit studies.
%Sinusoidal AMs are relevant in interactions with a few fish. We can understand the noise as the presence of many animals with individual EOD frequencies at the same time. Under noise stimulation, nonlinearities were demonstrated to be strong for weak stimuli but were shown to decrease for stronger noise stimuli (\figrefb{fig:cells_suscept}). As long as the noise signal is weak, those fish are distant and the nonlinearity is maintained. An increasing stimulus amplitude would indicate that many fish are close to the receiver and a decrease of nonlinear effects can be observed. These findings imply that the nonlinear effects arising in the presence of three fish decline the more fish join. \lepto{} usually prefers small groups of fish \citep{Stamper2010}. Thus, the described second-order susceptibility might still be behaviorally relevant under natural conditions. The decline of nonlinear effects when several fish are present might be an adaptive process reducing the number of frequencies represented in its primary sensory afferents to a minimum. Such representation would still leave room to create nonlinear effects at later processing steps in higher-order neurons.
% Envelope extraction requires a nonlinearity:
% In the context of social signaling among three fish, we observe an AM of the AM, also referred to as second-order envelope or just social envelope \citep{Middleton2006, Savard2011, Stamper2012Envelope}. Encoding this again requires nonlinearities \citep{Middleton2006} and it was shown that a subpopulation of P-units is sensitive to envelopes \citep{Savard2011} and exhibit nonlinearities e.g. when driven by strong stimuli \citep{Nelson1997, Chacron2004}.
The afferents of the passive electrosensory system, the ampullary cells, were found to exhibit much stronger nonlinearities than P-units (\figref{fig:data_overview}). The adequate stimulus for this system is a direct stimulation not an amplitude modulation. In this respect, the ampullary cells are closer to the LIF models used by Voroneko and colleagues \citep{Voronenko2017} and we can thus expect that the same nonlinear mechanisms are at work here. For the ampullary system, the sinewave stimulation is not as relevant as for the P-unit system. Ampullary cells encode low-frequency exogenous electric signals such as muscle potentials induced by prey movement \citep{Kalmijn1974, Engelmann2010, Neiman2011fish}. The simultaneous muscle activity of a swarm of prey (such as \textit{Daphnia}) resembles Gaussian white noise \citep{Neiman2011fish}. Our results show some similarities with the analyses by Neiman and Russel \citep{Neiman2011fish} who study the encoding in ampullary afferents in the paddlefish. There, the power spectrum of the spontaneous activity also shows a peak at the baseline frequency (internal oscillator) but also at the oscillation frequency measured at the epithelium and interactions of both. Most of the latter disappear in the case of external stimulation, though. Here we find only peaks at the baseline frequency of the neuron and its harmonics. There are interesting similarities and dissimilarities; stimulus encoding in the paddlefish as well as in the brown ghost can be well described using linear models for low frequencies but there are also nonlinearities in both systems. Linear encoding in the paddlefish shows a gap at the epithelial oscillation frequency, instead, the nonlinear response is very pronounced there. In \lepto{}, the dominating frequency under baseline conditions is the baseline firing rate, and we do see increased nonlinearity in this frequency range. The baseline frequency, however, is outside the linear coding range \citep{Grewe2017} while it is within the linear coding range in paddlefish \citep{Neiman2011fish}. Interestingly, the nonlinear response in the paddlefish ampullaries increases with stimulus intensity while it disappears in our case (\subfigrefb{fig:data_overview}{F}). The population of ampullary cells is much more homogeneous with respect to the baseline rate (131$\pm$29\,Hz) and stimulus encoding properties than the P-units \citep{Grewe2017}. This implies that, if the stimulus contains the appropriate frequency components that sum up to the baseline rate, there should be a nonlinear response at a frequency that is similar to the full population of ampullary cells (the baseline frequency) that is outside the linear coding range. Postsynaptic cells integrating ampullary input might be able to extract this nonlinear response. How such nonlinear effects in ampullary cells might influence prey detection should be addressed in future studies.
\subsection{Nonlinear encoding in ampullary cells}
The afferents of the passive electrosensory system, the ampullary cells, were found to exhibit much stronger nonlinearities than P-units (\figref{fig:dataoverview}). The adequate stimulus for this system is a direct stimulation not an amplitude modulation. In this respect, the ampullary cells are closer to the LIF models used by Voroneko and colleagues \citep{Voronenko2017} and we can thus expect that the same nonlinear mechanisms are at work here. For the ampullary system, the sinewave stimulation is not as relevant as for the P-unit system. Ampullary cells encode low-frequency exogenous electric signals such as muscle potentials induced by prey movement \citep{Kalmijn1974, Engelmann2010, Neiman2011fish}. The simultaneous muscle activity of a swarm of prey (such as \textit{Daphnia}) resembles Gaussian white noise \citep{Neiman2011fish}. Our results show some similarities with the analyses by Neiman and Russel \citep{Neiman2011fish} who study the encoding in ampullary afferents in the paddlefish. There, the power spectrum of the spontaneous activity also shows a peak at the baseline frequency (internal oscillator) but also at the oscillation frequency measured at the epithelium and interactions of both. Most of the latter disappear in the case of external stimulation, though. Here we find only peaks at the baseline frequency of the neuron and its harmonics. There are interesting similarities and dissimilarities; stimulus encoding in the paddlefish as well as in the brown ghost can be well described using linear models for low frequencies but there are also nonlinearities in both systems. Linear encoding in the paddlefish shows a gap at the epithelial oscillation frequency, instead, the nonlinear response is very pronounced there. In \lepto{}, the dominating frequency under baseline conditions is the baseline firing rate, and we do see increased nonlinearity in this frequency range. The baseline frequency, however, is outside the linear coding range \citep{Grewe2017} while it is within the linear coding range in paddlefish \citep{Neiman2011fish}. Interestingly, the nonlinear response in the paddlefish ampullaries increases with stimulus intensity while it disappears in our case (\subfigrefb{fig:dataoverview}{F}). The population of ampullary cells is much more homogeneous with respect to the baseline rate (131$\pm$29\,Hz) and stimulus encoding properties than the P-units \citep{Grewe2017}. This implies that, if the stimulus contains the appropriate frequency components that sum up to the baseline rate, there should be a nonlinear response at a frequency that is similar to the full population of ampullary cells (the baseline frequency) that is outside the linear coding range. Postsynaptic cells integrating ampullary input might be able to extract this nonlinear response. How such nonlinear effects in ampullary cells might influence prey detection should be addressed in future studies.
\subsection{Conclusions and outlook}
We have demonstrated that there are pronounced nonlinear responses in the primary electrosensory afferents of the weakly electric fish \lepto{}. The observed nonlinearities match the expectations from previous theoretical studies \citep{Voronenko2017}. We can confirm that the theory applies also to systems that are encoding amplitude modulations of a carrier signal. Comparisons of P-units and ampullary cells showed that it is the level of intrinsic noise that determines how strongly nonlinear the system acts. Using the second-order susceptibility estimated from the responses to white noise stimuli provides an easy way to determine the nonlinearity of the system under study. P-units share several features with mammalian
auditory nerve fibers and such nonlinear effects might also be expected in the auditory system during the encoding of amplitude modulations \citep{Joris2004}. Nevertheless, the theory holds for systems that are directly driven by a sinusoidal input (ampullary cells) and systems that are driven by amplitude modulations of a carrier (P-units) and is thus widely applicable.
\section{Methods}
\subsection{Experimental subjects and procedures}
@ -712,7 +714,7 @@ We expected to see elevated values in the second-order susceptibility at $\omega
\end{equation}
where $D(f)$ is the projection of the absolute values of the second-order susceptibility matrix onto the diagonal, calculated by taking the mean of the anti-diagonal elements. The peak of $D(f)$ at the neuron's baseline firing rate $\fbase$ was found by finding the maximum of $D(f)$ in the range $\fbase \pm 5$\,Hz. This peak was then normalized by the median of $D(f)$ (\subfigrefb{fig:cells_suscept}{G}).
If the same RAM was recorded several times in a cell, each trial resulted in a separate second-order susceptibility matrix. For the population statistics in \figref{fig:data_overview} the mean of the resulting \nli{} values is used.
If the same RAM was recorded several times in a cell, each trial resulted in a separate second-order susceptibility matrix. For the population statistics in \figref{fig:dataoverview} the mean of the resulting \nli{} values is used.
\begin{figure*}[t]