for code refer to package threefish

This commit is contained in:
saschuta 2024-05-02 23:12:20 +02:00
parent be527bcb0d
commit 7a9bbd1fbd
37 changed files with 1087181 additions and 50406 deletions

BIN
all_cells.npy Normal file

Binary file not shown.

Binary file not shown.

View File

@ -1,8 +1,9 @@
from utils_suseptibility import ampullary_punit ##from update_project import *ampullary_punit, p_units_to_show, update_cell_names#, load_folder_name
from utils_all import p_units_to_show, update_cell_names, load_folder_name #from threefish.utils0 import load_folder_name
#from utils_all import load_folder_name
#from plt_RAM import plt_punit #from plt_RAM import plt_punit
from IPython import embed
from threefish.utils0 import p_units_to_show, update_cell_names
from threefish.utils1_suscept import ampullary_punit
if __name__ == '__main__': if __name__ == '__main__':

Binary file not shown.

View File

@ -1,8 +1,7 @@
from utils_suseptibility import ampullary_punit, fr_name_rm from threefish.utils0 import p_units_to_show
from utils_all import p_units_to_show from threefish.utils1_suscept import ampullary_punit, fr_name_rm
#from utils_all import load_folder_name #from threefish.utils0 import load_folder_name
#from plt_RAM import plt_punit #from plt_RAM import plt_punit
from IPython import embed
if __name__ == '__main__': if __name__ == '__main__':

Binary file not shown.

View File

@ -1,8 +1,7 @@
from utils_suseptibility import ampullary_punit, fr_name_rm from threefish.utils0 import p_units_to_show
from utils_all import p_units_to_show from threefish.utils1_suscept import ampullary_punit, fr_name_rm
#from utils_all import load_folder_name #from threefish.utils0 import load_folder_name
#from plt_RAM import plt_punit #from plt_RAM import plt_punit
from IPython import embed
if __name__ == '__main__': if __name__ == '__main__':

Binary file not shown.

View File

@ -1,15 +1,12 @@
#sys.path.insert(0, '..') #sys.path.insert(0, '..')
#from plt_RAM import plt_RAM_overview_nice #from plt_RAM import plt_RAM_overview_nice
#from utils_susept import #from threefish.utils1 import
from IPython import embed from IPython import embed
from matplotlib import gridspec as gridspec, pyplot as plt from matplotlib import gridspec as gridspec, pyplot as plt
import numpy as np import numpy as np
from utils_all_down import default_settings from threefish.utils0 import colors_overview,default_figsize, update_cell_names, load_overview_susept, make_log_ticks, p_units_to_show, save_visualization, setting_overview_score
from utils_suseptibility import colors_overview from threefish.utils1_suscept import basename_small, exclude_nans_for_corr, kernel_scatter, pearson_label, \
from utils_suseptibility import default_figsize, NLI_scorename2_small,pearson_label, exclude_nans_for_corr, kernel_scatter, \ scatter_with_marginals_colorcoded, stimname_small, version_final, NLI_scorename2_small
scatter_with_marginals_colorcoded, \
version_final, basename_small, stimname_small
from utils_all import update_cell_names, load_overview_susept, make_log_ticks, p_units_to_show, save_visualization, setting_overview_score
from scipy import stats from scipy import stats
try: try:
from plotstyle import plot_style, spines_params from plotstyle import plot_style, spines_params

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

After

Width:  |  Height:  |  Size: 54 KiB

View File

@ -1,12 +1,11 @@
#from utils_suseptibility import default_settings #from utils0import default_settings
#from plt_RAM import model_and_data_isi, model_cells #from plt_RAM import model_and_data_isi, model_cells
from IPython import embed from IPython import embed
import numpy as np import numpy as np
import pandas as pd import pandas as pd
from plotstyle import plot_style, spines_params from plotstyle import plot_style, spines_params
from utils_suseptibility import model_sheme_in_one from threefish.utils0 import default_figsize, model_sheme_split2, save_visualization
from utils_all import default_figsize, model_sheme_split2, remove_yticks, save_visualization #from threefish.utils0 import default_settings, resave_small_files
#from utils_all import default_settings, resave_small_files
#from plt_RAM import model_and_data, model_and_data_sheme, model_and_data_vertical2 #from plt_RAM import model_and_data, model_and_data_sheme, model_and_data_vertical2
import matplotlib.gridspec as gridspec import matplotlib.gridspec as gridspec
from matplotlib import pyplot as plt from matplotlib import pyplot as plt

10010
gwn150Hz10s0.3.dat Normal file

File diff suppressed because it is too large Load Diff

2010
gwn150Hz10s0.3short.dat Normal file

File diff suppressed because it is too large Load Diff

10010
gwn300Hz10s0.3.dat Normal file

File diff suppressed because it is too large Load Diff

10010
gwn300Hz10s0.3short.dat Normal file

File diff suppressed because it is too large Load Diff

1000010
gwn300Hz50s0.3.dat Normal file

File diff suppressed because it is too large Load Diff

10010
gwn50Hz10s0.3.dat Normal file

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@ -1,16 +1,25 @@
#from utils_suseptibility import default_settings ##from update_project import **#model_and_data
#from plt_RAM import model_and_data_isi, model_cells import os
import numpy as np
import pandas as pd
from IPython import embed
from matplotlib import gridspec, pyplot as plt
from plotstyle import plot_style
from threefish.utils0 import default_settings, find_cell_add, get_flowchart_params, load_folder_name, load_model_susept, \
noise_name, overlap_cells, \
plot_lowpass2, plt_time_arrays, \
remove_xticks, \
remove_yticks, \
resave_small_files, \
save_visualization, set_same_ylim
import itertools as it
from threefish.utils0 import default_figsize
from threefish.utils1_suscept import nonlin_title, perc_model_full, plt_data_susept, plt_single_square_modl, \
xpos_y_modelanddata
from threefish.utils0 import join_x, join_y, set_clim_same, set_xlabel_arrow, set_ylabel_arrow
#from utils_suseptibility import model_and_data, remove_yticks
#from utils_suseptibility import *
#from utils_susept import nonlin_title, plt_data_susept, plt_single_square_modl, set_clim_same_here, set_xlabel_arrow, \
# set_ylabel_arrow, \
# xpos_y_modelanddata
#from utils_all import default_settings, find_cell_add, get_flowchart_params, load_folder_name, load_model_susept, \
# overlap_cells, \
# plot_lowpass2, plt_time_arrays, remove_xticks, remove_yticks, resave_small_files, save_visualization, set_same_ylim
from utils_suseptibility import *#model_and_data
#from plt_RAM import model_and_data, model_and_data_sheme, model_and_data_vertical2 #from plt_RAM import model_and_data, model_and_data_sheme, model_and_data_vertical2
@ -323,6 +332,7 @@ def model_and_data2(eod_metrice = False, width=0.005, nffts=['whole'], powers=[1
color1=color_timeseries, lw=1, extract=False) color1=color_timeseries, lw=1, extract=False)
except: except:
print('add up thing') print('add up thing')
embed() embed()
ax_external = plt.subplot(grid_lowpass[0]) ax_external = plt.subplot(grid_lowpass[0])

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 96 KiB

After

Width:  |  Height:  |  Size: 97 KiB

View File

@ -1,4 +1,29 @@
from utils_suseptibility import * ##from update_project import **
import numpy as np
import pandas as pd
from IPython import embed
from matplotlib import gridspec, pyplot as plt
import matplotlib.mlab as ml
from scipy.ndimage import gaussian_filter
from threefish.utils0 import find_code_vs_not, load_folder_name
from plotstyle import plot_style
from threefish.utils0 import resave_small_files, ISI_frequency, colorbar_outside, cr_spikes_mat, create_stimulus_SAM, default_figsize, \
eod_fish_r_generation, extract_am, \
find_base_fr, find_base_fr2, plt_RAM_perc, \
remove_xticks, remove_yticks, save_visualization, simulate, time
from threefish.utils1_suscept import all_damping_variants, calc_ps, check_var_substract_method, chose_certain_group, \
colors_suscept_paper_dots, convert_csv_str_to_float, create_full_matrix2, default_model0, deltaf1_label, \
deltaf2_label, deltat_choice, diagonal_points, diff_label, exclude_file_name_short, \
extract_waves, fbasename_small, find_all_dir_cells, gaussian_intro, get_arrays_for_three, get_axis_on_full_matrix, \
get_cutoffs_nr, get_file_names_exclude, get_mat_susept, get_phaseshifts, get_psds_ROC, labels_didactic2, \
load_cells_three, log_calc_psd, nonlin_title, outputmodel, perc_model_full, plt_model_big, \
plt_peaks_several, plt_psds_ROC, predefine_grouping_frame, rescale_colorbar_and_values, restrict_cell_type, \
save_arrays_susept, sum_label, title_motivation, \
two_deltaf1_label, two_deltaf2_label, version_final
from threefish.utils0 import eod_fish_e_generation, join_y, load_b_public, set_clim_same, set_xlabel_arrow, set_ylabel_arrow, chose_mat_max_value
from threefish.utils1_suscept import load_data_susept, restrict_punits #test_spikes_clusters,
def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], end='all', chose_score='mean_nrs', def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], end='all', chose_score='mean_nrs',
detections=['MeanTrialsIndexPhaseSort'], sorted_on='LocalReconst0.2NormAm', dfs = ['m1', 'm2']): detections=['MeanTrialsIndexPhaseSort'], sorted_on='LocalReconst0.2NormAm', dfs = ['m1', 'm2']):
@ -285,7 +310,8 @@ def plt_model_full_model(axp, min=0.2, cells=[], a_f2 = 0.1, perc = 0.05, alpha
base_cut, mat_base = find_base_fr(spike_adapted, deltat, stimulus_length, time_array) base_cut, mat_base = find_base_fr(spike_adapted, deltat, stimulus_length, time_array)
fr = np.mean(base_cut) fr = np.mean(base_cut)
frate, isis_diff = ISI_frequency(time_array, spike_adapted[0], fill=0.0) frate, isis_diff = ISI_frequency(time_array, spike_adapted[0], fill=0.0)
isi = np.diff(spike_adapted[0]) isi = (
np.diff(spike_adapted[0]))
cv0 = np.std(isi) / np.mean(isi) cv0 = np.std(isi) / np.mean(isi)
cv1 = np.std(frate) / np.mean(frate) cv1 = np.std(frate) / np.mean(frate)
@ -445,7 +471,9 @@ def plt_model_full_model2(grid0, reshuffled='reshuffled', af_2 = 0.1, dev=0.0005
fish_jammer='Alepto', markers = [], clip_on = True, fish_jammer='Alepto', markers = [], clip_on = True,
ms = 14, us_name='', dev_spikes='original', log =''): ms = 14, us_name='', dev_spikes='original', log =''):
plot_style() plot_style()
model_cells = pd.read_csv(load_folder_name('calc_model_core') + "/models_big_fit_d_right.csv") #model_cells = pd.read_csv(load_folder_name('calc_model_core') + "/models_big_fit_d_right.csv")
model_cells = resave_small_files("models_big_fit_d_right.csv", load_folder='calc_model_core', index_col = True)
#embed()
if len(cells) < 1: if len(cells) < 1:
cells = len(model_cells) cells = len(model_cells)
@ -465,6 +493,7 @@ def plt_model_full_model2(grid0, reshuffled='reshuffled', af_2 = 0.1, dev=0.0005
trials_nr = array_len[g] trials_nr = array_len[g]
except: except:
print('array nr something') print('array nr something')
embed() embed()
for cell_here in cells: for cell_here in cells:

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@ -1,21 +1,16 @@
#from matplotlib import gridspec as gridspec, pyplot as plt ##from update_project import **
import numpy as np
#from plotstyle import plot_style from matplotlib import gridspec, pyplot as plt
#from utils_all import chose_mat_max_value, default_settings, find_code_vs_not, save_visualization from scipy.ndimage import gaussian_filter
#from utils_susept import check_var_substract_method, chose_certain_group, divergence_title_add_on, extract_waves, \
# find_all_dir_cells, \ from plotstyle import plot_style
# load_b_public, \ from threefish.utils0 import chose_mat_max_value, cr_spikes_mat, default_figsize, find_code_vs_not, save_visualization
# load_cells_three, \ import time
# plot_arrays_ROC_psd_single3, plot_shemes4, plt_coherences, predefine_grouping_frame, \ from threefish.utils1_suscept import check_var_substract_method, chose_certain_group, circle_plot, colors_suscept_paper_dots, \
# restrict_cell_type, save_arrays_susept extract_waves, find_all_dir_cells, load_cells_three, plot_arrays_ROC_psd_single3, plot_shemes4, \
from utils_suseptibility import * plt_coherences, predefine_grouping_frame, restrict_cell_type, save_arrays_susept, title_motivation, \
ws_nonlin_systems
from threefish.utils0 import load_b_public
#sys.path.insert(0, '..')
#from utils_suseptibility import motivation_small
#from utils import divergence_title_add_on,chose_certain_group,predefine_grouping_frame,check_nix_fish,find_all_dir_cells,load_cells_three,restrict_cell_type,plot_shemes2,plot_arrays_ROC_psd_single
def motivation_all_small(dev_desired = '1', ylim=[-1.25, 1.25], c1=10, dfs=['m1', 'm2'], mult_type='_multsorted2_', top=0.94, devs=['2'], def motivation_all_small(dev_desired = '1', ylim=[-1.25, 1.25], c1=10, dfs=['m1', 'm2'], mult_type='_multsorted2_', top=0.94, devs=['2'],

Binary file not shown.

View File

@ -1,371 +0,0 @@
#from matplotlib import gridspec as gridspec, pyplot as plt
#from plotstyle import plot_style
#from utils_all import chose_mat_max_value, default_settings, find_code_vs_not, save_visualization
#from utils_susept import check_var_substract_method, chose_certain_group, divergence_title_add_on, extract_waves, \
# find_all_dir_cells, \
# load_b_public, \
# load_cells_three, \
# plot_arrays_ROC_psd_single3, plot_shemes4, plt_coherences, predefine_grouping_frame, \
# restrict_cell_type, save_arrays_susept
from utils_suseptibility import *
#sys.path.insert(0, '..')
#from utils_suseptibility import motivation_small
#from utils import divergence_title_add_on,chose_certain_group,predefine_grouping_frame,check_nix_fish,find_all_dir_cells,load_cells_three,restrict_cell_type,plot_shemes2,plot_arrays_ROC_psd_single
def motivation_all_small_stim(dev_desired = '1',ylim=[-1.25, 1.25], c1=10, dfs=['m1', 'm2'], mult_type='_multsorted2_', top=0.94, devs=['2'],
figsize=None, redo=False, save=True, end='0', cut_matrix='malefemale', chose_score='mean_nrs',
a_fr=1, restrict='modulation', adapt='adaptoffsetallall2', step=str(30),
detections=['AllTrialsIndex'], variant='no', sorted_on='LocalReconst0.2Norm'):
autodefines = [
'triangle_diagonal_fr'] # ['triangle_fr', 'triangle_diagonal_fr', 'triangle_df2_fr','triangle_df2_eodf''triangle_df1_eodf', ] # ,'triangle_df2_fr''triangle_df1_fr','_triangle_diagonal__fr',]
cells = ['2021-08-03-ac-invivo-1'] ##'2021-08-03-ad-invivo-1',,[10, ][5 ]
c1s = [10] # 1, 10,
c2s = [10]
plot_style()
default_figsize(column=2, length=3.3) #6.7 ts=12, ls=12, fs=12
show = True
DF2_desired = [0.8]
DF1_desired = [0.87]
DF2_desired = [-0.23]
DF1_desired = [0.94]
# mean_type = '_MeanTrialsIndexPhaseSort_Min0.25sExcluded_'
extract = ''
datasets, data_dir = find_all_dir_cells()
cells = ['2022-01-28-ah-invivo-1'] # , '2022-01-28-af-invivo-1', '2022-01-28-ab-invivo-1',
# '2022-01-27-ab-invivo-1', ] # ,'2022-01-28-ah-invivo-1', '2022-01-28-af-invivo-1', ]
append_others = 'apend_others' # '#'apend_others'#'apend_others'#'apend_others'##'apend_others'
autodefine = '_DFdesired_'
autodefine = 'triangle_diagonal_fr' # ['triangle_fr', 'triangle_diagonal_fr', 'triangle_df2_fr','triangle_df2_eodf''triangle_df1_eodf', ] # ,'triangle_df2_fr''triangle_df1_fr','_triangle_diagonal__fr',]
DF2_desired = [-33]
DF1_desired = [133]
autodefine = '_dfchosen_closest_'
autodefine = '_dfchosen_closest_first_'
cells = ['2021-08-03-ac-invivo-1'] ##'2021-08-03-ad-invivo-1',,[10, ][5 ]
# c1s = [10] # 1, 10,
# c2s = [10]
minsetting = 'Min0.25sExcluded'
c2 = 10
# detections = ['MeanTrialsIndexPhaseSort'] # ['AllTrialsIndex'] # ,'MeanTrialsIndexPhaseSort''DetectionAnalysis''_MeanTrialsPhaseSort'
# detections = ['AllTrialsIndex'] # ['_MeanTrialsIndexPhaseSort_Min0.25sExcluded_extended_eod_loc_synch']
extend_trials = '' # 'extended'#''#'extended'#''#'extended'#''#'extended'#''#'extended'#''#'extended'# ok kein Plan was das hier ist
# phase_sorting = ''#'PhaseSort'
eodftype = '_psdEOD_'
concat = '' # 'TrialsConcat'
indices = ['_allindices_']
chirps = [
''] # '_ChirpsDelete3_',,'_ChirpsDelete3_'','','',''#'_ChirpsDelete3_'#''#'_ChirpsDelete3_'#'#'_ChirpsDelete2_'#''#'_ChirpsDelete_'#''#'_ChirpsDelete_'#''#'_ChirpsDelete_'#''#'_ChirpsCache_'
extract = '' # '_globalmax_'
devs_savename = ['original', '05'] # ['05']#####################
# control = pd.read_pickle(
# load_folder_name(
# 'calc_model') + '/modell_all_cell_no_sinz3_afe0.1__afr1__afj0.1__length1.5_adaptoffsetallall2___stepefish' + step + 'Hz_ratecorrrisidual35__modelbigfit_nfft4096.pkl')
if len(cells) < 1:
data_dir, cells = load_cells_three(end, data_dir=data_dir, datasets=datasets)
cells, p_units_cells, pyramidals = restrict_cell_type(cells, 'p-units')
# default_settings(fs=8)
start = 'min' #
cells = ['2021-08-03-ac-invivo-1']
tag_cells = []
for c, cell in enumerate(cells):
counter_pic = 0
contrasts = [c2]
tag_cell = []
for c, contrast in enumerate(contrasts):
contrast_small = 'c2'
contrast_big = 'c1'
contrasts1 = [c1]
for contrast1 in contrasts1:
for devname_orig in devs:
datapoints = [1000]
for d in datapoints:
################################
# prepare DF1 desired
# chose_score = 'auci02_012-auci_base_01'
# hier muss das halt stimmen mit der auswahl
# hier wollen wir eigntlich kein autodefine
# sondern wir wollen so ein diagonal ding haben
extra_f_calculatoin = False
if extra_f_calculatoin:
divergnce, fr, pivot_chosen, max_val, max_x, max_y, mult, DF1_desired, DF2_desired, min_y, min_x, min_val, diff_cut = chose_mat_max_value(
DF1_desired, DF2_desired, '', mult_type, eodftype, indices, cell, contrast_small,
contrast_big, contrast1, dfs, start, devname_orig, contrast, autodefine=autodefine,
cut_matrix='cut', chose_score=chose_score) # chose_score = 'auci02_012-auci_base_01'
DF1_desired = [1.2]#DF1_desired # [::-1]
DF2_desired = [0.95]#DF2_desired # [::-1]
#embed()
#######################################
# ROC part
# fr, celltype = get_fr_from_info(cell, data_dir[c])
version_comp, subfolder, mod_name_slash, mod_name, subfolder_path = find_code_vs_not()
b = load_b_public(c, cell, data_dir)
mt_sorted = predefine_grouping_frame(b, eodftype=eodftype, cell_name=cell)
counter_waves = 0
mt_sorted = mt_sorted[(mt_sorted['c2'] == c2) & (mt_sorted['c1'] == c1)]
for gg in range(len(DF1_desired)):
# try:
t3 = time.time()
# except:
# print('time thing')
# embed()
ax_w = []
###################
# all trials in one
grouped = mt_sorted.groupby(
['c1', 'c2', 'm1, m2'],
as_index=False)
# try:
grouped_mean = chose_certain_group(DF1_desired[gg],
DF2_desired[gg], grouped,
several=True, emb=False,
concat=True)
# except:
# print('grouped thing')
# embed()
###################
# groups sorted by repro tag
# todo: evnetuell die tuples gleich hier umspeichern vom csv ''
grouped = mt_sorted.groupby(
['c1', 'c2', 'm1, m2', 'repro_tag_id'],
as_index=False)
grouped_orig = chose_certain_group(DF1_desired[gg],
DF2_desired[gg],
grouped,
several=True)
gr_trials = len(grouped_orig)
###################
groups_variants = [grouped_mean]
group_mean = [grouped_orig[0][0], grouped_mean]
for d, detection in enumerate(detections):
mean_type = '_' + detection # + '_' + minsetting + '_' + extend_trials + concat
##############################################################
# load plotting arrays
arrays, arrays_original, spikes_pure = save_arrays_susept(
data_dir, cell, c, chirps, devs, extract, group_mean, mean_type, plot_group=0,
rocextra=False, sorted_on=sorted_on, dev_desired = dev_desired)
####################################################
####################################################
# hier checken wir ob für diesen einen Punkt das funkioniert mit der standardabweichung
try:
check_var_substract_method(spikes_pure)
except:
print('var checking not possible')
# fig = plt.figure()
# grid = gridspec.GridSpec(2, 1, wspace=0.7, left=0.05, top=0.95, bottom=0.15,
# right=0.98)
if figsize:
fig = plt.figure(figsize=figsize)
else:
fig = plt.figure()
grid = gridspec.GridSpec(1, 1, wspace=0.7, hspace=0.35, left=0.055, top=top,
bottom=0.15,
right=0.935) # height_ratios=[1, 2], height_ratios = [1,6]bottom=0.25, top=0.8,
hr = [1, 0.35, 1.2, 0, 3, ] # 1
##########################################################################
# several coherence plot
# frame_psd = pd.read_pickle(load_folder_name('calc_RAM')+'/noise_data11_nfft1sec_original__StimPreSaved4__first__CutatBeginning_0.05_s_NeurDelay_0.005_s_2021-08-03-ab-invivo-1.pkl')
# frame_psd = pd.read_pickle(load_folder_name('calc_RAM') + '/noise_data11_nfft1sec_original__StimPreSaved4__first__CutatBeginning_0.05_s_NeurDelay_0.005_s_2021-08-03-ab-invivo-1.pkl')
coh = False
if coh:
ax_w, d, data_dir, devs = plt_coherences(ax_w, d, devs, grid)
# ax_cohs = plt.subplot(grid[0,1])
##########################################################################
# part with the power spectra
grid0 = gridspec.GridSpecFromSubplotSpec(5, 4, wspace=0.15, hspace=0.35,
subplot_spec=grid[:, :],
height_ratios=hr)
xlim = [0, 100]
###########################################
stimulus_length = 0.3
deltat = 1 / 40000
eodf = np.mean(group_mean[1].eodf)
eod_fr = eodf
a_fr = 1
eod_fe = eodf + np.mean(
group_mean[1].DF2) # data.eodf.iloc[0] + 10 # cell_model.eode.iloc[0]
a_fe = group_mean[0][1] / 100
eod_fj = eodf + np.mean(
group_mean[1].DF1) # data.eodf.iloc[0] + 50 # cell_model.eodj.iloc[0]
a_fj = group_mean[0][0] / 100
variant_cell = 'no' # 'receiver_emitter_jammer'
print('f0' + str(eod_fr))
print('f1'+str(eod_fe))
print('f2' + str(eod_fj))
eod_fish_j, time_array, time_fish_r, eod_fish_r, time_fish_e, eod_fish_e, time_fish_sam, eod_fish_sam, stimulus_am, stimulus_sam = extract_waves(
variant_cell, '',
stimulus_length, deltat, eod_fr, a_fr, a_fe, [eod_fe], 0, eod_fj, a_fj)
jammer_name = 'female'
cocktail_names = False
if cocktail_names:
titles = ['receiver ',
'+' + 'intruder ',
'+' + jammer_name,
'+' + jammer_name + '+intruder',
[]] ##'receiver + ' + 'receiver + receiver
else:
titles = title_motivation()
gs = [0, 1, 2, 3, 4]
waves_presents = [['receiver', '', '', 'all'],
['receiver', 'emitter', '', 'all'],
['receiver', '', 'jammer', 'all'],
['receiver', 'emitter', 'jammer', 'all'],
] # ['', '', '', ''],['receiver', '', '', 'all'],
# ['receiver', '', 'jammer', 'all'],
# ['receiver', 'emitter', '', 'all'],'receiver', 'emitter', 'jammer',
symbols = [''] # '$+$', '$-$', '$-$', '$=$',
symbols = ['', '', '', '', '']
time_array = time_array * 1000
color01, color012, color01_2, color02, color0_burst, color0 = colors_suscept_paper_dots()
colors_am = ['black', 'black', 'black', 'black'] # color01, color02, color012]
extracted = [False, True, True, True]
extracted2 = [False, False, False, False]
for i in range(len(waves_presents)):
ax = plot_shemes4(eod_fish_r, eod_fish_e, eod_fish_j, grid0, time_array,
g=gs[i], title_top=True, eod_fr=eod_fr,
waves_present=waves_presents[i], ylim=ylim,
xlim=xlim, color_am=colors_am[i],
color_am2 = color01_2, extracted=extracted[i], extracted2=extracted2[i],
title=titles[i]) # 'intruder','receiver'#jammer_name
ax_w.append(ax)
if ax != []:
ax.text(1.1, 0.45, symbols[i], fontsize=35, transform=ax.transAxes)
bar = False
if bar:
if i == 0:
ax.plot([0, 20], [ylim[0] + 0.01, ylim[0] + 0.01], color='black')
ax.text(0, -0.16, '20 ms', va='center', fontsize=10,
transform=ax.transAxes)
printing = True
if printing:
print(time.time() - t3)
##########################################
# spike response
array_chosen = 1
if d == 0: #
#embed()
frs = []
for i in range(len(spikes_pure['base_0'])):
#duration = spikes_pure['base_0'][i][-1] / 1000
duration = 0.5
fr = len(spikes_pure['base_0'][i])/duration
frs.append(fr)
fr = np.mean(frs)
#embed()
base_several = False
if base_several:
spikes_new = []
for i in range(len(spikes_pure['base_0'])):
duration = 100
duration_full = 101#501
dur = np.arange(0, duration_full, duration)
for d_nr in range(len(dur) - 1):
#embed()
spikes_new.append(np.array(spikes_pure['base_0'][i][
(spikes_pure['base_0'][i] > dur[d_nr]) & (
spikes_pure['base_0'][i] < dur[
d_nr + 1])])/1000-dur[d_nr]/1000)
# spikes_pure['base_0'] = spikes_new
sampling_rate = 1/np.diff(time_array)
sampling_rate = int(sampling_rate[0]*1000)
spikes_mats = []
smoothed05 = []
for i in range(len(spikes_new)):
spikes_mat = cr_spikes_mat(spikes_new[i], sampling_rate, int(sampling_rate*duration/1000))
spikes_mats.append(spikes_mat)
smoothed05.append(gaussian_filter(spikes_mat, sigma=(float(dev_desired)/1000) * sampling_rate))
smoothed_base = np.mean(smoothed05, axis=0)
mat_base = np.mean(spikes_mats, axis=0)
else:
smoothed_base = arrays[0][0]
mat_base = arrays_original[0][0]
#embed()#arrays[0]v
fr_isi, ax_ps, ax_as = plot_arrays_ROC_psd_single4([[smoothed_base], arrays[2], arrays[1], arrays[3]],
[[smoothed_base], arrays[2], arrays[1], arrays[3]],
[[mat_base], arrays_original[2], arrays_original[1],
arrays_original[3]], spikes_pure, cell, grid0, mean_type,
group_mean, xlim=xlim, row=1 + d * 3,
array_chosen=array_chosen,
color0_burst=color0_burst, color01=color01, color02=color02,ylim_log=(-15, 3),
color012=color012,color012_minus = color01_2,color0=color0)
##########################################################################
individual_tag = 'DF1' + str(DF1_desired[gg]) + 'DF2' + str(
DF2_desired[gg]) + cell + '_c1_' + str(c1) + '_c2_' + str(c2) + mean_type
# save_all(individual_tag, show, counter_contrast=0, savename='')
# print('individual_tag')
axes = []
axes.append(ax_w)
# axes.extend(np.transpose(ax_as))
# axes.append(np.transpose(ax_ps))
# np.transpose(axes)
#fig.tag(ax_w[0:3], xoffs=-2.3, yoffs=1.7)
#fig.tag(ax_w[3::], xoffs=-1.9, yoffs=1.4)
fig.tag(ax_w, xoffs=-1.9, yoffs=1.4)
# ax_w, np.transpose(ax_as), ax_ps
if save:
save_visualization(individual_tag=individual_tag, show=show, pdf=True)
# fig = plt.gcf()
# fig.savefig
# plt.show()
#if __name__ == '__main__':#2.5
# motivation_all_small_stim(dev_desired = '1', c1=10, mult_type='_multsorted2_', devs=['05'], redo=True, save=True, end='all',
# cut_matrix='malefemale', chose_score='mean_nrs', restrict='modulation_no_classes', step='50',
# detections=['MeanTrialsIndexPhaseSort'], sorted_on='LocalReconst0.2NormAm')#

View File

Binary file not shown.

View File

@ -1,18 +1,17 @@
#from utils_suseptibility import default_settings import os
#from plt_RAM import model_and_data_isi, model_cells
#from utils_suseptibility import model_and_data, remove_yticks import numpy as np
#from utils_suseptibility import * import pandas as pd
#from utils_susept import nonlin_title, plt_data_susept, plt_single_square_modl, set_clim_same_here, set_xlabel_arrow, \ from matplotlib import pyplot as plt
# set_ylabel_arrow, \ from plotstyle import plot_style
# xpos_y_modelanddata from threefish.utils0 import default_figsize, default_settings, find_cell_add, load_folder_name, load_model_susept, \
overlap_cells, \
resave_small_files, save_visualization #utils0_project
from threefish.utils1_suscept import get_stack, trial_nrs_ram_model
import itertools as it
#from utils_all import default_settings, find_cell_add, get_flowchart_params, load_folder_name, load_model_susept, \ ##from update_project import *
# overlap_cells, \
# plot_lowpass2, plt_time_arrays, remove_xticks, remove_yticks, resave_small_files, save_visualization, set_same_ylim
from utils_suseptibility import *#model_and_data
#from plt_RAM import model_and_data, model_and_data_sheme, model_and_data_vertical2
def table_printen(table): def table_printen(table):
print(table.keys()) print(table.keys())
@ -22,11 +21,9 @@ def table_printen(table):
print(l1) print(l1)
def trialnr(eod_metrice = False, width=0.005, nffts=['whole'], powers=[1], cells=["2013-01-08-aa-invivo-1"], show=False, def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_extraction_method=['additiv_cv_adapt_factor_scaled'],
contrasts=[0], noises_added=[''], D_extraction_method=['additiv_cv_adapt_factor_scaled'],
internal_noise=['RAM'], external_noise=['RAM'], level_extraction=[''], receiver_contrast=[1], internal_noise=['RAM'], external_noise=['RAM'], level_extraction=[''], receiver_contrast=[1],
dendrids=[''], ref_types=[''], adapt_types=[''], c_noises=[0.1], c_signal=[0.9], cut_offs1=[300], dendrids=[''], ref_types=[''], adapt_types=[''], c_noises=[0.1], c_signal=[0.9], cut_offs1=[300]): # ['eRAM']
label=r'$\frac{1}{mV^2S}$'): # ['eRAM']
# plot_style()#['_RAMscaled']'_RAMscaled' # plot_style()#['_RAMscaled']'_RAMscaled'
duration_noise = '_short', duration_noise = '_short',
@ -258,7 +255,6 @@ if __name__ == '__main__':
########################## ##########################
#embed() #embed()
trialnr(eod_metrice = False, width=0.005, show=show, D_extraction_method=D_extraction_method, trialnr(D_extraction_method=D_extraction_method) #r'$\frac{1}{mV^2S}$'
label=r'$\frac{1}{mV^2S}$') #r'$\frac{1}{mV^2S}$'

View File

@ -1,4 +1,4 @@
import os '''import os
try: try:
from numba import jit from numba import jit
@ -22,18 +22,19 @@ from IPython import embed
# utils susept wird in utils paper copiert und von utisl_susepitbility gestartet # utils susept wird in utils paper copiert und von utisl_susepitbility gestartet
utils_suseptibility_name = 'utils_susept' utils_suseptibility_name = 'utils1'
utils_susept_name = 'utils_paper' utils_susept_name = 'utils1_project'
utils_suseptibility_name2 = 'utils_susept2' utils_suseptibility_name2 = 'utils_susept2'
utils_susept_name2 = 'utils_paper2' utils_susept_name2 = 'utils_paper2'
utils_suseptibility_name_all = 'utils_all' utils_suseptibility_name_all = 'utils0'
utils_susept_name_all = 'utils_all_down'#_down utils_susept_name_all = 'utils0_project'#_down
try:# this will not load but I want this to be reference for the refractoring in pycharm try:# this will not load but I want this to be reference for the refractoring in pycharm
from utils_susept import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization from threefish.utils1 import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
cont_other_dir = True# cont_other_dir = True#
except: except:
cont_other_dir = False#then I know that I am on alexandras PC and I can update my code cont_other_dir = False#then I know that I am on alexandras PC and I can update my code
@ -45,18 +46,18 @@ if cont_other_dir == False:
if not os.path.exists('../'+utils_suseptibility_name+'.py'): if not os.path.exists('../'+utils_suseptibility_name+'.py'):
from utils_paper import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization from utils1_project import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
#from utils_paper2 import * # resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization #from utils_paper2 import * # resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
else: else:
#embed() #embed()
if filecmp.cmp('../'+utils_suseptibility_name+'.py', utils_susept_name+'.py'): if filecmp.cmp('../'+utils_suseptibility_name+'.py', utils_susept_name+'.py'):
from utils_paper import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization from utils1_project import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
#from utils_paper2 import * # resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization #from utils_paper2 import * # resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
if os.path.exists('../'+utils_suseptibility_name+'.py'):# das mache ich um in dem richtigen embed zu arbeiten if os.path.exists('../'+utils_suseptibility_name+'.py'):# das mache ich um in dem richtigen embed zu arbeiten
sys.path.insert(0, '..') sys.path.insert(0, '..')
from utils_susept import *#resave_small_files,remove_yticks, unify_cell_names,load_cv_table, colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization from threefish.utils1 import *#resave_small_files,remove_yticks, unify_cell_names,load_cv_table, colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
else: else:
# wir schauen erstmal ohne sys dass das immer zu teilen da ist # wir schauen erstmal ohne sys dass das immer zu teilen da ist
@ -70,15 +71,15 @@ if cont_other_dir == False:
# wenn wir auf meinem Computer sind ziehen wir es aber immer vom code # wenn wir auf meinem Computer sind ziehen wir es aber immer vom code
# damit das refractors und wenn wir wo anders sind von dem extra kopierten file # damit das refractors und wenn wir wo anders sind von dem extra kopierten file
if not os.path.exists('../'+utils_suseptibility_name+'.py'): if not os.path.exists('../'+utils_suseptibility_name+'.py'):
from utils_paper import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization from utils1_project import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
#from utils_paper2 import * # resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization #from utils_paper2 import * # resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
sys.path.insert(0, '..') sys.path.insert(0, '..')
from utils_susept import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization from threefish.utils1 import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
else: else:
sys.path.insert(0, '..') sys.path.insert(0, '..')
from utils_susept import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization from threefish.utils1 import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
############################## ##############################
# find out if we are in the code or develop mode (alexandra) or the public mode! # find out if we are in the code or develop mode (alexandra) or the public mode!
@ -177,11 +178,11 @@ def plt_scatter_four(grid, frame, cell_types, cell_type_type, annotate, colors):
# frame_all = frame[(frame[cell_type_type] == cell_type)] # frame_all = frame[(frame[cell_type_type] == cell_type)]
frame_g = frame[ frame_g = frame[
(frame[cell_type_type] == cell_type_it) & ((frame.gwn == True) | (frame.fs == True))] (frame[cell_type_type] == cell_type_it) & ((frame.gwn == True) | (frame.fs == True))]
plt_cv_fr(annotate, ax2, add[1], frame_g, colors, cell_type_it) plt_cv_fr(annotate, ax2, add[1], frame_g, colors, cell_type_it)
return ax0, ax1, ax2, return ax0, ax1, ax2,'''

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff